
PRACTICE Gradient, Rates, and Linear Functions

* Full, worked solutions can be found in the folder linked on the Course Website ©

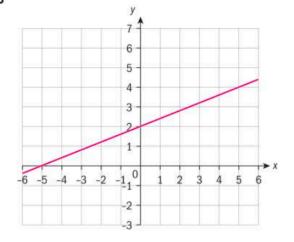
Exercise 3A

1 Find the gradient of each line:

a

2 Find the gradient of the line passing through the given points:

a (4,8), (8,11)


b (-2,2), (4,-4)

c (-7,1), (7,8)

3 The height, *h*, of a burning candle *t* seconds after it is lit is shown in the table. Find the gradient of the line joining a scatter graph of these points, and explain what the gradient of this line tells you.

t(s)	h (cm) 4.3		
20			
30	4.15		
60	3.7		

4 Baldwin Street in Dunedin, New Zealand, is known as the steepest street in the world. Baldwin Street is a short residential street about 350 metres long. From its base at approximately 30 metres above sea level, it b

rises to a height of about 100 m above sea level. The segment shown in the following diagram models Baldwin Street.

- **a** Find the coordinates of B, to the nearest hundredth.
- b Find the gradient of segment AB, to the nearest hundredth.

The grade of a road is given as a percent.

It is calculated by the formula:

$$\frac{\text{rise}}{\text{run}} \times 100$$
 (or $\frac{\text{vertical change}}{\text{horizontal change}} \times 100$).

c Find the grade of Baldwin Street.

Exercise 3B

- Determine whether lines 1 and 2 which pass through the given points are parallel, perpendicular or neither.
 - **a** Line 1: (3, 6) and (6, 11) Line 2: (4, -1) and (9, 2)
 - **b** Line 1: (5,-1) and (3,7) Line 2: (-1,4) and (0,0)
- **2** A line passes through the points (3, 2) and (x, 5) and is perpendicular to a line with gradient $\frac{4}{3}$. Find the value of x.
- 3 Liam works up to 60 hours each week. His weekly pay, in dollars, depends on the number of hours he works, as shown in the graph.

- **a** Find the gradient for each line segment in the graph.
- **b** Explain the meaning of each gradient in the context of Liam's work.

Exercise 3C

- **1** Write down the gradient and *y*-intercept for the following lines:
 - **a** line 1: y = 3x 7
 - **b** line 2: $y = -\frac{2}{3}x + 4$
 - c line 3: y = -2
- **2** Write down the equation of the line with gradient $\frac{1}{5}$ passing through (0,1).
- **3** Find the equation, in gradient-intercept form, of the following lines:
 - a the line that passes through the point (0,-1) and is parallel to the line y = 4x 3
 - **b** the line that passes through the points (-3, -2) and (1, 10)

- 4 Write down the following:
 - **a** the equation of the vertical line that passes through (8,-1)
 - **b** the equation of the horizontal line that passes through the point (-3,-10)
 - **c** the equation of the line perpendicular to y = 1 that passes through (9,5)
 - **d** the point of intersection of the lines x = -2 and y = 7

MORE on BACK

Exercise 3D

1 Draw the graph of the line with the given equation:

a
$$y = -3x$$

b
$$y-2=\frac{1}{3}(x+4)$$

c
$$y = \frac{1}{2}$$

d
$$y = -\frac{3}{4}x + 5$$

- **2** Find the equation, in point-gradient form, of the line with gradient −3 that passes through (2, 6).
- 3 Consider the line pas (-3, -4) and (-5, 2).
 - a Find the gradient of the line.
 - **b** Write down two different equations for the line in point-gradient form.
 - **c** Verify that the two equations represent the same line.

Exercise 3E

- 1 Write the equation of each of these lines in the general form ax + by + d = 0 where a, band d are integers.
 - **a** $y = \frac{1}{6}x 3$
 - **b** The line with gradient $-\frac{2}{3}$ and y-intercept (0, 4).
 - c The line with gradient -1 that passes through (-3, 2).

- 2 Change the general form of the equation of each line to gradient-intercept form, y = mx + c.
 - **a** 3x + y 5 = 0
 - **b** 2x 4y + 8 = 0
 - c 5x + 2y + 7 = 0
- 3 Sketch the graph of the line and label the coordinates of the axial intercepts.
 - x + 2y + 6 = 0
 - **b** 2x 6y + 8 = 0

Exercise 3F

- 1 Use your GDC to find the point of intersection for each pair of lines:
 - **a** y = 2x 1 and y = 3x + 1
 - **b** y = 2x + 1 and 4x + 2y = 8
 - c y = 4.3x + 7.2 and y = 0.5x 6.4
 - **d** 2x 3y = -1 and $y = -\frac{3}{4}x + 2$
- 2 Solve each equation by using your GDC to find a point of intersection:
 - **a** 3x 4 = 0.5x 1.75
 - **b** 6.28x + 15.3 = 2.29x 4.85

3 The following equations give the weekly salary an employee can earn at two different sales jobs, where x is the amount of sales in euros and y is the weekly salary in euros. Find the amount of sales for which the weekly salaries would be equal.

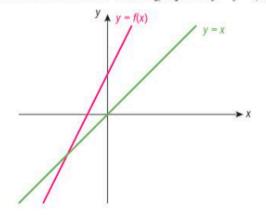
$$y = 0.16x + 200$$

$$y = 0.10x + 300$$

Exercise 3G

- **1** Consider the functions f(x) = -x + 5, g(x) = 2x + 3 and $h(x) = \frac{1}{3}x - 4$. Find the following:
 - a f(3)
- **b** g(0)
- **c** h(6) g(1) **d** f(2) + g(-1)

- e (f o g)(4)
- g (f o g)(x)
- 2 Give the domain and function:
 - **a** f(x) = 3x + 8
- **b** h(x) = x 6


MORE on BACK

- **3** Sketch a graph of the following:
 - a a linear function with range [6]
 - **b** a line that is not a function.

- **4** Find $f^{-1}(x)$ for each of the following linear functions. Give your answers in the form $f^{-1}(x) = mx + c$.
 - **a** $f(x) = \frac{1}{2}x + 4$ **b** f(x) = -3x + 9

Exercise 3H

- **1** Find $f^{-1}(x)$ for each of the following linear functions. Give your answers in the form $f^{-1}(x) = mx + c$.
- **2** The graph of a linear function y = f(x) and the line y = x is shown below. Copy the graphs and then add a sketch of the graph of $y = f^{-1}(x)$.

- **a** f(x) = 4x 5
- **b** $f(x) = -\frac{1}{6}x + 3$
- c f(x) = 0.25x + 1.75
- 3 A t-shirt company imprints logos on t-shirts. The company charges a one-time set-up fee of \$65 and \$10 per shirt. The total cost of x shirts, in CAD, is given by f(x) = 10x + 65.
 - a Find the total cost for 55 t-shirts.
 - **b** Find $f^{-1}(x)$ and tell what x and $f^{-1}(x)$ represent in this function.
 - **c** Find the number of t-shirts in an order with a total cost of \$5065.

MORE on NEXT PAGE

 The force applied to a spring and the extension of the spring are connected by a linear relationship.

When a spring holds no mass, its extension is zero. When a force of 160 newtons (N) is applied, the extension of the spring is 5 cm.

- Find a linear model for the extension of the spring in terms of the force applied. Make sure you state clearly the variables you use to represent each quantity.
- b Find the extension of the spring when a force of 370 N is applied.
- 2 Frank is a salesman. He is paid a basic weekly salary, and he also earns a percentage of commission on every sale he makes. In a certain week, Frank makes sales totalling £1500. His total pay for that week is £600.

In another week, Frank makes sales totalling £2000. His total pay for that week is £680.

- a Find, in gradient-intercept form, an equation that relates Frank's total weekly pay, £y, with his total sales revenue, £x.
- **4** Liam works up to 60 hours each week. His weekly pay, £p, depends on the number of hours, h, he works. This information is presented in the graph shown.
 - Find the equations for the piecewise function.
 - b Find the amount Liam is paid in a week that he works:
 - i 22 hours
 - ii 47 hours

5 Office Resource has 3000 printers available to sell in a certain month. On average, sales drop by 6.5 printers for each €1 increase in price. This is modelled by the demand function, q = -6.5p + 3000, where €p is the sales price

- **b** Explain the meaning of both the gradient and *y*-intercept in your model.
- c Find Frank's total weekly pay when his weekly sales total £900.
- **3** A new fitness gym is offering two membership plans.

Plan A: A one-off enrollment fee of \$79.99, and a further monthly fee of \$9.99 per month

Plan B: no enrollment fee, and monthly fees of \$20.00 per month

a Find a linear model for each plan, where total cost is a function of number of months. Identify the variables you use.

After a certain number of months, Plan A becomes more cost-effective than Plan B.

b Use the models from part **a** to determine how many months a person needs to be a member before Plan A becomes more cost-effective than Plan B.

and *q* is the number of printers sold during the month.

- a Find the number of printers the model predicts Office Resource sells in a month, if the selling price is €200.
- b Explain how raising the sales price by €20 affects the sales.

The manufacturer supplying the printers to Office Resource controls supply according to the function q = 48p - 1600, where q is the number of printers supplied during the month and ϵp is the price Office Resource must pay the manufacturer for each printer they supply. This function is known as the supply function.

- **c** Find the price per printer Office Resource must pay to be supplied with 2000 printers a month.
- **d** Graph the supply and demand functions on your GDC and then sketch the graphs on your paper.
- e When the quantity supplied equals the quantity demanded the market is said to be in equilibrium. Find the equilibrium price and the equilibrium demand.