Course: 2014

playlist:https://www.youtube.com/watch?v=2NWeucMKrL |&list=PL 6gx4 CwIOD GAKIXv8Yr6n
hGJ9VIcjyymg

Tutorial 1: Compiler : code we write -> 10101010 (code that computer understands)

Tutorial 2:
Naming convention: Project -> capital CamelCase.
Build and run button: converts program to binary(machine language) then runs it.

Tutorial 3 & 4:

Computer program is made of small pieces called functions:
code Explanation
#include <stdio.h> Include files to get basic default functions(for e.g:
#include <stdlib.h> printf()) Technically called: “Preprocessor directives”
int main () main() function is the start point of any program
{ Function starts here
printf ("Hello Print text on the screen, “\n” = go to a new line,
world!\n") ; “\t" =tab, “\a” = alert (make a sound)

\n,\t,\a, etc are called Escape sequences

return 0; Stop the function here

} Function ends here

N.B: Each line inside the function is a piece of instruction and the semicolon ”;” is what
indicates the end of this piece of instruction

Tutorial 5:
Commenting : For a paragraph : /* */ For aline //

https://www.youtube.com/watch?v=2NWeucMKrLI&list=PL6gx4Cwl9DGAKIXv8Yr6nhGJ9Vlcjyymq
https://www.youtube.com/watch?v=2NWeucMKrLI&list=PL6gx4Cwl9DGAKIXv8Yr6nhGJ9Vlcjyymq
https://whatis.techtarget.com/definition/compiler
https://en.wikipedia.org/wiki/Escape_sequences_in_C#Table_of_escape_sequences

Tutorial 6: (Conversion Characters :Placehoders)
String = bunch of characters
Conversion character is a placeholder that you can use to put sth. in your string.

Examples:
Code Explanation(Output)
Strings:
printf ("$s is the best person Removes %s and put the string “Bucky”
ever\n", "Bucky") ; instead so the output will be :

Bucky is the best person ever
printf ("%s is the best %$s ever\n", "Bucky", Bucky is the best programmer
“programmer") ; ever
Numbers:

1) Integers:

printf ("I ate %d corndogs last night",9); I ate 9 corndogs last night
2) float:
printf ("Pi is %f\n",3.14159265359) ; Pi is 3.141593
printf ("Pi is %.2f\n",3.14159265359); Pi is 3.14
(shows no. till 2 decimal places with
approx.)
printf ("Pi is %.4f\n",3.14159265359); Pi is 3.1416

Tutorial 7: Variable: is a placeholder for sth. else. Name convention: small letter/word
Don’t name a variable any basic function (such as: main, printf)

Examples:
int age; - Make a varaible called age of data
type integar
age = 27; //age=2014-1987; - Assign this variable to 27 or
2014-1987
printf ("Bucky is %d years old", Bucky is 27 years old
age) ;
int age; A small program that calculates
int currentyear; current age of person
int birthyear;
currentyear=2014;

https://www.quora.com/What-are-the-placeholders-used-in-C

birthyear= 1987;
age = currentyear-birthyear;

Tutorial 8 & 9:

- When you calculate string length or how much memory you need for a string you

need a string terminator.

- 13 characters = 14 bytes in memory (extra byte for string terminator)
- When creating/declaring a string we create an array of characters

Examples

char name[14] = "Bucky - Declaring a string with size of 14 bytes
Roberts"; My name is Bucky Roberts
printf ("My name is %s\n",

name) ;

name[2]= 's'; - Change the 3rd element in the array

name) ;

printf ("My name is %s\n",

My name is Busky Roberts

char food[]="tuna";

food);

printf ("My food is %s\n",

-Declaring a string without mentioning
the size (not necessary to mention)
My food is tuna

strcpy (food, "bacon") ;

food) ;

printf ("My food is %s\n",

- Assign a new string("bacon™") to the
food array
My food is bacon

Tutorial 10:

Before the program compiles , it runs the_preprocessor directives, in other words the code

will take whatever inside the header files (<stdio.h> and <stdlib.h>)and putit & run it
before the code to be compiled. This can be done by include process directive. Another
process directive #define is used with constants (convention: UPPERCASED).

N.B: Semicolon is not needed after any processor directive

Example:

#include <stdio.h>
#include <stdlib.h>

#define MYNAME "Tuna McButter"

printf ("My name is %s",MYNAME) ;

copy the code inside these files and
substitute it here (before the
program(compiling))

<> means to search the default place
where headers are

Make a constant MYNAME and assign it to
Tuna McButter

Replace MYNAME by Tuna McButter

http://www.java2s.com/Tutorial/C/0060__String/0040__String-Terminator.htm
https://www.cprogramming.com/reference/preprocessor/

Create a header file: File>New>Empty File
Name Convention: CapitalCamel case

before running the code.
Output: My name is Tuna McButter

We made a new header file called BuckysInfo.h which contains this code:

#define MYNAME "Bucky"
#define AGE 28
then in the main file:

#include <stdio.h>

#include <stdlib.h>

#include "BuckysInfo.h"

int main () {

int girlsAge = (AGE/ 2) + 7;

printf ("$s can date girls %d or
older",MYNAME, girlsAge);}

Tutorial 11

In order to read data we must use scanf ().

Examples:

char name[20];
scanf ("%s", name) ;

int number;

scanf ("%d", &number);

The " " means: search in the same
directory or folder which is a little bit
faster than <>.

girlsAge will be assigned to the
AGE (28) inBuckysInfo.h divide
by 2 and add 7

Bucky can date girls 21 or
older

Read a string from user and assign
the value of it to the variable name

Read an integer from user and
assign the value of it to the variable
number

scanf pauses your program and waits until you press enter.

We need to include this symbol ”&” (ampersand) before any variable except array(array has

built-in ampersand) (related to pointers)

Tutorials 12 - 15
Some math & coding hints:
e % - modulus(remainder)

e intdivided by int = int. float divided by float = float.

e Whatever is between Parenthesis () is done first.
Forexample: 4 +2*6=16 but (4+2)*6 =48
e number *=1.1; isequivalentto number =number

We can assign 3 integers to the same value as follows:
int a;

int b;

int c;

a=b=c=100;

Simple program to calculate the average of 3 persons:
float agel,age2,age3,average;
agel=age2=4.0;

age3=6;

average= (agel+age2+age3)/3;

Tutorial 16 - Typecasting:

.1;

int numl= 10; Since we are dividing 2 integers.

int num2= 3;
float quotient= numl / num2; output:
printf ("$f ",quotient);

3.000000

int numl= 10; Since num1 is type casted into float.

int num2= 3;
float quotient= (float)numl / num2; output:
printf ("$f ",quotient);

Tutorials 17 - 22

If conditions
if (conditionl) {
//run code here if conditionl is true
1
if (condition?2) {
//run code here if condition2 is true
}

if conditions we can use:

3.333333

if(num1 > num2) Checks if num1 if(num1 >= num2)
greater than num2

Checks if num1 greater
than or equal num2

https://www.cprogramming.com/tutorial/c/lesson2.html

if(num1 < num2)

Checks if num1
smaller than num2

if(num1 <= num2)

Checks if num1 smaller
than or equal num2

if(num1==num2)

Checks if num1
equals to num2

if(num1!= num2)

Checks if num1 not
equal to num2

if(condition1 &&
condition2)

Checks if both
condition1 &
condition2 are true

if(condition1 ||
condition2)

Checks if either
condition1 or condition2
is true (or both)

Nested if conditions:

if (conditionl) {

if (condition2) {

//run code here 1if conditionl and condition2 are true

}
}

Hint: Always put space between " and %
If and else conditions:

if (conditionl) {

//run code here if conditionl is true

}

else {

//run code here if conditionl is false

}

if-else conditions

Example:
Check if grades average is
AB,CDorF

if (conditionl) { float gradel,grade2,grade3;
//run code here if conditionl is true |gradel=90;
} else if (condition?2) { grade2=50;
//run code here if conditionl is false grade3 =67;
and condition? is true float avg = (gradel +
} else 1if (condition3) { grade2 + grade3)/3;
//run code here if conditions 1,2 are if (avg >= 90) {
false printf ("Grade: A");
and condition 1is true } else if (avg >= 80) {
} else if (conditiond) { printf ("Grade: B");
//run code here if conditions 1,2,3 are } else if (avg >= 70) {
false printf ("Grade: C");
and condition 1is true } else if (avg >= 60) {
}else { printf ("Grade: D");
//run code here if conditions 1,2,3,4 lelse {
are false (default) printf ("Grade: F");
} }
Tutorial 23

You can test if a character is smaller than another example:
if('A'<'B'") — true if('D'>'B') — true and so on
N.B: there is a difference between lowercase and uppercase letters.

(condition) ? run code here if condition is true: run code here 1if
condition is false;

Example 1:

(numl>num?2) ? printf ("numl > num2"): printf ("numl <= num2");
Example 2:

int friends=1;

n

printf ("I have %d friend%s", friends, (friends!=1) 2 "s":"");

If friends =0 the output willbe : T have 0 friends
If friends =1 the output willbe : T have 1 friend

Tutorial 24

Increment operator(++) example:
int a=5, b=10,answer=0; Since ++a is compiled, the a will be
answer= ++a * b; incremented first, then answer will be

calculated, therefore answer =6 * 10 = 60

printf ("Answer %d \n", answer); Answer 60

a =5, b=10,answer=0; Since a++ is compiled, answer will be
answer= a++ * b; computed first, then a will be incremented,
therefore answer =5 * 10 = 50

printf ("Answer %d \n", answer); Answer 50

Tutorials 25 - 27 loops
While loop:

while (condition) {

run code here while condition is true (or until condition is

false)

}

Example:

int tuna = 1 ; tuna is now 1

while (tuna<5b) { tuna is now 2
printf ("tuna is now %d \n", tuna); tuna 1s now 3
tuna++; tuna is now 4
} tuna 1s now 5

Do- while loop:

do{

run the code here for the first time without checking the
condition, then from the second time the code here runs while
condition 1s true (or until condition is false)

}while (condition) ;

For loop:
we implement for loop to implement a certain code a certain number of times.

for (statement (mostly assignment); condition; statement (mostly
increment)) {
//your code here

}
Example:

for (int i=0; 1 < 5; 1i++){
printf ("%d\n",1);

This code will run printf ("$d\n", 1) 5 times.

Tutorial 28

How to create a table:

for (int rows=1l; rows<=6; rows++) {

for(int columns=1; columns<=4;
columns++) {

printf ("$d ", columns) ;

}

printf ("\n");
}

Tutorials 29 - 30

The outer for loop (in red) will
repeat the inner for loop(in
blue) six times printing a line
after the inner loop is finished
each time.

The inner loop will print the
variable columns (denoting
each column) and increment it
four times, on one line

Output:

e e
NN N
W W w w w w
NG NN N N NN

break keyword stops(discontinues) any loop at a certain condition

Example:

for(int i=0; i < 5; i++){ Output will stop at 3:
printf ("%d\n", i) ; 0
if (1==3) {

1
break; 2
3

continue keyword skips/ignores any code segments after it in a loop.

Example:

for (int 1i=0; 1 < 5; 1i++){

if (1==3) {

continue ;
}
/*this part will be
ignored when i=3*/
printf ("%d\n", 1) ;

Output will skip 3:

0

1
2
4

Tutorial 31

Switch is alternative to if or if-else statement but it is done to check on one variable.

For example:
Char grade = 'C'; This code prints a string corresponding to a certain
switch (grade) { grade.

case 'A' : printf ("Excellent \n"); |After switch we putthe variable that we check for
break; (which is grade).

case 'B' : printf ("very good \n"); [case 'A' : printf ("Excellent \n");
break; corresponds to

case 'C' : printf("good \n"); if (grade == 'A') {
break; printf ("Excellent \n"); }

case 'D' : printf("Sufficient\n"); |break is putto ensure thatthe compiler won’t
break; continue checking the rest of the cases if it met any.

case 'F' : printf("Failure \n"); default is optional but if it exists
break; it will run if no previous condition

default : printf ("Not
available") ;}

is met.

Tutorial 32 - 35

isalpha (char character
isdigit
isupper
toupper (char

char character

(
(
(
(

,otherwise it will leave it the same.
strcat (char[] stringl, char[] string2)— concatenates/add string2 to string1

) — checks if a certain character is alphabet
char character) — checks if a certain character is a digit

) — checks if a certain character is a uppercase
character) — converts a character to uppercase if it is lowercase

For

strcat (stringl, string2);
printf ("%$s \n",stringl);

char stringl[100]="Take ";
Example : | char string2[100]="Care";

’

The output will be:
Take Care

N.B: make sure that string1 is big enough to hold the strings to be concatenated.

strcpy(char[] stringl, char[] string2)— replaces the content of string1 with
the content of string2 (as if: string1 = string2 , however one array can’t be assigned to
another)

We must include the <string.h> header file to use strcat and strcpy functions.

gets (char[] string) — scan input and assign it to string. Better than scanf because it
can deal with String separated by space (for example: “Bill Gates”).
puts ("Any string") — prints a string with a newline.

Tutorial 36-37
Some functions in the <math.h> library:

ceil (float number) — rounds up a float/double number

floor (float number) — rounds down a float/double number

abs (int number) — gets the absolute of a number (removes -ve sign)

pow (int base, int exponent) — getthe base powered by the exponent. (for
example: pow(X,Y) gets X power Y as: X")

sgrt (int number) — gets the square root of a number. (sqrt(int 25) — \/ﬁ)

rand () — generates a random number.

to generate a random number with a certain range you can use (rand () $ rangemax) +1
For example: to get a number between 1 &6 - (rand ()% 6)+1 ,as rand() %6 will
give a number between 0 and 5, then by adding 1 the number will be between 1 & 6.

Tutorials 39-40

Tutorial 41 - Sorting Algorithms

Bubble sorting : the following code keeps swapping elements of the array until it is sorted

while (1) { Infinite loop

swapped = 0; A variable to determine if at least one element in
the array is swapped.

for (i=0; i< howMany-1;i++) { Loop until the element before the end of the array

if (array[i] > array[i+1]){ Ifthe current element bigger than the next element

int temp= arrayl[il]; Swap these elements with each other (keep
arrayl[il=array[i+1]; swapping until we reach the last element)
array[i+l] = temp;

https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm
https://www.educba.com/sorting-in-c/

swapped =1 ;

} Set swapped to true (indicating that at least one
} element is swapped)
if (swapped ==0) { If no element is swapped (the array is sorted)
break; Break the infinite loop

}
}

Tutorial 42 - pointers

The address of any variable can be accessed by using the symbol & (ampersand). For e.g:

printf ("%p ", &variable); 000000000061FE14 (memory address)

In order to declare a pointer:

int * pVariable = The asterisks * indicates that pVariable is a pointer and
&variable; the memory location of the variable is assigned to it.

Name convention of a pointer is p attached to the variable’s name in capital case.
Tutorial 43 - dereference pointer

if we try to print *pVariable , we will get the value inside the variable that pVariable stores its
memory address (this is called dereferencing a pointer). For example:

int variable = 19;

int *pVariable = g&variable; Store the memory address of variable in the
pointer pVariable.

printf ("%d ", *pVariable); The output will be: 19

we can also change the value of variable by changing that of *pVariable.

*pVariable = 71;

printf ("\n *pVariable: %d", *pVariable: 71
*pVariable) ;

printf ("\n variable: %d", variable); variable: 71
Summary:
int * pVariable = gvariable; This line will do the following:

&pVariable — %p — address of pointer
pVariable — %p — address of variable

https://www.tutorialspoint.com/cprogramming/c_pointers.htm

*pVariable — %d — access the value of variable

dereferencing:

*pVariable — pVariable address — variable address — value of variable

Tutorial 44

The array name is a pointer for the first element in the array. So by default dereferencing the
array name will give the value of the first element. Also dereferencing the array name plus
one will get the value of the second element and so on. For example:

int 1i;
int array([5]= {7,9,43,21,3};

printf ("Element \t Address \t \t Value
\n") ;

for (i=0;1i<5;i++) {
printf ("array[%d] \t %p \t %d \n", 1,
y[i]

&array([i], arrayl[il):
}

Initialize an array and print each
element address corresponding to its
value. Output:

Element Address Value
array[0] 000000000061FEOO 7
array[1] 000000000061FE04 9
array[2] 000000000061FE08 43
array[3] 000000000061FEQOC 21
array[4] 000000000061FE10 3

printf ("\n array \t\t %$p \n",array);

Print the address of the array which is
the address of first element:
array 000000000061FEOO

printf ("\n *array \t\t %d \n", *array);

Derefrenece first element:
*array 7

printf ("\n * (array+2) \t\t %d
\n", * (array+2)) ;

Derefrenece first element + 2 (3rd):
*(array+2) 43

Tutorial 45 - Strings and Pointers

The array name is considered to be a constant pointer, therefore after initializing an array we
can’t change its value by directly assigning it to another value because it is as if saying that
we want to change the address of the array neglecting elements inside it so elements stored
at a certain address will be lost (or couldn’t be referred to by any address). For example:

if char stringl[]="stringl";
We can’t compile these lines: stringl = "string2";
stringl[] = "string2";

We can either use

strcpy(stringl, "string2");

or we can change each element | stringl1[0] = "s"

However we can do the following:

char * stringl="stringl"; | Here string1 became a variable pointer so we can
change it. And string1 only stores the address
where "string1" begins.

puts (stringl) ; However if we tried to print string1 it starts from the
address of the first character and print until reaching
the null zero

char stringl = "string2"; [So now we can freely change this pointer variable to

any other string.

Tutorial 46

fgets (char *string, int length, FILE * stream) — another way of taking
input(instead of scanf()) but with limiting the number of characters entered (so that the
program won'’t crash) and with specifying the stream.

For example:

fgets (pString, 20 ,stdin); — this will allow the user to only enter 20 characters

via standard input (keyboard).
Tutorial 47 - heap

Heap is a leftover/extra memory that we can borrow whenever we need it and give it back
whenever the program ends.

In order to borrow the memory we use: malloc(how much memory do we need?) — allocate
memory or get memory from the heap. For example to store 5 integers in the heap we use:
int * points= (int *) malloc (5 * sizeof (int));

Go to the heap reserve place for 5 integers type cast into pointer int then assign it to the int
pointer points. N.B: sizeof() gets the size of a certain data type as it may vary across
different operating systems or computers.

After we finish using this memory space , we must give it back to the computer using this
function: free (points)

Example using heap - let the user enters the size of an array and the elements of that array,
then calculate the average:

int i , howMany, sum; Initializing variables:
float average = 0.0;
int * pointsArray;

https://en.wikichip.org/wiki/c/standard_streams
https://www.geeksforgeeks.org/heap-data-structure/
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/

printf ("How many numbers you want to
average?\n") ;
scanf (" %d", &howMany) ;

pointsArray=
(int *) malloc (howMany * sizeof (int)):;

printf ("Enter the numbers: \n");
for (i=0; i<howMany; i++) {
scanf (" %d", &pointsArray[i]);

sum+= pointsArray[i];

average = (float) sum/ (float) howMany;
printf ("Average is %f", average);

i — counter, howMany — size of array , sum —
sum of elements in the array, pointsArray —
integer pointer for the array

Print a string, then read from the user the
number of the elements of the array and store it
in howMany .

Reserve a place for howMany integers in the
heap(memory) and make pointsArray store
the first element address of that array

Keep scanning all the elements of the array
while getting their sum howMany times.

Get the average and print it.

So what is new here that we created a kind of dynamic array as its size is determined by the

user.

Tutorial 49 - Structures

We can use structures to group some variables/attributes under one structure.

For example, We can define a user to have these attributes: id, first name , last name , age
and weight. Mainly structures are initialized in header files ,so we can define a structure
called user using the word struct in a header file. After defining a struct we can create a
new user (struct) and access its members(attributes) in the main file. Check the following

table for the implementation:

In header file

In main file

struct user{
int id;
char

firstName[25];

int age;
float weight;
i

char lastName[25];

#include "header.h"
int main () {

struct user userl;

userl.id=1;
userl.firstName =
userl.lastName =
userl.age = 64;

userl.weight = 70.

return 0; }

Create a new user
struct userl

set user1 members:
id, firstName, las
tName,

age and weight

Tutorial 50 - 53: Files

Files could be accessed in 2 types of ways:
Sequential access file — data created in order.
Random access file — store data all over the place(doesn’t need to be in a specific order).
When dealing with a file we always need a file pointer (FILE * fPointer) to keep track of

where we are in the file.
File functions:
1) FILE * fopen (

const char * filename,

const char * mode

) —

this function open/create a certain file in the same directory of the main file and do
sth. to it depending on the mode ("w" — write, "r" — read, "a" — append).
2) int fprintf (FILE *fp,const char *format) - this function prints a text
inside a file. It takes the pointer of the file and a string.
3) int fclose(FILE *fp)-closes a file and frees memory back to the computer.

4) feof (FILE *fp) —

is used to find the end of a file.

Write a file

Read a file

Append a file

FILE * fPointer;
fPointer =

fopen("file.txt", "w");

fprintf (fPointer, "This
is a new file");

fclose (fPointer) ;

FILE * fPointer;
fPointer =
fopen("file.txt",

L") ;

char singlelLine[150];

while (! feof (fPointer)) {
fgets(singlelLine, 150
, fPointer);

puts (singleline);

fclose (fPointer) ;

FILE * fPointer;
fPointer =
fopen("file.txt",
"an) ;

fprintf (fPointer, "\n
Added text");

fclose (fPointer) ;

N.B: in this mode("w") if we use
fprintf () more than once it will
replace the text each time it is
used.

while (! feof (fPointer))— keep
looping until the end of the file

fgets (singlelLine, 150, fPointer
)— read a line from the file.

- The code prints each read line from
the file until we reach its end.

N.B: in this mode("a") if we
use fprintf () more than
once it will add to the text each
time it is used.

5) int fseek(FILE *stream, long int offset, int whence) - go to a certain
place in the file . stream is the pointer of ther file , offset is the place you want start
from (+ve or -ve), whence is from where you want to start(seex_seT — beginning of
file, seexk_cur — Current position of the file pointer, seex Exp — end of file)

For example:

fseek (fPointer, 7, SEEK_SET)- goes to 7th place in a text from the beginning
fseek (fPointer, -7, SEEK END)- goes to 7th place in a text from the end.

Tutorial 54 - 58

The following code demonstrates functions, global & local variables, arguments and return:

https://www.tutorialspoint.com/cprogramming/c_file_io.htm

#include <stdio.h>
#include <stdlib.h>

void printString(char *
int getNumber () ;

string) ;

prototyping functions used so that the computer
won’t get confused when it sees new functions in
the main () function.

This variable is a global variable since it is not

int number;

int main () {

printString("string");
printf ("%d", getFive ()) ;

return 0;

}

void printString(char * string) {
printf("%s ",string);

declared inside a function. (can be accessed
anywhere)

> Functions inside main () are the only functions
that will be run in the whole program.

l»orintString (char * string) function
takes a string asan argument

char newline([2] = "\n";
printf ("%s ",newline);

#This variable is a local variable since it is declared
inside a function. (only this function can access it)

int getFive () {
number = 5;

return number;

The output of the code above will simply be:

getFive() function returns an int

\bas we can see number can be accessed here also

string
5

Pass by value

Pass by reference

void passByValue (int 1) {
1=99;

return; }

void passByAddress (int *1i) {
*1=99;

return; }

In the upper function the value of i is passed as
an argument for the function , which means that i
remains as it is.

In the upper function the address of i is passed as
an argument for the function , which means that i will
change its value since it is being dereferenced.

20;
passByValue (&x) ;

int x =

printf ("Passing by value, x is %d\n",x);

20;
passByAddress (&x) ;

int x =

printf ("Passing by address, x is %d\n",x);

Output will be:

Passing by wvalue, x is 20

Output will be:

Passing by address, x is 99

