
RCU Tasks & PID-Namespace Unshare
This document looks at an entertaining deadlock scenario reported by Pengfei Xu.

Deadlock Scenario
RCU Tasks and PID-namespace unshare can interact in do_exit() in a complicated circular
dependency, as analyzed by Frederic Weisbecker:

1.​ TASK A calls unshare(CLONE_NEWPID), this creates a new PID namespace that every
subsequent child of TASK A will belong to. But TASK A doesn't itself belong to that new
PID namespace.

2.​ TASK A forks() and creates TASK B (it is a new thread group so it is a thread group
leader). TASK A stays attached to its PID namespace (let's say PID_NS1) and TASK B
is the first task belonging to the new PID namespace created by unshare() (let's call it
PID_NS2).

3.​ Since TASK B is the first task attached to PID_NS2, it becomes the PID_NS2 child
reaper.

4.​ TASK A forks() again and creates TASK C which get attached to PID_NS2. Note how
TASK C has TASK A as a parent (belonging to PID_NS1) but has TASK B (belonging to
PID_NS2) as a pid_namespace child_reaper.

5.​ TASK B exits and since it is the child reaper for PID_NS2, it has to kill all other tasks
attached to PID_NS2, and wait for all of them to die before reaping itself
(zap_pid_ns_process()). Note it seems to make a misleading assumption here, trusting
that all tasks in PID_NS2 either get reaped by a parent belonging to the same
namespace or by TASK B. And it is confident that since it deactivated SIGCHLD
handler, all the remaining tasks ultimately autoreap. And it waits for that to happen.
However TASK C escapes that rule because it will get reaped by its parent TASK A
belonging to PID_NS1.

6.​ TASK A calls synchronize_rcu_tasks() which leads to
synchronize_srcu(&tasks_rcu_exit_srcu).

7.​ TASK B is waiting for TASK C to get reaped (wrongly assuming it autoreaps) But TASK B
is under a tasks_rcu_exit_srcu SRCU critical section (exit_notify() is between
exit_tasks_rcu_start() and exit_tasks_rcu_finish()), blocking TASK A

8.​ TASK C exits and since TASK A is its parent, it waits for it to reap TASK C, but it can't
because TASK A waits for TASK B that waits for TASK C.

So there is a circular dependency, also known as deadlock:

●​ TASK A waits for TASK B to get out of tasks_rcu_exit_srcu SRCU critical section
●​ TASK B waits for TASK C to get reaped
●​ TASK C waits for TASK A to reap it.

https://lore.kernel.org/all/Y3sOgrOmMQqPMItu@xpf.sh.intel.com/
https://lore.kernel.org/all/20221123143758.GA1387380@lothringen/

I have no idea how to solve the situation without violating the pid_namespace rules and
unshare() semantics (although I wish unshare(CLONE_NEWPID) had a less error prone
behaviour with allowing creating more than one task belonging to the same namespace).

So probably having an SRCU read side critical section within exit_notify() is not a good idea, is
there a solution to work around that for rcu tasks?

Reproducer
https://github.com/xupengfe/syzkaller_logs/tree/main/221115_105658_synchronize_rcu

Questions

What is the RCU Tasks Task-Exit Rationale?
Neeraj Upadhyay notes that this topic is touched upon in Inspection of RCU Tasks Trace in
question 3 (“Use of synchronize_srcu() in rcu_tasks_postscan() and in rcu_tasks_postgp()”).
The commit log for 3f95aa81d265 ("rcu: Make TASKS_RCU handle tasks that
are almost done exiting") is quite forthright about this issue:

Once a task has passed exit_notify() in the do_exit() code path, it is no longer
on the task lists, and is therefore no longer visible to rcu_tasks_kthread().

The high-level issue is that tracers can be attached to functions very late in do_exit(). It is
therefore necessary for synchronize_rcu_tasks() to wait for the dying task to execute its
last instruction. Even though it is no longer on the tasks lists. Therefore, do_exit() calls

One complication is that the task removes itself from tasks list, beyond which point
synchronize_rcu_tasks() cannot see that task via the task-list scan. Therefore, there
must be some mechanism to wait for tasks that have already been removed from the tasks list,
but which have not yet executed their very last instruction. This mechanism is SRCU, as put in
place by the above commit, but as of 2022 using exit_tasks_rcu_start() and
exit_tasks_rcu_finish() wrapper functions for srcu_read_lock() and
srcu_read_unlock().

Unfortunately, this results in the deadlock called out above.

https://docs.google.com/document/d/1YjEw6l7oq3dJZCs3M6qaNfNlknEY-nPWIoRBTN-t5ZY/edit?usp=sharing

Why Disable Preemption in exit_tasks_rcu_start() and
exit_tasks_rcu_finish()?
Boqun Feng notes that srcu_read_lock() and srcu_read_unlock() used to disable
preemption, but that a later commit removed the need to do so. When SRCU switched to a
simpler read-side algorithm that featured this_cpu_inc(), the preemption disabling was removed
from , but exit_tasks_rcu_start() and exit_tasks_rcu_finish() never were
updated.

Therefore, the preempt_disable() and preempt_enable() calls can be safely removed
from the exit_tasks_rcu_start() and exit_tasks_rcu_finish() functions.

Why use __srcu_read_lock() instead of srcu_read_lock()?
It appears that back when the SRCU read-side critical section was introduced, there was a
lockdep false positive: https://lore.kernel.org/lkml/20140811224840.GA25594@linux.vnet.ibm.com/

​ Moved from srcu_read_lock() and srcu_read_unlock to __srcu_read_lock()
​ and __srcu_read_unlock() to avoid CONFIG_PROVE_RCU false positives
​ in do_exit().

What Are Possible Fixes?
Frederic Weisbecker suggests exiting and re-entering the SRCU read-side critical section.
However, exiting that critical section by calling exit_tasks_rcu_finish() would be bad
because that would invoke exit_tasks_rcu_finish_trace() which could prematurely
end an RCU Tasks Trace read-side critical section. Perhaps there should be an
exit_tasks_rcu_pause() that is invoked by exit_tasks_rcu_finish()?

Note that the SRCU reader index is maintained in current->rcu_tasks_idx, so that issue
is handled.

Potential diagnostics:

●​ Perhaps kernels built with lockdep should set a timer and complain if it takes too long to
get through do_exit(). After all, there might be other similar deadlocks. However,
what should that timeout value be?

●​ It would be good for RCU Tasks and RCU Tasks Trace RCU CPU stall warnings to cover
the synchronize_rcu() and synchronize_srcu() invocations. (Neeraj is looking
into this.)

●​ Expand the comment preceding the synchronize_srcu() to explicitly state that part
of the problem to be solved is that tasks are removed from the task list before they

https://lore.kernel.org/lkml/20140811224840.GA25594@linux.vnet.ibm.com/

disable preemption, and that synchronize_rcu_tasks() must wait for an exiting task to
execute its last instruction (which is why there is the check for t->on_rq in
check_holdout_task()).

Note well that none of this addresses the namespace-leak problem that can be caused by only
slightly different use cases. Risks notwithstanding, it might prove worthwhile to revisit
namespace semantics.

	RCU Tasks & PID-Namespace Unshare
	Deadlock Scenario
	Reproducer
	Questions
	What is the RCU Tasks Task-Exit Rationale?
	Why Disable Preemption in exit_tasks_rcu_start() and exit_tasks_rcu_finish()?
	Why use __srcu_read_lock() instead of srcu_read_lock()?
	What Are Possible Fixes?

