Importing precompiled C++ libraries

This is a publicly readable document!

Author: hlopko@google.com

Status: being implemented

Last change: 2017-11-16 11:50

Reviewers: |berki@google.com, ulfiack@google.com, dslomov@google.com,

klimek@google.com, pcloudy@google.com
go/bazel-importing-precompiled-cpp-libraries

Problem Description

Many projects (especially external ones) have dependencies that are best dependent upon
using their distribution artifacts. Those are either static or shared libraries. Currently these
dependencies are specified in cc_library.srcs, but this approach has many limitations:

1. Bazel has to inspect the extension in order to decide whether the file is a static or shared
library. This means that bazel needs to know what extensions are common on various
operating systems.

2. On Windows, shared library consists of .dll with the actual code, and .lib which serves as
an interface library. Linker links against .lib file, but .dll is loaded at runtime. This cannot
be expressed using existing mechanism and is blocking windows adoption. (To add
confusion, static libraries are also .lib files -- same as interface libraries but with
implementations.)

3. Right now, the only way of specifying that a particular static library should be linked as
whole-archive is to change its extension to .lo. Bazel creates .lo file as a whole-archive
static library from cc_library rules and uses it as such. This behavior is not well
documented, is platform-dependent, and shouldn't be relied on. Second problem is that
currently, cc_library with alwayslink = 1 will not wrap precompiled libraries in
whole-archive, alwayslink only affects the output of cc_library, not its sources.

4, There is no way of spe0|fy|ng that a group of static I|brar|es forms a lib- group (the-gredup

assume in practice Ilbgroups are only needed for precomplled libraries and not
cc_libraries in general, since in the more than 10 years of google-internal Bazel
existence nobody needed this badly enough to be implemented. We do have a feature
request for libgroups for precompiled libraries though.

mailto:lberki@google.com
mailto:ulfjack@google.com
mailto:dslomov@google.com
mailto:klimek@google.com
mailto:pcloudy@google.com
https://docs.google.com/document/d/1hK2mWl3TYNL9oJYX_S020TKkXZvBw1aBoYERvTHVyfg/edit#

Related Issues

https://github.com/bazelbuild/bazel/issues/3402 - tracking issue for this work
https://github.com/bazelbuild/bazel/issues/3323 - cannot link against extension-less library, this
will be fully fixed by this work.

https://github.com/bazelbuild/bazel/issues/2944 - cannot link imported archive as whole-archive,
this will be fully fixed by this work.

https://github.com/bazelbuild/bazel/issues/818 - is only slightly related but worth mentioning
here. The problem is there is no way of expressing lib groups for cc_libraries, something we
discuss in #4 in Problem Description. This will not be solved by this work.
https://github.com/bazelbuild/bazel/issues/1534 - Cannot link to library whose basename is not
the same as its soname. This work will not solve this, but at least will provide a principled place
where such behavior should be implemented.

Proposed Solution

| propose we introduce 1 new rule, 'cc_import'. Attributes of cc_import:
e static_library: single static library
alwayslink: true when the 'static_library' should be inside the whole-archive block
hdrs: collection of include headers
shared_library: single precompiled shared library
interface_library: interface library corresponding to 'shared_library' (mostly this is only
there to make Windows dlls work, we can create elf interface libraries internally, but
externally this is not common)
e system_provided: true when we expect the shared library is provided by the system
during runtime.
e includes (and other related attributes)

It enables us to eventually remove bits of file detection logic from cc_library implementation, and
brings us closer to the desired state where cc_library is just a simple collection of sources and
headers (or a collection of objects and related stuff if looking from the other side). | also expect
more features to be added in the future such as 'this is the shared library you should use, but
expect it will be installed somewhere else when the binary runs'.

This solution doesn't solve problem #4 (lib groups). Based on the discussion with experts
(Appendix 1), | think providing lib groups only for precompiled libraries will not be enough for all
the known use cases. | expect separate rule (aka 'cc_lib_group') will be needed.

https://github.com/bazelbuild/bazel/issues/3402
https://github.com/bazelbuild/bazel/issues/3323
https://github.com/bazelbuild/bazel/issues/2944
https://github.com/bazelbuild/bazel/issues/818
https://github.com/bazelbuild/bazel/issues/1534

Alternative Solutions

Specific attributes (annotating edges, not nodes)

We could introduce 'static_lib_deps' and 'shared_lib_deps' attributes. This solves the problem
#1. #2 can be solved by expecting "magic" prefix or suffix (e.g. 'interface’) for interface libraries
corresponding to shared libraries entered in the 'shared_lib_deps'. #3 can be solved by
modifying how alwayslink behaves. Instead of only affecting the library artifact created from
cc_library it can also affect all declared static-lib-deps. #4 could be solved by a) introducing an
explicit rule (e.g. cc_lib_group) or b) adding another attribute such as 'libgroup' = 1 to cc_library.

| argue cc_import rule is superior because they simplify the cc_library implementation and are
more concise. Attributes specific only to static_lib_deps, or shared_lib_deps pollute the
(otherwise already very polluted :) set of attributes of cc_library.

Multiple cc_import rules

We could split the cc_import rules into two (e.g. cc_static_library_import,
cc_shared_library_import). We could allow multiple archives to be specified in a single
cc_static_library_import and add a boolean attribute specifying whether archives should form a
lib-group. As already mentioned, this would not solve all the lib-group use cases we know about.
This approach is also more difficult to use in scenarios where users want to use both static and
shared libraries depending on the linkstaticness of the top level cc_binary rule.

Appendix 1 - lib group use cases

Tim Blakely:

| only have an anecdotal example but the reason | was interested in start-/end-group support is
that it is used in a few microcontroller SDKs that use circular dependencies during linking;
namely the ESP8266 SDK and ESP32 SDK. It's been a while since I've toyed with it, so | don't
know whether the circular dependencies were introduced at the chip level SDKs from Espressif
or further down the software stack at the Xtensa core SDK level. Either way, the circular
dependencies are not at a level that's possible to change without rewriting the entire SDK. A
custom CROSSTOOL chain with a start-/end-group flag_set got around this, so it's not blocking
by any means.

Austin Schuh:

For one of my projects, I've got to build the standard C and C++ libraries for a microcontroller.
We are bug-fixing the standard C library enough that it made sense to spend a couple weeks
and pull it into bazel. Proper support would have saved me a couple days of pain, but it's done
now.

I'm currently working around it by re-implementing the entire cc_binary and cc_library rules (so
we can support multiple architectures in the same package), extracting the .a library files in a
genrule, and then combining all of the .a's in a group back into a single .a with ar directly.
(libstdc++ has circular internal dependencies, along with newlib. Sigh...) Long term when
dynamic configurations arrive, we should be able to drop our custom rules and will then need
this support.

James Y Knight:

Source files within a single library are often circularly-dependent, and that's generally accepted
to be fine. The default behavior when searching an archive is to search all the object files within
it (no ordering requirement), and thus users don't typically do anything special to get the desired
linker behavior.

However, in bazel, this can be problematic, because copts can only be specified for an entire
"cc_library" rule at a time. If you want to specify different compilation options for different source
files within a single logical library (e.g. have some sources built with copts = ['-O3"] and some
not), you must split into multiple cc_library rules. But, once you do that, you've lost the implicit
circular-dependency allowance, and there's now no way to express the dependencies. Of
course, you didn't really want these object files to end up in two separate archives in the first
place, but every cc_library turns into a separate archive whether you like it or not, and now
you're stuck.

Currently, people resort to using alwayslink=1 to workaround the issue, which is not ideal.

| was just reminded of another current workaround for this issue which is hardcoded in blaze:
the objc_library "non_arc_srcs" attribute. | don't know the history of this attribute, so | don't know
if it was introduced for this reason or not. But at this point, the only thing it provides is the ability
to pass the "-fno-objc-arc" to the compilation of some objects in the library and not others -- an
ability which isn't generally available.

	Importing precompiled C++ libraries
	Problem Description
	Related Issues
	Proposed Solution
	Alternative Solutions
	Specific attributes (annotating edges, not nodes)
	Multiple cc_import rules

	Appendix 1 - lib group use cases

