
Installation Requirements:
Unity: https://store.unity.com/download?ref=personal
Steam: https://store.steampowered.com/about/
SteamVR: https://store.steampowered.com/app/250820/SteamVR/
Windows MR for SteamVR:
https://store.steampowered.com/app/719950/Windows_Mixed_Reality_for_SteamVR/
SteamVR Plugin - Unity Asset Store:
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647

Steps:

Connecting Controllers (If Necessary):

1.​ Open Bluetooth settings from Windows Search bar
2.​ Select “Add Bluetooth or other device” and choose Bluetooth device
3.​ Power on each controller by holding down the Windows button
4.​ Open the battery compartment on each controller and hold down the button at the base

of the controller until the lights start to flash
5.​ Wait for the controllers to appear on the computers device window and select each from

the menu to pair

Creating a VR Scene:

1.​ Create a new Unity project
a.​ Use 3D template
b.​ Use whatever project name you like

2.​ Open Asset Store tab in editor window and import SteamVR plugin (use search bar and
download if not already done)

3.​ Generate the actions.json file for SteamVR interaction system
a.​ Select the window tab at the top of the editor
b.​ Select SteamVR input
c.​ You may be prompted to generate an actions.json file, select yes
d.​ When the SteamVR input window opens scroll to the bottom and select “Save

and Generate”
e.​ Once the window is done compiling you can close it

4.​ Place a plane in the scene
5.​ Place the player prefab on the plane

a.​ SteamVR->InteractionSystem->Core->Prefabs->Player

Basic Interactions:

6.​ Place a cube in front of the player prefab
a.​ This is basically a table
b.​ Resize and move to be approximately in front of the player prefab

7.​ Place a sphere (or any other primitive object) above the cube

https://store.unity.com/download?ref=personal
https://store.steampowered.com/about/
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/719950/Windows_Mixed_Reality_for_SteamVR/
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647

a.​ Resize to be about 1 / 8 the size of the cube
8.​ Add the “Interactable” script to the object

a.​ SteamVR->InteractionSystem->Core->Scripts->Interactable
This might be a good time to put on the headset for a second?

9.​ Create a new script (name it whatever you like) and open it
10.​Add “namespace Valve.VR.InteractionSystem” to encompass the class
11.​Create attachment flags

a.​ [EnumFlags]
b.​ public Hand.AttachmentFlags attachmentFlags =

Hand.AttachmentFlags.ParentToHand |
Hand.AttachmentFlags.DetachFromOtherHand;

12.​Add hover function
a.​ private void HandHoverUpdate(Hand hand)

13.​Check for grab within hover function
a.​ GrabTypes startingGrabType = hand.GetGrabStarting();
b.​ if (startingGrabType != GrabTypes.None)
c.​ Checks if user is starting to perform some type of grab (different buttons)

14.​Attach object to hand if grab starting
a.​ hand.AttachObject(gameObject, startingGrabType, attachmentFlags);

15.​Check if grab is ending when attached to hand
a.​ private void HandAttachedUpdate(Hand hand)
b.​ if (hand.IsGrabEnding(gameObject))
c.​ hand.DetachObject(gameObject);
d.​ By default restores original parent object but can be disabled

Add visual feedback

16.​Add public variable for additional material
a.​ public Material grabMat;

17.​Store original material
a.​ private Material originalMat;
b.​ void Start()
c.​ originalMat = GetComponent<Renderer>().material;

18.​Change to new material when attached to hand
a.​ private void OnAttachedToHand(Hand hand)
b.​ GetComponent<Renderer>().material = grabMat;

19.​Change back to original material when detached
a.​ private void OnDetachedFromHand(Hand hand)
b.​ GetComponent<Renderer>().material = originalMat;

20.​Add script to interactable object
21.​Assign new material for grab indicator

a.​ Create new material and change albedo to something obvious
b.​ Drag into empty material spot on script

​
Give everyone a moment to try on headset again and interact with ball
​ Look through throwable script for more detailed example

Adding teleportation

1.​ Add Teleporting prefab to scene
a.​ SteamVR->InteractionSystem->Teleport->Prefabs->Teleporting
b.​ Handles bulk of teleportation mechanics with lots of modifiable settings

2.​ Create new plane slightly above ground
3.​ Convert new plane into teleportation area

a.​ Add TeleportArea script to ground
b.​ SteamVR->InteractionSystem->Teleport->Scripts->TeleportArea

​ Try the scene one more time with teleportation mechanics to move

Open exploration time, check out the InteractionSystem sample to see many of the
possibilities with SteamVR
​ SteamVR->InteractionSystem->Samples->Interactions_Examples

Implement 2 VR based interactions or mechanics either in the InteractionSystem sample
scene or in a new Unity scene. Note: Don’t worry about the visuals of the objects, feel
free to use basic primitives for actual objects but do consider including some amount of
feedback if necessary.

Ideas:

●​ Make a basic tee ball setup (hit a physics based ball with some form of bat)
●​ Create a punching bag that returns to starting position after being hit
●​ Make a lantern that can be picked up and then changed somehow (such as changing

the color of one part) through subsequent controller actions while holding it
●​ Create a potato cannon (either an object that can be picked up that subsequently

launches other objects or a button that causes a cannon to fire)
●​ Add another form of player movement besides teleporting (such as moving forward in

the direction the player is facing when using a certain controller action)
●​ Create a simple remote controller to manipulate an object in the environment (do not use

the existing remote controller scripts from the sample scene but look through them for
guidance)

●​ Make a single axis constrained mechanism (can only be dragged around a 2D plane)
such as in a sliding puzzle

●​ Create an object that can be held with both hands simultaneously (such as being in the
average of the positions of the two hands)

●​ Create a boomerang type of object that returns to the point where thrown from after
some amount of time (doesn’t have to be physically accurate to a real boomerang)

https://en.wikipedia.org/wiki/Tee-ball
https://en.wikipedia.org/wiki/Sliding_puzzle
https://en.wikipedia.org/wiki/Boomerang

●​ Make a simple 3D paintbrush to leave some kind of 3D trail when a certain controller
action is used (consider only intermittently generating the trail in order to reduce
computational load)

