Documentación del proyecto Quad-Eye

Fuentes de datos:

Los datos para procesar las zonas de riesgo de incendios se obtienen del servicio que provee la EFFIS (European Forest Fire Information System), que es la agencia europea encargada de los servicios de protección contra incendios en los paises de la UE (http://effis.jrc.ec.europa.eu/)

De este servicio se obtiene información actualizada de la temporada actual de riesgo de incendio forestal en Europa, así como la previsión para los próximos 6 días, actualizando diariamente los focos de riesgo y perímetros de las zonas peligrosas.

Para la obtención de los datos, la EFFIS hace uso de la información que provee los satélites de la NASA *MODIS* (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/viirs-i-band-active-fire-data)

Servicios web: http://gwis.jrc.ec.europa.eu/rest/

El servidor central hace una petición de datos al servicio web cada cierto tiempo mediante una conexión a Internet, extrayendo, de la estructura de datos la siguiente información:

- Latitud/longitud: Coordenadas geoespaciales en formato decimal.
 Generalmente habrá una lista de coordenadas que definen una región (polígono).
- Frecuencia de refresco de información: Tiempo que transcurre tras cada actualización de los datos.
- Porcentaje de riesgo: Probabilidad de riesgo de incendio en cada región, siendo 0% el riesgo más bajo y 100% el riesgo más alto.
- Incendio: Determina si en unas coordenadas específicas ya existe un incendio activo.

Debido a la poca resolución de los datos que esta API provee, y en caso de que esté deshabilitada o no funcione como es debido, se procede a extraer los datos de una fuente alternativa, que consta en dos fases:

 Datos en baja resolución del índice de riesgo de incendios (FWI), extraídos de ftp://ftp.nccs.nasa.gov y https://data.giss.nasa.gov/impacts/gfwed/. Este índice se extrae del "Canadian Wildland Fire Information System" (http://cwfis.cfs.nrcan.gc.ca/background/summary/fwi). Dependiendo

- del factor de riesgo en la zona, los drones saldrán más o menos a menudo, y examinarán la zona de manera más exhaustiva o no.
- Debido a la baja resolución espacial, la zona de riesgo es demasiado grande para muestrear con los drones, por lo tanto hace falta cruzar con otros datos. En este caso se usa el índice de vegetación NDVI extraído del LandSat 8, de tal manera que el área total a explorar disminuye considerablemente.

• Procesamiento y almacenamiento de datos:

Los datos extraídos se almacenan en una base de datos para su procesamiento. Posteriormente, se procederá al cálculo de rutas en tiempo real, que se enviarán a los drones para que hagan la monitorización de las regiones donde mayor riesgo de incendio hay, o en su defecto, donde ya se haya producido el incendio.

Para la ejecución del cálculo se tiene en cuenta las siguientes variables:

- Condiciones medioambientales (Por ejemplo, probabilidad de Iluvia).
- Probabilidad de incendio en la región (Si la probabilidad es alta, habrá una mayor frecuencia de monitorización).
- Coordenadas geoespaciales de las regiones con probabilidad, para el cálculo de las rutas más eficientes.

Despliegue de drones:

Los drones tienen una comunicación bidireccional permanente con el servidor mediante una conexión GSM, el cual le provee las nuevas rutas cada vez que se éstas se hayan calculado y el dron esté no operativo (en tierra). A su vez, el dron envía información acerca de su estado (operativo o parado), así como información útil en caso de que se haya detectado un incendio.

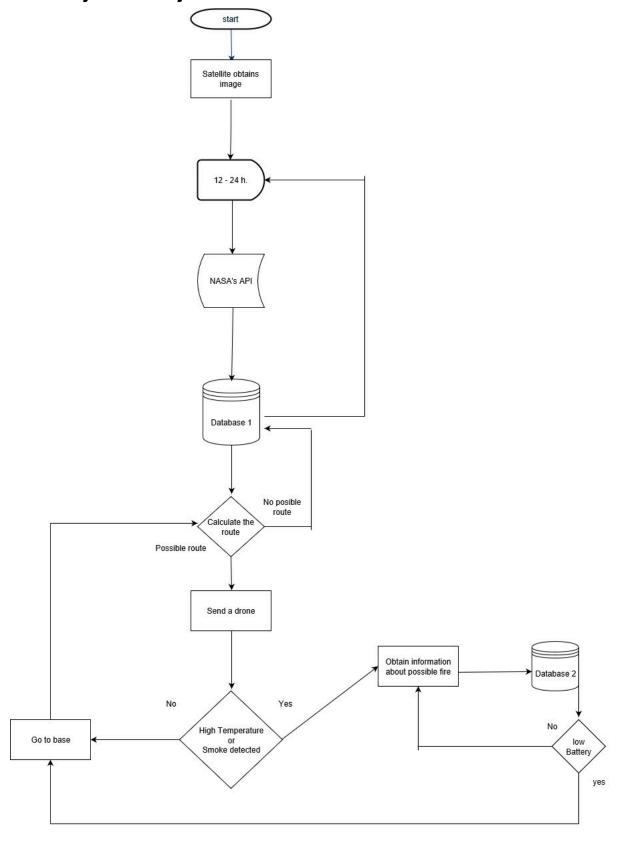
- Algoritmo de optimización de recorrido: Optimizará la ruta enviada previamente, calculando la altura necesaria que, junto con el ángulo de visión de la cámara, abarcar el mayor terreno posible sin necesidad de desplazamiento.
- Algoritmo de procesamiento de imágenes con cámara infrarroja para detección de fuego: Este algoritmo determina con precisión si la cámara infrarroja detecta fuego en las imágenes que proyecta.

(http://journals.sagepub.com/doi/full/10.1155/2014/597368)

Recopilación de datos procedentes del Dron: En caso de que se detecte un incendio mediante la cámara infrarroja, el dron envía datos útiles tales como dirección y fuerza del viento, temperatura, humedad, coordenadas geoespaciales, imágenes reales...

• Aplicación web:

Mediante el portal web, todos los usuarios y el público en general podrán tener información actualizada sobre la situación de incendios en su región en tiempo real.


Se mostrará toda la información almacenada por los drones durante su monitorización (previamente descrita), así como mapas con geo-localizaciones de las zonas de riesgo e incendios actualmente activos.

Los usuarios podrán suscribirse al sistema para recibir notificaciones y alertas acerca de los incendios que se declaren cerca de ellos.

Si el usuario accede al portal web mediante el dispositivo móvil con un GPS habilitado, se mostrará si hay algún riesgo en su radio de acción.

Además, se proporcionará información adicional sobre el protocolo de actuación en caso de incendio, para que la población esté preparada.

• Flujo de trabajo:

