
@yoavweiss - September 2020
Public document

This document intends to outline what are the different specification points that would be
required in order to properly specify the various pre* primitives required for instant navigation -
preload, prefetch, prenavigate and prerender.
Right now, it’s not yet fully decided what some of those would look like. This document explores
the specification implications of different options.

API shape changes

Preload
No API shape changes planned for preload

Link headers
No API changes planned.

Prefetch
Currently prefetch is allowed to fetch any resource type and bring it into the HTTP cache, where
it will live for at least 5 minutes (unless it’s a no-store resource). That includes cross-origin
resources.
Cache partitioning will make that fetch operation useless, resulting in wasted bandwidth.
Therefore, we may want to modify the API shape so that prefetch will only work for same-site
resources as the top level origin.
That would mean that many prefetch indications on the web today would become no-ops, and
some use-cases won’t be enabled (e.g. prefetching a cross-origin resource to be used by a
same-site page).
TBD what we actually want to do there.

Prenavigate
Prenavigate is not currently a thing beyond TPAC discussions. The proposal there was
somewhat complex, so it might be good to coalesce it with prerender signals.

Uncredentialed Prerender
The old prerender triggered credentialed requests and was problematic in many ways
(non-idempotency of links, privacy, etc)

We want a new uncredentialed prerender, requiring the prerendered page to:

https://docs.google.com/document/d/1aaMrnGaf89M23Otycl2e7vzThluKsJCGpGU62RDjG9A/edit

●​ Opt-in to being prerendered without credentials
●​ Provide hooks (e.g. event handlers) that enable the app to switch from non-credentialed

mode (before the user actually navigated) to credentialed mode.
The latter part would require apps to change the way they introduce personalization and many
other features relying on user credentials. At the same time, it’d make their HTML more
cacheable and potentially makes for a more robust site architecture.

The opt-in above seems relevant for manual prerender, P4, portals and potentially Fenced
Frames.

For triggering prerender we have multiple options on the table:

●​ An implicit “prerender all the things” signal, potentially with URL patterns that are OK to
pre-render

●​ A weak “this is OK to prerender” signal for a specific URL
●​ A stronger “This needs to be prerendered” signal (similar to link rel=prerender in the

past)

If we want to coalesce prenavigate with prerender, we may want to add the flexibility for the
browser to terminate prerendering navigations at certain points in time.

TBD - what we actually want to do there

WebBundle loading header
If WebBundle loading moves from `<link>` to `<script>`, we may want headers that can trigger
that.
TBD working with partners to decide if and how that’d look like

Potential spec changes

Preload

Preload Cache
●​ Each Document has a Preload cache it’s associated with
●​ In main fetch before step 5 or in HTTP fetch before step 3, add a check to see if the

request is in the preload cache as well as if all the request parameters match the
response in the cache. If it is, return the response object from there.

○​ There are many devils in the details of “request parameters match the response”
and browser compatibility. But what Chromium does may make sense as a
starting point.

https://fetch.spec.whatwg.org/#concept-main-fetch
https://fetch.spec.whatwg.org/#concept-http-fetch

Link Headers

Processing model
●​ In HTTP fetch, before step 6, inspect actualResponse’s headers, and process any Link

headers, and trigger the corresponding processing model depending on the link (for
supported ones)

●​ Redefine the processing of preconnect, preload and prefetch in HTML to not require any
element, and call them from Fetch

Prefetch
●​ Integrate processing with HTML/Fetch, define `Purpose`

○​ Modify existing PRs based on what we actually want to do and land them: Fetch,
HTML

Uncredentialed Prerender

Referring page opt-in
Depending on what we want, we would need to define the opt-in’s shape.
In case the opt-in is implicit and requires the UA to scan the document, we could provide hooks
in <a>/<area> processing to do that.
Maybe something like:

●​ When an <a> element becomes connected, we run a check to see if it is safe to
prerender. If not, return

●​ If the UA thinks that the link is worthwhile to prerender, run Prerender processing model

Referred resource opt-in
Need to define the shape, which then runs Prerender processing model

Prerender processing model
●​ Run follow the hyperlink

○​ We’d need to modify follow the hyperlink to take in the target as a
parameter, and set the input target to be a “new prerendered tab” (or some other
new target).

○​ We’d also want this algorithm to call navigate with a flag indicating that it’s a
prerendered page

https://fetch.spec.whatwg.org/#concept-http-fetch
https://github.com/whatwg/fetch/pull/881
https://github.com/whatwg/html/pull/4115
https://html.spec.whatwg.org/multipage/links.html#following-hyperlinks-2
https://html.spec.whatwg.org/multipage/browsing-the-web.html#navigate

Navigate changes
If navigate was called with a “prerendered” flag, modify navigation processing to:

●​ Make sure the fetch is not credentialed
●​ Require a referred opt-in (or terminate the navigation)
●​ Add hooks enabling the UA to stop and resume that navigation at various points (to

enable a “prenavigate” effect at the UA’s discretion (e.g. when it considers resources
scarce, or signal from developer is weak).

●​ Ensure the resulting document is a “prerendered document”

TODO: figure out *all* the details

Prerendered document
●​ Ensure the document has no access to credentials and shared storage
●​ Integration with session history??
●​ Disabled permissions?
●​ Fire an event when the user actually navigates??
●​ Visibility state

TODO: Fill in even more details

WebBundle loading header
????

	API shape changes
	Preload
	Link headers
	Prefetch
	Prenavigate
	Uncredentialed Prerender
	WebBundle loading header

	Potential spec changes
	Preload
	Preload Cache

	Link Headers
	Processing model

	Prefetch
	Uncredentialed Prerender
	Referring page opt-in
	Referred resource opt-in
	Prerender processing model
	Navigate changes
	Prerendered document

	WebBundle loading header

