ENGINEERING MECHANICS

UNIT-IV
MOMENT OF INERTIA
Introduction:
Consider an elemental area A,. Yi
. . LAMINA OF
Let x,= distance of C.G. of area 4, from Y-axis. AREA ).

y;= distance of C.G. of area 4, from X-axis

Then moment of area about Y-axis = Area X perpendicular
distance of C.G. from Y-axis

Ui H

=Ax . _J{ I .

This is known as first moment of area about Y-axis. This first Fig. 4.1
moment of area is used to determine the centre of gravity of the
area.

If the first moment of area is again multiplied by the perpendicular distance between the C.G. of
. . 2.
the area and Y-axis, then the quantity Aixi Xx = Aixi is known as moment of the moment of area

or second moment of area or area moment of inertia about Y-axis.
. .. . 2
Similarly the moment of area about X-axis is Aiyi and second moment of area about X-axis is Aiyi .

If instead of area, the mass of the body is taken into consideration then second moment is known as
second moment of mass or mass moment of inertia.

Area Moment of Inertia:

Definition: The product of area and the square of the distance of the centre of gravity from an axis is
known as moment of inertia of the area about that axis.

Moment of inertia is represented by I. Hence moment of inertia about X-axis is represented by Ixx and is

given bylxx = ZAL,in. The moment of inertia about Y-axis is represented by Iyy and is given by

2
Iyy = ZAixi .

The moment of inertia is a fourth dimensional term since it is a term obtained by multiplying area by the
square of the distance. Hence in S.I. units, if meter is the unit for

linear measurements the m?* is the unit of moment of inertia. If mm is i

LAMINA OF
AREA

Ai




used for linear measurements the mm? is the unit for moment of inertia.
Polar Moment of Inertia:

Moment of inertia about an axis perpendicular to the plane of an area is known as polar moment of
inertia. It may be denoted as J or ..

Thus the moment of inertia about an axis perpendicular to the plane of area at O is called polar moment of

inertia at point O and is given by Jor I, =)’ Airi2

Radius of Gyration:

Radius of gyration of a body about an axis is a distance such that its square multiplied by the area gives
moment of inertia about the given axis.

Thus mathematically it is defined by the relation I = AK ?

. _ I
“K = A7

Where K = radius of gyration
I = moment of inertia and

A = Area of cross section.
Perpendicular Axis Theorem:

The moment of inertia of an area about an axis perpendicular to its plane (polar moment of inertia) at
any point O is equal to the sum of moments of inertia about any two mutually perpendicular axes through
same point O and lying in the plane of the area.

If z-z is the axis normal to the plane passing through the point O then as per this theorem IZZ =1 Tt Iyy.

Proof:

'\

Let us consider an elemental area dA4 at a distance of r from O then from
the definition

zZz

= Z(x2 + yz)dA / I -

= Yx'dA +Yy dA

I = Yr'daA V‘

= XA+ yA=1 +1I
yy = xx



~I =1 +1

zz xx vy

Parallel Axis Theorem or Transfer Theorem:

Moment of inertia about any axis in the plane of an area is equal to the sum of moment of inertia about a

parallel centroidal axis and the product of area and the square of the distance between the two parallel
axes.

. 2
By this theorem [/ B I T AyC
Where [ B moment of inertia about axis AB.

1 cc ~ moment of inertia about centroidal axis GG parallel to AB

A = the area of the plane figure and
y. = the distance between axis AB and parallel centroidal axis GG.
Proof:

Consider an elemental parallel strip of area d4 at a distance dA
of y from centroidal axis

¥
2
Then, I, = % (v +y )dA " | gcenmmo _
2 2
= Z(y +2yy + yc)dA
yC
= Yy'dA +32yydA + 3y dA ¢
A
Fig. 4.4

Now Y ysz = moment of inertia about axis GG = | G
— A
> ZyyCdA = ZyCZ y dAX=
_ ydA
= ZyC AY—]

In the above term Zyc A is constant and Z-% is the distance of the centroid from reference axis GG.



Since GG is passing through the centroid itself Z-% is zero.
Hence the term ), ZyyCdA becomes zero.

Now the third term Xy dA =y ¥ dA = Ay’

2
g = gAY,

Note: The above equation cannot be applied to any two parallel axes. One of the axes must be centroidal
axis only.

Moment of Inertia of standard sections:

i) Moment of Inertia of a Rectangle:

a) About its centroidal axis P b =

Consider a rectangular section ABCD having width = b and depth =d.
Let X-X is the horizontal axis passing through the C.G. of the
rectangular section. The moment of inertia of the given section about %}r

——

X-X axis is represented by /...

Consider a rectangular elementary strip of thickness dy at a distance y

from X-X axis.

Area of the strip="5 . dy

e

Moment of inertia of the area of the strip about X-X axis = Area of strip l
X 172
Y D

r

= (b.dy)x ¥y = by'dy Fig 4.5
Moment of inertia of the whole section will be obtained by integrating the above equation between the
limits — % to %.

dj2 dj2

2 2
“l = [ by'dy=b [ ydy
—d/2 —d/2
3 ]4/2 3 3
:b[..L] :L{i (4 ]
T - el -9



L] o= L 24 _ bd
I = = =

XX

Similarly, the moment of inertia of the rectangular section about Y-Y axis passing through the C.G. of
the section is given by

db
vy 12

Area of strip, dA = d* dx

Moment of inertia of strip above Y-Y axis = d4 x x°

= (dxdx) x x*
2
= dXx Xdx
Y
Moment of inertia of the whole section will be obtained by integrating the j— b—
above equation between the limits — % to %. TA
b/2 b/2
w1 = dx’dx = d / xdx ¢
oo _pp —b/2
< I d|rp)3 b3
~ds| - 4@ -4
—b/2
¥
_af(zy (o afel g x =
EL LE 8 ||~ 3]s 8 h_g .
2 v
[ o= 4 2 _ av _
- 3" 78 12 Fig 4.6

b) About it’s Base

Consider a rectangular section ABCD having width = b and depth = d. We want to find the
moment of inertia of the rectangular section about the line CD, which is the base of the rectangular

section.

Consider a rectangular elementary strip of thickness dy at a distance y fr  ~ | — kK
A

Area of the strip=154. dy T B

Moment of inertia of the area of the strip about X-X axis = Area of
strip x y”

2 2
= (b.dy) Xy = by dy

Moment of inertia of the whole section will be obtained by @
integrating the above equation between the limits 0 to d.

~ Moment of inertia of the whole section about the line CD m y




¢) Hollow rectangular section
Consider a hollow rectangular section in which ABCD is the main section and EFGH is the cut-out

section.

|._'_ b i

The moment of inertia of the main section ABCD about X-X axis is __A[ .
bd’ 7,

5Tl .

dy

Where b = width of main section and

\‘Q\\\\‘I\

d = depth
The moment of inertia of the cut-out section EFGH about X-X axis is b G

3 ]
bldl D

1 Fig. 4.8

DR

I\

Where b, = width of the cut-out section and

d,; = depth of the cut-out section.
~ I =Moment of inertia of rectangle ABCD — Moment of inertia of rectangle EFGH about X-X axis

XX
bd® b,
—T2 T Tz
i) Moment of inertia of right angled triangle:

Consider a triangle AOB of base width = ‘4’ and height = ‘4’. Consider a small strip of

thickness dy at a distance y from X-axis.

Area of the strip, d4 = Length DE x dy ()]
Considering two similar triangles ADE and AOB,
DE _ AD
0B~ A0
Where OB=b, AO=hand AD = (h-y) Y 4
JDE o (hmy)
b T h
DE = 2=

Fig 4.9



Substituting the value of DE in equation (7), we get

Area of strip, dA = Lh_” .dy

Moment of inertia of this strip about X-axis = Area of strip x °

— bty 2
= ——.dyxy

The moment of inertia of the whole rectangular section about X-axis is obtained by integrating the
above equation between the limits 0 and 4.

h b (e Y &
Ixx— {L&h .dyxy
RIN T
= —J(h — y) x y'dy h
0
h K [—x —dx »
b 3 4 Ll
e pat,
0 0
Fig 4.10

N SR (A
“Txx T h 12 |7 12

Similarly, taking a strip of thickness dx parallel to Y-axis at a distance x from the Y-axis,
it can be proved that moment of inertia about Y-axis is

3
=5
XX
About centroidal axis: A

Consider a triangular section of base = b and height =/. Let X A
axis passing through the C.G. of the triangular section and T \
parallel to the base. N,

The distance between the C.G. of the triangular section and base T \

h X
AB=—. »

3 i _nlr_ | \B
Now, from the theorem of parallel axis, we have " i3 >
Moment of inertia about base = Moment of inertia about C.G. + 1 . ~b .
Areax (Distance between X-X and BC)? Fig. 4.11

1,=1_+ Ax(%)z

al =1 — Ax(%)z



_ bk (bxh)\ (h)?
12 2 )'\3

_ b bk
T 12 18
N
“Txx T 36

Similarly moment of inertia of a right angled triangular section about centroidal Y-Y axis is

[ = hb’
Yy = 36

iii) Moment of inertia of isosceles Triangle:

a) About Base
Consider a triangle ABC of base width = ‘b’ and height = ‘4’. Consider a small strip of
thickness dy at a distance y from X-axis.

Area of the strip, d4 = Length DE x dy (D)
Considering two similar triangles ADE and AOB,

DE _ AD

OB ~ A0

Where OB =5, AO=hand AD = (h-y)

_DE _ (h—y) = A
T b T h ]
DE = 20 o

h ThT

Substituting the value of DE in equation (i), we get y
Area of strip, dA = L};XL .dy l_IIE. ]C
le b =
Moment of inertia of this strip about the base = Area of strip x = Fig 412 :
2 18- .1~
y

— b=y 2
= W dyxy

The moment of inertia of the whole rectangular section about the base is obtained by integrating the
above equation between the limits 0 and /.

h
. — b (h—y) 2
- IBC = { . dyxy

h
2
= 2f(h - y)xydy
0



b[3h W\ h
_ y y
- s -
0 0
T
— h|l3 T 4

| be®
12 |7 12

S

5
“l, =

X

Moment of inertia about Y-axis:

Consider a small strip of thickness dx at a distance x from Y-axis.

Area of the strip, d4 = Length DE x dx . (D)
Considering two similar triangles ADE and AOB,
DE _ AE
BC T AC
Y
_DE _ (b2—x)
R T b2 g

h (b—2x) /\

PE= "3 / D
o . . / ¥
Substituting the value of DE in equation (i), we get / -
Area of strip, dA = =229 (b;Zx) .dx o ¢ E EA Yo X
o . L
Moment of inertia of this strip about the base = Area of strip x )° Fig 4.13

= h0-29 s
P

The moment of inertia of the whole right angled triangular section about the base is obtained by

integrating the above equation between the limits 0 and %.

b/2

. R (b—2x) 2
A= f—b LdxXx
0
hb/z , ,
= T£(7—x)><xdx



b’ _ kb’
“ M.I of entire Isosceles triangle = 2X <= = —=

b) About Centroidal Axis
Consider a triangular section of base = b and height =A. Let X-X is the axis passing through the
C.G. of the triangular section and parallel to the base.

The distance between the C.G. of the triangular section and base AB = %

Now, from the theorem of parallel axis, we have
Moment of inertia about BC = Moment of inertia about C.G.
+ Areax (Distance between X-X and BC)? T

h2
IC—IG+A><(T)

B h
2 —
_ h X
I=1, Ax(s)
B
_ bk (bxh) (h)?
12 2 )'\3
_ b’ b
12 18
3
bh
[ =2
G~ 36

iv) Moment of inertia of circular section:

Consider a circular section of radius R with O as centre. Consider an elementary circular ring
of radius 7 and thickness dr. Y

Area of circular ring = 2mtr. dr

In this case first find the moment of inertia of the
circular section about an axis passing through O and
perpendicular to the plane of the paper. This moment of
inertia is also known as polar moment of inertia. Let this
axis be Z-Z. Then from the theorem of perpendicular
axis, the moment of inertia about X-X axis or Y-Y axis

is obtained.

Moment of inertia of the circular ring about an axis ¥
passing through O and perpendicular to the plane of the Fig. 4.15
paper = (Area of ring) x (radius of ring from O)?



= (2mr. dr).r2 = 2mr.dr

Moment of inertia of the whole circular section is obtained by integrating the above equation

between the limits 0 and R.

- Moment of inertia of the whole section about an axis passing through O and perpendicular

to the plane of paper is given as

R

R
3 3
I =[2nr.dr = 2nfr’.dr
Y4 0 0
4+ R 4
_ r | _ _mR
= 211[ 4] = =
0
= 2
ButR = >
4 4
. I DY) _ mD
A= 2 X(z) = =
But from the theorem of perpendicular axis, we have
I =1 +1
zz xx vy
And due to symmetry I = Iyy
[zz — ‘ITD4
"Ixx_lyy_ 2 T 64

Moment of inertia of a hollow circular section:
Consider a hollow circular section.

Let D = diameter of outer circle, and

d = diameter of cut-out circle.

Then, the moment of inertia of the outer circle about X-X axis =
‘r[D4
64

4
And moment of inertia of the cut-out circle about X-X axis = %

~ Moment of inertia of the hollow circular section, about X-X axis,

TrD4 _ nd4

Txx 64 64

_ 6_11[D4_ d4]

v) Moment of inertia of a semi-circular section:

About diametral axis:




Consider a semicircular area of radius R. We know that moment of inertia of circular section about
TrD4
64

diametral axis is [ o

= Moment of inertia of a semi circular section about its diametral axis is given by

| = Ly w' _ w’
xx 2 64 128

About Centroidal axis:

From parallel axis theorem, we know that

2
I = Ixx+ Ayc

AB - =
2 AP TS L
I =1 _— Ay | 4RMAm
xx AB c Al s L 4
A = Area of the semicircle
— TR — nD g T Ly
2 8 Fig. 4.18
y. = distance between the two parallel axes AB and X-X
AR _ 2D
3m ~ 3m
4 2 2
_ m™  mD 2D
‘Ixx_ 128 8 X(3n)

T 1
=D (128 - 18n)
4 4
= 0.0068598D or0.11R

vi) Moment of inertia of a quarter circle:
About diametral axis:

Consider a quarter circular area of radius R. We know that moment of inertia of :

4
. . . . nD
circular section about diametral axis is Ixx = 0
Ty
= Moment of inertia of a semi circular section about its diametral axis is given by T
//
~ R
I—ix“D4—“D4 / )
x4 64 256 ’ - X
Fig. 4.19

About Centroidal axis:

From parallel axis theorem, we know that

IAB = Ixx + Ayc



XX AB
A = Area of the semicircle
_ mR _  mD
4 T 16

y. = distance between the two parallel axes AB and X-X

_ 4R _ 2D
- 3m ~  3m
] = ' 2D \?
“Txx 256 16 3m

4 1
=D (256 - 36n)

— 0.00343 D" or 0.0549 R*

.s . . 2
vii) Moment of inertia of area under the curve x = ky :

Consider an area under a curve whose equation is parabolic and is given by x = ky in which y =5

when x =a.

Suppose it is required to find the moment of inertia of this area about Y-axis. Consider a strip of

thickness dx at a distance x from Y-axis.
The area of the strip, d4 =y dx

Let us substitute the value y in terms of x.
. : 2
The equation of the curve is x = ky .

. 2
When y = b, x=a. Hence above equation becomes a = kb or
a

— ?
. . 2
Now the equation of the curve is x = —=y".
b

2 b’
y =7
. _ b
=l
-~ Area of the elementary strip, d4 = %\/; dx
a

The moment of inertia of elemental area about Y-axis

b

¢——a

e x ——»| |e—dx

X —



~ Moment of inertia of the total area about Y-axis is obtained by integrating the above equation

between the limits 0 to b.

a
b 5/2
I = [X
yy {ﬁx
_ b [
la

p [ 7] 2 b 7
- 7] -

To find the moment of inertia of the given area about X-axis, the same elemental strip of thickness dx

is considered.

The moment of inertia of this small element about X-axis is equal to the moment of inertia of the

rectangle about its base.

~ Moment of inertia of the element about X-axis

The moment of inertia of the given area about X-axis is obtained by integrating the above equation

between the limits 0 and a.




viii) Moment of inertia of an Ellipse:

2 2

The equation of the ellipse is % + -? =1

Consider a strip parallel to X-axis at a distance of y from X-axis and thickness dy.

Area of the strip, d4 =2x dy ¥
. . XZ 2 "

From the equation of the ellipse, = 1 - % - T _,__d}'
y- A 1,
[ &

X = % bz — yZ '\\\ / o
h = 27 ay ——
Fig 4.22

Moment of inertia of the strip about X-axis = d4 x y°
_ sa [z 2 2
= 2Vb —y xydy

Moment of inertia of the entire area about X-axis is obtained by integrating the above equation
between the limits —b to b

b b
2 2 2 2 2 2
sl = [ 29\b" = yy'dy = 2 [ b  —y'ydy
—b -b

Taking y = b sin6), we have dy = b cos6 db and the corresponding limits vary from — %to %

Therefore, the integral can be written as

n/2
+1 = 2% [ bsin’0~/b’ — b’sin’® xb cos6 db

xx /2

P2 2 2 2
= ZTf b'sin 0. b cos 6d6
-m/2

/2
= 2%.b4 ) sin’0 cos 0 do
-n/2

/2 ) 2
_ 2ab3 f (ZSLn(ZcosB) de
—m/2

B /2 2
= aT [ sin"20d6
—m/2



% fZ ( 1—c;)s46 )de

—m/2
_ ab’ [e __ sinsin 46 /2
I | 4
—1/2
L] = nab’
" xx 4

Similarly by taking a strip parallel to Y-axis, it can be shown that the moment of inertia about Y-axis is

3
oo I = ﬂ
yy 4
Moment of inertia of regular shapes:
Area Shape I, _ﬂ ! -
}rlf
A
I 3 3
Rectangle (about centroidal axes) o i O
G =X, 12 12
I b
¥
A
3 3 23l
Rectangle (about axes along the sides) % ﬂg’“ P_f_
.
E B




Area Shape I, i I,
F-d
A
i 2 bh’* hb’ b'h
Right triangle (about centroidal axes h —— =t et AT
B ! : } il 36 36 72
iarht tri bl hb’ b
{ triangle A=Y —_— — —
Hoghtsramgle (ghors XX baes) 12 12 24
3 3
lzosceles trangle (about X~ F axes) H'— ﬂ 0
12 45
Y
A
¥ 1
[sosceles triangle (about centroidal axes) L e ]
=X, 36 48
Circle {sbout centroidal axes) f_‘i.!f. % 0
Y, :
" : A a xR
Semicircle (about centroidal axes) & 0I1IR —_ o
i :
1
Semicircle (about diametric axes) @ % % 0
=)




Area Shape I i i

xx i el
T i} -
A
Cuarter-circle (about centroidal axes) TR 00558 0.0558" | -0.0168"
X
A
: xR xR L3
le (abour Y-} e ok —
Cuarier-carcle ( axes) ; = v 3
X

¥ 1
Ellipse {about centroidal axes) Tl b ﬂ E-- 0
o X, 4 4
&

Moment of inertia of Composite sections:

Moment of inertia of composite sections about an axis can be found by the following steps:

i) Divide the given figure into a number of simple figures.
i) Locate the centroid of each simple figure by inspection or using standard expressions.
iii) Find the moment of inertia of each simple figure about its centroidal axis. Add the term 4y’ where

A is the area of the simple figure and y is the distance of the centroid of the simple figure about
the reference axis.

v) Sum up moments of inertia of all simple figures to get the moment of inertia of the composite
section. 2em
: - : =
Example. 4.1. Find the moment of inertia of the angle section about the [-n
centroidal axes. Also find the radii of gyration about the same axes.
Solution.
10 cm

Area X

SNo. | Element (4, ! yi(em) | A;x; A; v
2 (cm)
(cm’)
)
8 cm T
1. Rectangle-1 — Fig 423

8x2 =1

I
=

1
8 | 16X4 = 16X1 =
2 116x1 =| 16X6 =

2. Rectangle-2
2x8 =1




32 80 112

Z:
_ Zaixl
X = = %=2.50m
Ya,
— Zaiyt
y = = % = 3.5cm
Xa,
Moment of inertia calculations:
— 2 -2
S.No. (Ixx)l. (Iyy)i Ai(yl_ ) Al_(xi —Xx)

1. 8x2’ 2x8° _ 85.33 [ 16(1 — 3. 5)2 = 100 16(4 — 2-5)2 = 36

T 5.33 T
2x8° 8x2°
X8 — g5.33 | ZZ =533
2. 2 2
16(6 — 3.5) = 100 16(1 — 2.5) = 36
3 90.66 90.66 200 72

1= 3(1,) +240,- 5

XX
L

Ix = 90.66 + 200 = 290.66 cm"

X.

al = z(zyy) +2Ai(xi—;)2

vy ;
I, =90.66 + 72 = 162.66 em”

Radii of gyration:




The radii of gyration about X and Y axes are determined as

_ | le _ [29066 _
kx_ T_ 3—2—3.Olcm
i
ky= '\/-fﬁ=«/%= 2.25¢cm

Example. 4.2. In the above problem determine the moment of inertia of the angle section about the base.
Solution.

As we know the moment of inertia of the composite section about its centroid, using parallel axis
theorem, we can determine the moment of inertia of the composite section about the base.

=
I =Ix+Ay

Base X.

= 290.66 + 32x(3.5)°

I =682.66cm"
Base

However, if we don’t know the moment of inertia of the composite section about its centroidal axis, we
can determine the moment of inertia of the composite section about the base as follows

$.No. (1) A
L. 2 _ 5,33 16(1)° = 16
Zf—f = 85.33
2. 16(6)° = 576
90.66 592
Y=

Base

=2(1,) + ZA0)"

I, =90.66 + 592 = 682.66 em”

Bas



Example. 4.3. Find the moment of inertia of I-section about centroidal axes. Also find the radii of
gyration about the same axes.

Solution. jp———————| I
2em
S.No. Element Area (4,) (cm?) y; (cm) Ay l .
2em = e A0 em
1. Rectangle-1 | 30x2 = 60 %: 1 60
2 +3-=17 | 2em
Le ..|T
32 + L= 33 i 30 em 5!
2. | Rectangle-2 | 30x2 = 60 2 1020 Fig 4.24
10x2 = 20
3. Rectangle-3 660
140 1740
Z:
Yay.
= Ci 1740
Ly = == = 12.43 cm
Sa,
Moment of inertia calculations:
-2 -2
S.No. (Ixx)l. (Iyy)l. Ai(yi -y) Ai(xi - X)
L] 3wz _ g | 280 _ 4500 [60(1 — 12.43)" = 7838.69
2x30° 30x2°
230 = 4500 | 222 =20
3 3
2. | 5 =6.67 | 25— = 166.67 )
60(17 — 12.43)° = 1253.09
60(33 — 12.43)° = 8462.5
3.
5 4526.67 4686.67 17554.28




L= 2(1,) +240,-9

XX
L

Ixx = 4526.67 + 17554.28 = 22080.95 cm"

~ =Y (Iyy) + ZAi(xl_ - ;)2

vy ;

4

I = 4686.67 cm
yy

Radii of gyration:

The radii of gyration about X and Y axes are determined as

i
« __ [2208095
kx— = 0 12.56 cm
i
[17554.28
= A = —
ky " 110 5.79 cm

Example. 4.4 Find the moment of inertia of the shaded area about the

centroidal axes.

Solution. The given area can be considered to be made up of a rectangle, from

which a semicircular area has been removed. Due to symmetry, the x-coordinate . ‘
of the centroid is x = 15 cm. Y-coordinate is determined as follows. E [ '|_| E
fe— ——
10 cm 10 em
Fig 425
S.No. Element Area (4,) (cm?) y, (cm) A; v,
1. Rectangle 30x15 = 450 % = 7.5 450%7.5 = 3375
0 = 2.12
T
2. Semi circle | _ 1(5)2 —— 39.27 — 39.27%x2.12 =— 83.25
> .
410.73 3291.75
Z:




e 3291.75

Ly = =m=8.01cm
Sa,

Moment of inertia calculations:

S.N Ji I - 2 -2
o. ( xx)l. ( yy)l. Ai(yi -y) Ai(xi - X)
I | 305 _ gg37 5| 1290 _ 33750 | 450(7.5 — 8.01)" = 117.05 0

~0.11(5)" =— 6| - 26 —_ 2454
2 2 J 0
— 39.27(2.12 — 8.01) =— 1362.]
> 8368.75 33504.56 -1245.31 0

Ixx = Z (Ixx). + z:Ai(yi - ;)2

L

Ixx = 8368.75 — 1245.31 = 7123.44cm"

Yy

ol =Y (Iyy) + XA (x, - Y

[
l
i |
/” | ‘-ﬂ]cm
I = 33504.56cm" Reivem — 4
Yy r i
Y

Example. 4.5 Find the moment of inertia of the shaded area about the T

| b _'_- ! II|
centroidal axes. oo 2 Lh/.
= 5

Fig 426
Solution.

Area (4;)

S.No. Element (cm?) x; (cm) y; (cm) A;x; A;y;

%X40X40 =280 _ 7. 43_°= 13.34 800%26.67|800x13.33 3




: 2 4x20 —
l. Triangle %(20) = 62 2 - === 628.32)(201 628.32x — ¢
5 — 314.26X]
— n(10) =-—
(10) 0
2. Semi-circle 0
20
3. Circle
1114.16 27619.2 5329.56
Z:
LT zax _ 276192 _ 5, g
tx= = Ti1a16 — /7 cm
Sa,
Yay,
el “l 532956
Ly = =i = 4.78 cm
Sa,
Moment of inertia calculations:
-2 -2
S.No. (Ixx)l. (Iyy)l. AW - A, =)
L. 40;_:03 - 7111 40;_203 — 7111/ 800(13.33 — 4.78)" {800(26.67 — 24.79)" =
0.11(20)" = 11 T‘(ZT">4= 62831
_ mao _ :
2. e —LZOL =— 7§ 2
628.32(— 8.49 — 4.71628.32(20 — 24.79) =
— 314.16(0 — 4.78) — 314.16(20 — 24, 79)2
3.
80857.13 126088.98 161946.64 10035.64




I
XX

XX

= E(L) +240,-Y)

= 80857.13 + 161946.64 = 242803.77 cm"

ol =Y (Iyy). + XA (x, - Y

yy
i 1 F
4 | |
Iyy = 126088.98 + 10035.64 = 136124.62 cm H\‘-. f/f $
| |
Example. 4.6 Find the moment of inertia of the shaded area about the centroidal axes. ____,x’ g _L
Solution. 5 1y
—
Since the section has two axes of symmetry, we can readily know that its centroid lies at 16 cm
—_ —_ H A7
the centre. i.e., x = 8 cmand y = 12 cm. The area of each semi circular portion cut is Fig 4.27
2
ﬂzéL = 56.55 cmz. The centroid of each cut section lies at %L = 2.55¢cm.
Moment of inertia calculations:
-2 - 2
S.No. (Ixx)l. (Iyy)l. Ai(yi - y) Al,(xi - x)
1. 16x24° 24x16° 0 0
—0 = 1843 0 = 8192
4
— 1O __ 50f - 0. 11(6)" =
e
2. g —— 0 0 — 56.55(2.55 — 8)° =—
— 0.11(6)" =+
3.
— 56.55(2.55 — 8)° =—
0
y 17414.12 7906.88 0 — 3359.36




I
yy

Example. 4.6 Find the moment of inertia of the shaded area about the horizontal

centroidal axis.

Solution.

The given area can be considered to be made up of a rectangle and a semicircular
area, from which a triangular area has been removed. We can see that composite

L= 2(1,) +240,-9

XX

L

I =17414.12cm”
pd

Yy

i

~ =Y (Iyy) + ZAi(xl_ - ;)2

= 7906.88 — 3359.36 = 4547.52 cm"

section has axis of symmetry about Y-axis and hence we need to determine M5 5"
y-coordinate of the centroid only. Fig. 4.28
S.No. Element Area (4,) (cm?) y; (cm) A; y;
1. Square 6x6 = 36 % -3 36x3 = 108
6+ =
3n
3 -1
2. Semicircle | T3)2_ 14 14 ’ 14.14x7.27 = 102.8
5 .
— = X6X3 =— 9
3. Triangle —9
41.14 201.8
Y=
—_ Zaiyi
ay = =228 = 4.91cm
Xa,

Moment of inertia calculations:

Jcm

Jcm



S.No. (Ixx) Ai(yi - ;)2

l

1. 6 _ 108 36(3 — 4.91)" = 131.33

0.11(3)" = 8.91

2.
14.14(7.27 — 4.91)° = 78.75
6x3>
-2 45
3. ,
— 9(1 — 4.91)* - 137.59
112.41 72.49
Z:
A -2
ol = Z(Iyy) + 2 A (x, - x)

i

Iyy = 112.41 + 72.49 = 184.9cm"

Product of Inertia:

The Fig. 4.29 shows a body of area 4. Consider a small area dA.
The moment of this area about X-axis is y. dA. Now the
moment of y. dA about Y-axis is xy dA. Then xy dA is known

as the product of inertia of are d4 with respect to X-axis and e

Y-axis. The integral [ xy dA is known as the product of inertia

of area 4 with respect to X and Y axes. This product of inertia is
represented by 1 .

Ixy = [xydA

=



Hence the product of inertia of the plane area is obtained if an elemental area is multiplied by
the product of its coordinates and is integrated for entire area.

Note:

i) The product of inertia may be positive, negative or zero depending upon distance x and y
which could be positive, negative or zero.

ii) If area is symmetrical with respect to one or both of the axes,
the product of inertia will be zero as shown in Fig.4.30. The R | S—
total area A is symmetrical about Y-axis. The small area dA /d’ﬁ/ CD

B x —pa— x —ll
which is symmetrical about Y-axis has coordinates (x,Y) \
and (— x,y). The corresponding products of inertia for
small area are xy dA and — xydA respectively. Hence the

product of inertia for total area becomes zero. Fig. 430
iii) The product of inertia with respect to centroidal axis will
also be zero.

Principal Axes:
The principal axes are the axes about which the product of inertia is zero.

The product of inertia (I xy) of plane area 4 with respect to X and Y axes is given by
Ixy = [xydA
But the moment of inertia of plane area 4 about X-axis (I xx) or about Y-axis (/ yy) is given by
I =/ “dAand] = fxsz
xx y yy

The moment of inertia is always positive but product of inertia may be positive (if both x and y
are positive), may be negative (if one co-ordinate is positive and other is negative) or may be
zero (if any co-ordinate is zero).

The fig. 4.31 (a) shows a body of area 4. Consider a small area d4. The product of inertia of the
total area 4 with respect to X and Y axes is given as

Ixy = [xydA



Total area A

[Here x’ is +ve, but y' is —ve]
(&) -]

Fig. 431

Let now the axes are rotated anticlockwise by 90° as shown in Fig. 4.31 (b) keeping the total area
A in the same position. Let x; and y; are the new axes. The co-ordinates of the same small area
dA with respect to new axes are x and y .

Hence the product of inertia of the total area 4 with respect to new axes x; and y, becomes as

I = x'y' dA

xlyl
Now let us find the relation between old and new co-ordinates, we get

X =—y'andy = x

Or y' =— x and x'=y

I, = JO)-xdA=—[xydd= —1I_

The above result shows that by rotating the axes through 90°, the product of inertia has become
negative. This means that the product of inertia which was positive previously has now become
negative by rotating the axes through 90°. Hence product of inertia has changed its sign. It is also
possible that by rotating the axes through certain angle, the product of inertia will become zero.
The new axes about which product of inertia is zero, are known as principal axes.

Note:
i) The product of inertia is zero about principal axes.
ii) As the product of inertia is zero about symmetrical axis, hence symmetrical axis is the

principal axis of inertia for the area.



iii) The product of inertia depends upon the orientation of the axes.

Principal moments of inertia:

Fig. 4.32 (a) shows a body of area 4 with respect to old axes (x, y) and new axes (x;, y,). The
new axes x; and y, have been rotated through an angle 6 in anticlockwise direction. Consider a
small area dA4. The co-ordinates of the small area with respect to old axes is (x, y) whereas with
respect to new axes, the co-ordinates are x” and y’. The new co-ordinates (x’, y’) are expressed in

terms of old co-ordinates (x, y) and angle 0 as

X = ysinsin0 + xcoscos 0

y = ycoscosB — xsinsin 0

¥ Total area A
Small area dA

i
(% sin 6] Ei\-

=Y

)] ()
Fig. 4.32

The moment of inertia and product of inertia of area 4 with respect to old axes are



2 2
Ixx= [y dA, Iyyz fdiandeyz [ xydA

Also the moment of inertia and product of inertia of area 4 with respect to new axes will be

I = f(y’)sz, Iyy = f(x')sz and ley = fx'y' dA

171 1

Let us substitute the values of x,y in the above equations, we get

1= f(y)aa

= [(ycoscos® — xsinsin® )’dA

= f(yzcosze + x’sin’e — 2xycos9 sinG)dA

= [y’cos’0dA + [ x°sin’0 dA — [ 2xycos® sind dA
2 2 2, 2 .
cos 0y dA + sin®f x"dA — 2cosBsind [ xy dA

2 .2 . .
-'-lexl = (cos G)Ixx + (sm G)Iyy - (ZCOSGSlne)Ixy...(l)

= [ (ysinsin® + xcos )sz
= f(yzsinze + x’cos’0 + nysinecose)dA

= fyzsinze dA + fxzcoszﬂ dA + [ 2xysin®cos6 dA



= sinz(%)fy2 dA + coszefx2 dA + 2sinBcos6 [ xy dA

2 2 . ..
..Iyly1 = (sm G)Ixx + (cos G)Iyy + (2sinB cose)lxy...(u)

Adding equations (i) and (i), we get

I +1 =1 [sinZG + cosZG] + 1 [sinzﬁ + COSZG] + (2sinB cos®)l — (2co0s0sinB)I
Yy xx yy xy xy

I +1 =1 +1 ..(ii)
xlxl ylyl XX yy
The equation (iii) shows that sum of moments of inertia about old axes (x, y) and new axes

(x;, y,) are same. Hence the sum of moments of inertia of area 4 is independent of orientation of

axes. Now let us find the value of Ix LT Iy
11 171

X X
1

2
I -1 =1 [cosze — sin 9] + 1 [sinze — cosze] — (4cosBsinB)I
LYYy, xx vy xy

XX|

2 2 2 2 .
=1 |cos 8 —sin B|—1 [cos 0 — sin 6] — (4cosBsinB)I
vy xy

=1
X

-1 [cosze — sinzﬁ] — 2X2 cos0sinOxI
x yy xy

~f —1 =1 —1 (coscos20)— 21 sinsin20 ..(iv)
XX yy Xy

*1% V¥

Adding equation (ii7) and equation (iv), we get

Zlex1 = [Ixx + Iyy] + [(Ixx - Iyy) cos cos 20 — ZIxy sin sin 29]

I _ (lxx+[yy) + (Ixx_lyy)

i 5 5——C0s cos 260 — Ixysinsin 20...(v)

To find the value of Iy y subtract equation (iv) from equation (ii7), we get
171

21 = [Ixx + Iyy] - [(Ixx - Iyy) coscos 20 — ZIxy sin sin 29]

-'-I — (Ixx+1yy) _ (Ixx_lyy)
Y., 2 2

cos cos 20 + Ixy sin sin 26 ...(vi)

Product of inertia about new axes



Let us find the value of Ix y in terms of [ Xy and angle 0.
171

I = [xydaA
vy [xyd
Let us substitute the values of x', y' in the above equation, we get
Ixy = [(ysinsin® + xcoscos® )(ycoscos® — xsinsin® ) dA
171

= f(yzsine coscos 0 — xysinze + xycosze - xzcosesine) dA

= fyzsine coscos B dA — fxysinze dA + fxycosze dA — fxzcosesine dA

__ _2sinBcosB

5 fyz dA — sinzefxy dA + coszefxy dA — Mf x’dA

sin26

_ 2 i 2 __ sin28
= — .Ixx + Ixy(cos 0 — sin 9) — .Iyy
(IXX_I ) L} L}
ol = —ZZLsm sin20 4+ 1 coscos 20
XYy xy

Direction of principal axes:

We have already defined the principal axes. Principal axes are the axes about which the product
of inertia is zero.

=~ For principal axes, Ix =0

(L)

"—zstin sin20 +1

(Ixx_lyy)

171

coscos20 =0

5 sinsin20 = — 1 coscos?20
sinsin 26 __ _ley _ ley
coscos20 I —I 1 -l
XX yy yy xx

21
tan tan 20 = I—y—

yy_ XX



The above equation will give the two values of 260 or 0. These two values of 6 will differ by 90°.
By substituting the values of 6 in equations (v) and (vi), the values of principle of moments of

(1.+1,) (1) | 2
Iy L

11

inertia can be obtained.

Product of inertia of a right angled triangle:

Consider a right-angled triangle of base b and height 4. If we take a thin strip parallel to the base
at a distance y from the base and of infinite small thickness d), then the area of the strip is

dA = b dy
From similar triangles, we know that f
' b
b =-(h—y) T I\ !
k=y| ,
b | B L
wdA =--(h —y)dy PP T |
{ &, ly |
The product of inertia of the strip about X-Y axes is - \\\; !
) :....._..__.__1.'_ _t—I-X
= [%]y dA b=
xy
Fig 433

I N
—[Z]y —(h —y)dy
1b 2
= 3 (=) ydy
Therefore, the product of inertia of the triangle about X-Y axes is obtained as
bZ

15
2

2
. (h —y)ydy

~

xy

N}

h
_ Ay oy 2yt
2 32 4
0

By applying the parallel axis theorem for product of inertia, we can obtain the product of inertia
of the triangle about the centroidal axes:



b’h bh b h
=4 T X3 X
g e bzhz
Ty T 72

Product of inertia of quarter circle:

Consider a thin strip parallel to X-axis at a distance y from X-axis and of infinite small thickness
dy. Then the area of the strip is

dA = xdy i
The product of inertia of this strip is dy P '
_ X _ X 'x._
dlxy = (T)y dA = (T)y xdy ¥
Therefore, the product of inertia of the entire area about X-Y axes is E - X
"1
Ixy = { —xydy

: .2 2 2 2 2 2
We know that the equation of acircleisx +y =R =>x = R — y

R
= [

g = L{R_RY)_ &
Txy o2\ 2 4| 8

By applying the parallel axis theorem for product of inertia, we can obtain the product of inertia
of the quarter circle about the centroidal axes:

I =1 — Ax
xy base y
4
_ R m 4R 4R
8 4 3n 3n
4 4
R 4R 4
I =————=—0.016R
xy 8 ot



Example. 4.7. Find the product of inertia

respect to centroidal axis.

of the channel section shown in the Fig. 4.34 with

Solution. I
B0 mm
[l
kX
15 mm
SRTRENE T
15 mm — — 200 mm
| 15mm
& 100 mm ol t e
Fig 434
Area (4;)
S.No. Element (mm?) x; (mm) v; (mm) A;x; A;y;
1. Rectangle-1 | 100x15 = 1§ 100 _ ¢ [ 15 _ 7 5 | 150050 =| 1500%7.5 = ]
200x15 = 30 2 200 |3000%x7.5 93000%x115 =
—=7.5 |15+ =
215 + =~ =
2. Rectangle-2
80x15 = 120 1200x40 =[ 1200%x222.5 3
— =40
3. Rectangle-3
5700 145500 623250
Z:
= 2a7, 145500
X = To0 — 25.53mm
La,
= Zay, 623250
Ly = =00 = 109.34mm
>a

Product of inertia calculations:



S.No. (Ixy)i Ai(xi - ;)(yi - ;’)
1. 0 1500(50 — 25.53)(7.5 — 109.34) =— 3
2. 0 3000(7.5 — 25.53)(115 — 109.34) =—
3, 0 1200(40 — 25.53)(222.5 — 109.34) =
0 — 2079276.4
Z:

sl = 2(1) + ZAi(xL. - 5)(yi -

xy i
I =— 2079276.4cm"
yy

Example. 4.8. Find the product of inertia of the shaded area shown in the Fig. 4.35 with respect
to centroidal axes.

Solution.

e

Area (4))

S.No. Element (cn?) x; (cm) v; (cm) A;x; A; y;




1. Triangle %x3x6 =9 % =2 % =2 9x2 =18 [ 9x2 = 18
6xX4 =24 |34 2 _5 %:3
2. Rectangle 24x5 = 12( 24%x3 = 72
33 138 90
Z:
- zax,
ax = > =4.18cm
Xa,
— Zaiyi 90
Ly = =33 = 2.73cm
Ya,
Product of inertia calculations:
S.No. (Ixy)i Ai(xi — ;)(yl — ;7)
1 3’6" 4.5 9(2 — 4.18)(2 — 2.73) = 14.32
7
0
2. 24(5 — 4.18)(3 — 2.73) = 5.31
— 4.5 19.63
Z:
Ixy =Yy (Ixy)i + ZAi(xi - x)(yi -y




] =1513cm"
yy

Y
A
Example. 4.9. Find the product of inertia of the shaded area shown 20mm
in the Fig. 4.36 with respect to centroidal axes.
60 mm
La P P |
I 7l [l |
120 mm 20 mm
Fig. 4.36
Solution.
SNo. | Element Area SA") x; (mm) y; (mm) A;x, A;
(cm’)
1. | Rectangle-1 | 6x2 =12 |12 +%= 13 % — 3 | 12x13 = 156 | 12x7 = 84
14 2
2. |Rectangle-2 | 2x14 =28 | T =7 |6 +5 =7 28x7 =196 | 28x7 = 196
40 352 232
Z:
Yax.
- i 352
aX = = T=8.8cm
Se,
—_— Zal i
ay = =22 =58cm
Sa,
Product of inertia calculations:
S No. ), Afx, —¥)0,- )
1 0 12(13 — 8.8)(3 — 5.8) =— 141.12




2] 0 28(7.8.8)(7 — 5.8) =— 60. 48

0 — 201.6
Z:
Ixy =Y (Ixy)i + Ai(xi - x)(yi -9)
1, == 2016 em® =— 2.02x10%mm"
Y ok
Mass moment of inertia: Body of

Mass M

Consider a body of mass M as shown in Fig. 4.37.

Let x = Distance of the centre of gravity of mass M from Y-axis Caniici

v = Distance of centre of gravity of mass M from X-axis

Then moment of the mass about the Y-axis =M . x d
The above equation is known as first moment of mass about o x H i
Y-axis. Fig 437

If the moment of mass given by above equation is again multiplied by the perpendicular distance

) : 2.
between the C.G. of the mass and Y-axis, then the quantity(M. x). x = M. x is known as second
moment of mass about Y-axis. This second moment of the mass is known as mass moment of
inertia about Y-axis.

Similarly, the second moment of mass or mass moment of inertia about X-axis =
2

M.y).y =M.y .

Hence the product of the mass and the square of the distance of the centre of gravity of the mass

from an axis is known as the mass moment of inertia about that axis. Mass moment of inertia is

represented by /,,. Hence mass moment of inertia about X-axis is represented by (Im) whereas
XX

/ Given axis

Consider a body which is split up into small masses m;m,ms;... Mass m, Massm,

about Y-axis is represented by (I m)
vy

etc. Let the C.G. of the small areas from a given axis be at a
distance of r;r,r;.... etc. as shown in Fig. 4.38. then mass moment
of inertia of the body about the given axis is given by




3

[ =mr’+ mr +mr. + =) mr
m- 11 22 33 T

If small masses are large in number then the summation in the above equation can be replaced by
integration. Let the small masses are replaced by dm instead of m, then the above equation can
be written as

I = [ r’dm

Radius of gyration:

Radius of gyration is the distance which when squared and multiplied with the total mass of the
body gives the mass moment of inertia of the body.

Thus if Im is the mass moment of inertia of a body of mass M about an axis then its radius of

gyration k about that axis is given by the relation

2
I =k xM
m
Im
-~ \Nm
Mass moment of inertia of bodies:
i) Mass moment of inertia of a rectangular plate :

About its centroidal axes:

Consider a rectangular plate of width b and depth d
and uniform thickness ¢. Consider a small element of width
b and depth dy at a distance of y from X-X axis.

Area of the strip, dA = b.dy
Volume of the strip, dV = dA.t = b.t.dy

Mass of the strip, dM = density Xvolume of the strip
= p(b.t.dy)

Mass moment of inertia of the strip about X-X axis is

(dlm) = p(b.t.dy) ><y2

XX




= Mass moment of inertia of the plate will be obtained by integrating the above equation

between the limits — % to %.

c.G

4 B
2 2 & A
(Im) = [ p(b.t.dy)xy Lo 1
xx _% .-'.f."‘l.".l".-'."!.-'.".-'.-'.".-'.f.".-' diz
di

D c
y3 d/2 -+ b *
p-b t[?] Fig. 4.40
—d/2
_pbt|d & p.b.td’
~ 3 [T + ?] 12
= p. b.d.t. EVE
_Md
(Im) 12

Similarly the mass moment of inertia of the rectangular plate about Y-Y axis passing
through C.G. of the plate is given by

1) =%

About the base:

Consider a rectangular plate of width b and depth d and uniform thickness ¢. Consider a

small element of width b and depth dy at a distance of y from line CD.
Area of the strip, dA = b.dy :5- e b »

Volume of the strip, dV = dA.t = b.t.dy

Mass of the strip, dM = density Xvolume of the strip

m

M

= p(b.t.dy) d
Mass moment of inertia of the Strip about line CD is EETEERRE TR R RN RAS ERI R EE,
2
dl = p(b.t.dy)X &
( n) = PO-td)xy I |

Fig 4.41



= Mass moment of inertia of the plate will be obtained by integrating the above equation
between the limits 0 to d.

2
p(b.t.dy)xy

o

(), =

€D
4,
=p.b.t [y dy
0
5 7d
p.b.t[-};—]
0

_ _p;)_t[ d3] _ E.b.3td3

by

Mass moment of inertia of a hollow rectangular plate:

Fig. 4.42 shows a hollow rectangular plate in which ABCD is the main plate and EFGH
is the cut-out section.

The mass moment of inertia of the main plate ABCD about X-X is given by equation

1 2
= ?Md

The mass moment of inertia of the cut-out section EFGH about X-X axis
_ 1 2
= 3 md1

Where M = mass of main plate ABCD

=p.b.d. t

m = Mass of the cut-out section EFGH




=p. bl. d1' t

Then mass moment of inertia of hollow rectangular plate about X-X axis is given by
2

(1) _ md
m V) 12
pd

Mass moment of inertia of circular plate:

Fig. 4.43 shows a circular plate of radius R and thickness ¢ with O
as centre. Consider an elementary circular ring of radius » and
width dr.

Area of ring, dA = 2mr.dr
Volume of ring = Area of ring X t= dA. t

= 2mr.dr.t

Mass of ring, dM = density Xvolume of the ring

= p(2nr.dr.t)

In this case first find the mass moment of inertia about an axis
passing through O and perpendicular to the plane containing X-Y
axis, i.e., about Axis Z-Z.

= Mass moment of inertia of the circular ring about axis Z-Z

= dMXr2

= p(2mr.dr.t) X P = p.t. 2mrdr

Fig. 4.43

The mass moment of inertia of the whole circular plate will be
obtained by integrating the above equation between the limits 0 to R.
= Mass moment of inertia of circular plate about Z-Z axis is given by

R R
(Im) = [p.t. 2mrdr = 21Tp.tfr3dr
0 0




iii)

From perpendicular axis theorem, we have IZZ = Ixx + Iyy or (Im) = (Im) + (Im)

zz xx vy

And due to symmetry, we have (Im) = (I m)

xx vy
1) :
(Im)xx - (Im vy - 2 == %

Mass moment of inertia of a triangular plate:
Consider a triangle ABC of base width = ‘b’ and height = ‘4’. Consider a small strip of
thickness dy at a distance y from X-axis.

Area of the strip, d4 = Length DE x dy ()
Considering two similar triangles ADE and AOB,

DE _ AD

0B ~ A0

Where OB=5b, AO=hand AD = (h-y)

LDE _ (h-y) A
b h
_ b(h—
DE = == dy‘LD
Substituting the value of DE in equation (i), we get y
Area of strip, dA = @ .dy l
b (h—y) y b I
. _ -y ~
Volume of strip, dV = ———=.dy.t Fig. 4.44
b (h—y)

Mass of strip, dM = p ——=.dy.t

Mass moment of inertia of the strip about base is given by

(dlm)BC = p.t. &h_yl.yzdy

~ Mass moment of inertia of the triangular plate about base is obtained by integrating
above equation between the limits 0 to 4



SO ) (A s
= Pty [ 12] 12

[ _ pbht K _ Mh’
(m) -2 "6 6

Mass moment of inertia of a triangular plate about parallel centroidal axis is obtained

from parallel axis theorem as

(1), = () +m

as

Moment of inertia of thin plates:

)

Plare

Rectangular ﬂI l: : -x % ‘I"




i)

Plate ! Shape I L i
Y
A » MR* MR®
Semicircular 7 "y {about base) - r
=Y
3
A
-
MK Mb
Triangular A e —_—
g l . N 18 24
b
Mass moment of inertia of Solids:
Mass moment of inertia of solid cylinder:
Consider a cylinder of radius R, length L and density p. The 1’
coordinate axes are chosen about the centroid as shown in | o

Fig. 4.45. Suppose we cut a circular disc of infinitesimal
thickness dz perpendicular to Z-axis at a distance of z from
the origin,

The area of the disc is given as, dA = nR’
The volume of the disc is given as, dV = nR® dz

The mass of the disc is given as, dM = thR2 dz

Therefore, mass moment of inertia of the disc about Z-axis is given as,

2 4 2
(dlm) = dMRT = anT dz [M M. 1. of circular disc = MR ]

Y44

2

~ Mass moment of inertia of the entire cylinder about Z-axis is obtained by integrating

the above expression between the limits — % to%



The mass moment of inertia of circular disc about an axis lying on its plane is given as,
2 4
_ R® _ R
(dlm)xx = dM—- = pn—-dz

By transfer theorem, the mass moment of inertia of the disc about the centroidal X-axis is

given as
4

(dlm) = anT dz + p(T[RZ)dZ. 7
XX

The mass moment of inertia of the entire cylinder about centroidal X-axis is obtained by

integrating the above expression between the limits — % to%

%N‘h

(Im) = ? anT dz + p(T[RZ)dZ. z

N‘b-

NN
= p‘r[T[Z]_L/2 + p(T[R )[T]_L/Z

Note:
For a slender rod, radius R<L,

For a thin disc, length LKR,

Mass moment of inertia of a Prism:

Consider a prism of length L, breadth B, and height H and let its density be p.
Suppose we cut a thin plate of thickness dz at a height z from X-Y plane.

The area of the plate is given as, dA = LB

The volume of the disc is given as, dV = LB. dz

The mass of the disc is given as, dM = p LB.dz




Therefore, mass moment of inertia of the disc about Z-axis is given as,
_ LB [;2 , 52
(dlm)ZZ = L2 17 + B'dz

~ Mass moment of inertia of the entire prism about Z-axis is obtained by integrating the

) . H H
above expression between the limits — —- to—-

H/2 218 T2 )
(Im) = _J/ZT [L +B ]dz

= 2E [L2 + Bz][z]H/z — LBH [L2 + BZ]

-H/2 12
(Im)zz = L+ 5
Similarly,
(Im)xx = L+ H
(1) = st
Note:

For a thin Plate, H =0,



iii) Mass moment of inertia of a Sphere:
Consider a sphere of radius R and densityp. Suppose we cut a circular disc of radius » and

infinitesimal thickness dz at a distance of z from X-Y plane.
The area of the disc is given as, dA = e
The volume of the disc is given as, dV = '’ dz

The mass of the disc is given as, dM = pTrr2 dz

.
Y

Fig. 4.47 (b)

Therefore, mass moment of inertia of the disc about Z-axis is given as,

(a1 ) = ML = 2y

-~ Mass moment of inertia of the entire sphere about Z-axis is obtained by integrating the
above expression between the limits — R to R

(1) = }er[}dz
m zZZ —R 2

Since R is the radius of the sphere, =R -7

R N
(1) = _fRﬂ(RZ;Z)-dZ

R

- fR(R4 +2' — 2R’z )dz

_ pn] 4 z 2 7 R

—‘PZ—[RZ += - 2R ?_R
= ip1TR5

15



Due to symmetry, the moment of inertia remains the same for any axis passing through
the centroid. Hence in general, we express

I =-ZMR*
m_ 5
Mass moment of inertia of a cone:

Consider a cone of base radius R, height /, and density p. Suppose we cut a circular disc

of radius » and infinitesimal thickness dz at a distance z from the origin.
N 2
The area of the disc is given as, dA = nr
D 2
The volume of the disc is given as, dV = nr dz

The mass of the disc is given as, dM = pTrr2 dz

¥ X i ‘x
" F
.‘I ; |4
= 7
dz
(b)
Fig. 448

Therefore, mass moment of inertia of the disc about Z-axis is given as,

(a1 ) = ML = g,

Y44

~ Mass moment of inertia of the entire cone about Z-axis is obtained by integrating the
above expression between the limits 0 to H

(I ) =?Lr4dz
m ZZ 0 2

By similar triangles, we know,



The mass moment of inertia of the disc about an axis lying on its plane is given as,

7’ p1'rr4
(d]m)xx = dMT = TdZ
By transfer theorem, the mass moment of inertia of the disc about the centroidal X-axis is
given as
4

pTr

(dlm) =-——dz + pm’2 dz.z"

XX

The mass moment of inertia of the entire cone about centroidal X-axis is obtained by
integrating the above expression between the limits 0 toH

p— i 2 2
.-.(Im) = f%dz + [pnr'.z'dz
xx 0 0

£

H L H
4 4
= 2Ry +-m:1—§fzdz
0 0

Mass moment of inertia of solids:



Example. 4.10. Find the mass moment of inertia of thin plate bent as shown in Fig. 4.49 about
A-A axis. Density of the plate is 7850 kg/m’and thickness is 5
mm.

Solution.

Given:
Density p = 7850 kg/m’

Thickness, t =5 mm = 0.005 m.
We know that the mass of thin plate is pAt.




M = 7850x(0.03x0.03)x0.005 = 0.0353 kg
M, = 7850 (0. 04%0.03)x0.005 = 0.0471 kg
M, = 7850%(0.03%0.02)X0.005 = 0.0236 kg

Calculation of mass moment of inertia:
For plate-1

The mass moment of inertia about its centroidal axis parallel to the Z-axis is

M A
1) =
(ZZ1 12

_0.0353%0.03

-6 2
- = 2.65%x10 kg.m

~ Mass moment of inertia about A-A axis is obtained as,

1) - (1) +md
= 2.65%10 © +[0.0353x(0.015)"] = 1.06x10 "kg.m"

For plate-11

The mass moment of inertia about its centroidal axis parallel to the Z-axis is

M,h
I ) = L
(222 12

_0.0471x0.04°

-6 2
- = 6.28%x10 kg.m

~ Mass moment of inertia about A-A axis is obtained as,

(1) =) + i

= 6.28x10 © +[0.0471x(0.02)°] = 2.51x10 kg.m’

For plate-111

The mass moment of inertia about its centroidal axis parallel to the Z-axis is



2

Mh,
1) = =5~
(223 12

_0.0236%0.02°

-7 2
- = 7.87%x10 kg.m

~ Mass moment of inertia about A-A axis is obtained as,

()= (1), +

where d, = 7/(0.04)% + (0.04)% = /1. 7x10 °m

2
= 7.87x10 + [0.0236x(\/1.7x103) ]= 4.09%10 kg.m’

- Mass moment of inertia of the composite plate is given as,

IAA - Z (IAA).

1

= 1.06X10 " + 2.51x10 " + 4.09%10 "

= 7.66x10 kg.m’

Example. 4.11. Determine mass moment of inertia of a thin rectangular plate of thickness 5 mm
in which a semicircular portion is cut as shown in Fig. 4.50 about the base. The density of the
material of the plate is 7850 kg/m’.

Solution. q_j em

Mass calculations: \_:3/

Rectangular plate, M L= plAlt1

15cm

= 7850x(0. 1x0.15)x0.005 = 0.589 kg

Semicircular plate, M2 = pZAZt2 Fig. 4.50

0.05°
2

= 7850><(1T>< )XO. 005 = 0.154 kg

Mass moment of inertia calculations:



For rectangular plate, we know that mass moment of inertia of a thin rectangular plate about its
centroidal axis is

Therefore, mass moment of inertia of the plate about its base is

MK

_
I =—+ M|

2
hZ_Mlh
21 3

2 —_—
= 0S90ID _ 4 418x10 kg m’

For semicircular plate, we know that mass moment of inertia of a thin semicircular plate about its
centroidal axis is

I, =0.07M R’
2 2
Therefore, mass moment of inertia of the plate about its base is
2 2
I,=0.07M R + Mzd
= 0.07x0.154x(0.05)° + 0.154[0.15 — (4x0.05)/(3xm)]"
= 2.58x10 kg.m’
Therefore, the mass moment of inertia of the composite section is given as
=1 -1
1 2
-3 -3 -3 2
= 4.418x10 ~ — 2.58%x10 "= 1.838%x10 kg.m

Example. 4.12. A4 cube of 250 mm side has mass density of 4000 kg/m’. Determine the mass
moment of inertia of the cube about one of its edges.

Solution. : A
Given: ‘ -;; .I;,. A
Side, a=0.25m [ |
Density, p = 4000 kg/m’ _.',4
“Its mass, M = pa’ = 4000x0.25" = 62.5 kg -



Considering the cube as a prism, the mass moment of inertia about the centroidal Y-axis is

obtained as

2 2
Iyy = M(a +a)/12
_ (0.25)°+(025)"] _ 2
= 62.5 - = 0.651kg.m
By transfer theorem, moment of inertia about one of the edges 44 is obtained as

2
IAA,=Iyy+Md

We know that d2 = (

2 2
) = 0.03125m

= 0.651 + 62.5(0.03125) = 2.6 kg.m"

Example. 4.13 A4 brass cone having a base diameter of 40 cm and a height of 25 cm is placed on

top of a vertical cylinder of same diameter and a height of 20 cm. Determine the mass moment of

the composite body about the vertical geometric axis. Take density of brass and steel to be 8400

kg/m’and 7850 kg/m’respectively.

Solution.
Given:

For brass cone

For steel cylinder

Mass calculations

R1= 20cm = 0.2m

H1 = 25¢cm = 0.25m

p, = 8400 kg/m’

R2= 20cm = 0.2m

H2 = 20cm = 0.2m

p,= 7850 kg/m3

Z
A
> F 7
'~.\ 25cm
Brass 1
i Sieel ! 20 em
e — N e
o
40 em
Fig 4.52



Cone,

_ 1 2
Volume, V1 = 3 1TR1 H1

x0.2°%0.25 = 10.47x10 °m°

w |~

Mass, M1 = pr1

= 8400x10.47x10 " = 87.95 kg

Cylinder,
2
Volume, V2 = ‘ITR2 H 5
= 1x0.2°%0.2 = 25.13x10 "m"°
Mass, M2 = sz2

= 7850%25.13x10 " = 197.27 kg

Mass moment of inertia calculations

Cone,
-3 2
(Izz)l 10 M1R1
= 3%87.95%0.2° = 1.055 kg.m"
= —7X87.95x0.2" = 1. g.m
Cylinder,

2 x197.27%0.2" = 3.95 kg.m"

-~ Mass moment of inertia of the composite body about the vertical geometric axis is obtained as
IZZ = (IZZ) + (IZZ)

= 1.055 + 3.95 = 5.005 kg.m"



