
Introduction to RADAR

- ☐ RADAR is a construction of words Radio Detection and Ranging
- Radio is an Electromagnetic system for detection and location of objects
- Detection refers whether the Target is present or Not, the target can be stationary or Moving
- Ranging refers distance between Radar and Target
- Radar is evaluated just before the world war II and it has given birth to Microwave Technologies
- Radar can see the conditions such as: Darkness, haze, fog, rain and snow which is not possible for human vision

Basic principle of Radar

- ☐ Radar mainly consist of a transmitter, receiver, antenna, display device
- ☐ It use same antenna for transmitting and receiving the signals
- Radar is used for detecting the objects and locating their location

Important Terms of Radar Systems

- 1. Range
- 2. Pulse Reputation Frequency
- 3. Maximum unambiguous Range
- 4. Minimum Range

Pulse Repetition Frequency

- ☐ The duration between the two clock pulses must be selected in such a way that the echo signal corresponding to present clock pulse should be received before the next clock pulse
- The number of Radar pulses transmitted per sec is known as Pulse Repetition Frequency , PRF
- The time interval between the successive clock pulses called Pulse Reception Time, PRT

Minimum Range

Minimum range of the target is calculated when the time required for the echo signal to receive at Radar after the signal being transmitted from the radar as pulse width

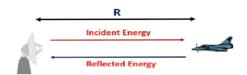
It is also known as the shortest range of target

Applications of Radar

- ☐ Military Applications
- ☐ Air Traffic Control (ATC)

Aircraft Safety
Ship Safety
Navigation
Space
Remote Sensing

Radar Frequencies


Conventional Radars operate in Microwave Region

Band Designation	Nominal frequency Range	Specified Frequency Ranges for Radar
VHF	30-300 MHz	138-144 MHz
		216-225 MHz
UHF	300-1000 MHz	420-450 MHz
		850-942 MHz
L	1-2 GHz	1215-1400 MHz
S	2-4 GHz	2300-2500 MHz
		2700-3700 MHz
С	4-8 GHz	5250-5295 MHz
KU	12-18 GHz	13.4-14.0 GHz
		15.7-17.7 GHz
KA	27-40 GHz	33.4 – 36 GHz

Radar Range Equation

 $\hfill \square$ Radar Range Equation is useful to calculate theoretical range of the Target

 Power density at distance, R from the Radar from the isotropic antenna is written as

$$P = \frac{P_t}{4\pi r^2} - ---(1)$$

- Mostly Directional Antennas are used to radiate most of the power P_t in a particular direction
- The power density from a Directional Antenna is $P = \frac{P_t G}{4\pi r^2} ----(2)$
- The ability of the target to reflect energy is characterized by Radar cross section σ then the re radiated density back at radar is $P' = \frac{P_{t \ G}}{(4 \pi r^2)} \frac{\sigma}{(4 \pi r^2)}$
- ➤ The receiving antenna captures a portion of echo energy incident on it.if effective area of the antenna is A_e then P_r is

$$P_{r} = P A_{e}$$

$$= \frac{P_{t}G\sigma A_{e}}{(4\pi R^{2})^{2}}$$

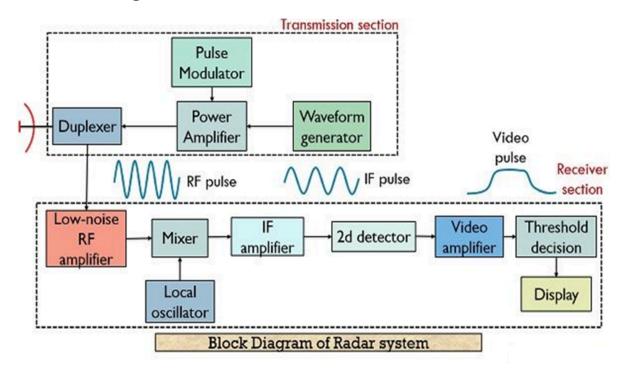
S _{min} =

R max =

Modified form1 of Radar Range Equation

The relation between Gain of directional antenna (G) and Effective aperture (A_e) is written as $G = \frac{4\pi A_e}{\lambda^2}$

We know
$$R_{max} =$$


Modified form 2 of Radar Range Equation

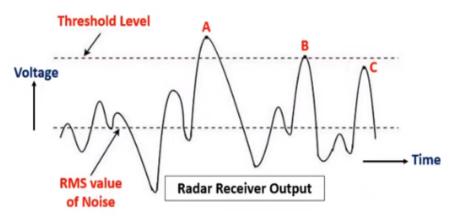
$$A_e =$$

$$R_{max} =$$

$$R_{max} =$$

Radar Block Diagram

The function of each block of Pulsed Radar


- □ **Pulse Modulator**: it produces a pulse modulated signal and it is applied to the transmitter
- ☐ **Transmitter**: it transmits the pulse modulated signal which is a train of repetitive pulses

	Duplexer : it is a microwave switch, which connects the Antenna to both transmitter section and receiver section alternatively				
	Low Noise RF Amplifier: it amplifies the weak RF signal, which is received by antenna				
	Local Oscillator: it produces a signal having stable frequency				
	Mixer: it can produce both sum and difference of the frequencies that are applied to it, and the difference of the frequencies will be of Intermediate Frequency (IF) type				
	IF Amplifier: it amplifies the IF signal, it improves the signal to Noise Ratio at output				
	Detector : it demodulates the signal which is obtained at the output of the IF Amplifier				
	Video amplifier: it amplifies the video signal which is obtained at the output of detector				
	Display: Generally it displays the amplified video signal on CRT Screen				
Detec	ction of signals in Noise				
Funda	mental form of Radar equation				
	$R_{\text{max}} = \left[\frac{P_t G A_e \sigma}{(4\pi)^2 S_{min}} \right]^{\frac{1}{4}}$				
To get	Range of Radar maximum				
	Peak power of transmitted by Radar Pt should be high				
	Gain of the transmitting antenna G should be high				
	Radar cross section of the target σ should be high				
	Effective aperture of the receiving antenna A _e should be high				
	minimum detectable signal S min should be low				
Radar	Range is a function of probability of detection P_d and probability of false alarm P_{fa}				
	The weakest signal the receiver can detect is called minimal detectable signal				
	It means Radar cannot detect the echo signal if the signal is having less power than that of minimum power				
	Generally Radar Receives the echo signal in addition with Noise				

If the Threshold value is used for detecting the presence of the target from the received signal, the detection is known as **Threshold Detection**

The selection of proper threshold value must be done on the strength of the signal to be detected

- ☐ A High Threshold value is chosen when the strength of the signal to be detected is high so that it will eliminate the unwanted noise signal present in it
- ☐ A Low Threshold value is chosen when the strength of the signal to be detected is low

A point is valid Detection B point is valid Detection C point is Missing Detection

- □ Noise is the unwanted energy that **interieres** with the ability of the receiver to detect the wanted signal
- ☐ It may enter the receiver through the **antenna** along with the desired signal or it may be generated within the receiver
- ☐ If the **receiver generates** a noise component into the signal, which is received at the receiver, that type of noise is called Receiver Noise

Noise generated by the **thermal motion** of the **conduction electrons** in the ohmic portions of the receiver input stages is known as **Thermal** or Johnson **noise**

Available thermal noise power can be written as $N_i = KTB_N$

Where K = Boltzmann's constant = 1.38 X
$$10^{-23} \frac{J}{deg}$$

T = absolute temperature and it is equal to $290^0 K$

 B_N = Receiver Bandwidth

$$B_N =$$

H (f) = frequency response function of IF Amplifier

Signal to Noise Ratio

□ Noise figure may be interrupted as a measure of degradation of the signal to noise ratio as the signal passes through the receiver

Noise Figure
$$F = \frac{(SNR)_i}{(SNR)_0} = \frac{\frac{S_i}{N_i}}{\frac{S_o}{N_0}} = \frac{N_0 S_i}{N_i S_0}$$

☐ Input signal power will be having minimal value, when output SNR is having minimal value (at the output of IF Amplifier)

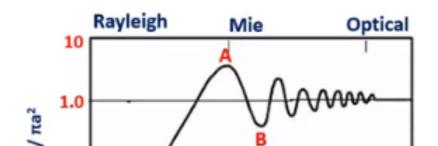
min

Substitute the s_{min} value in the standard form of Radar Range Equation

$$R_{\text{max}} = \left[\frac{P_t G^2 \lambda^2 \sigma}{4\pi^2 S_{min}} \right]^{\frac{1}{4}}$$

$$R_{\text{max}} = \left[\frac{P_t G^2 \sigma \lambda^2}{\left(4\pi\right)^2 FK T_0 B_n \left(\frac{S_0}{N_0}\right) min} \right]^{\frac{1}{4}}$$

The signal to noise ratio is here is the output of the IF Amplifier since maximizing the signal to noise ratio at the output of If is equivalent to maximizing the video output where threshold is made

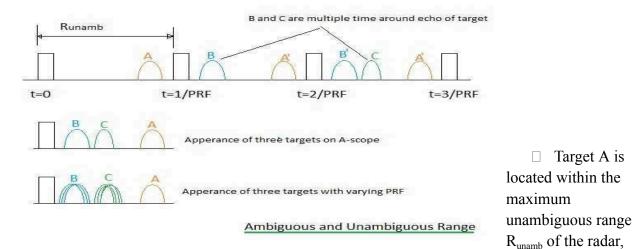

To get Range of Radar maximum Peak power of transmitted by Radar Pt should be high Gain of the transmitting antenna G should be high Radar cross section of the target σ should be high Effective aperture of the receiving antenna A_e should be high Figure of Merit F should be low $\ \square$ Receiver Bandwidth is B_n should be low **Radar Cross Section of Targets** \square Radar cross section (σ) provides an indication of how well a given target reflects Radar energy ☐ It is the **property** of the **scattering object**, or **Target** that is included in the radar equation to represent the magnitude of the echo signal returned to Radar by the Target ☐ The Radar cross section of the target is the area intercepting the amount of power which when scattered equally in all directions, produces an echo at the radar equal to that

Where R: Distance between Radar and Target

 E_r = strength of the reflected field at Radar

 E_f = Strength of the incident field at Target

Radar Cross Section in a Simple Sphere



	The Radar cross section of a simple sphere is shown in fig . Where a is the radius of a sphere and λ is wavelength
	Three different scattering regions are there
1.	Rayleigh Region
2.	Mie or Resonance Region
3.	Optical Region
<u>Raylei</u>	gh Region
	IN Raleigh region size of the sphere is very small compared with wavelength ($\frac{2\pi a}{\lambda} \ll 1$)
	This region is interest to radar engineer because cross section of raindrops and meteorological particles fall within this region at the usual radar frequencies
<u>Optica</u>	<u>l region</u>
	In this region size of the sphere is very large compared with wavelength ($\frac{2\pi a}{\lambda} >> 1$)
	For large $\frac{2\pi a}{\lambda}$ the radar cross section approaches the optical cross section πa^2
Mie or	Resonance region
	The cross section is oscillator with frequency within this region

	The maximum range occurs at $\frac{2\pi a}{\lambda} = 1$ and value is 5.6db greater than its value in optical region
Int	egration of Radar Pulses
	Many pulses are returned from particular target on each radar on each radar scan and can be used to improve detection
	The number of pulses (n) returned from a point target as the radar antenna scans with a pulse reputation rate of f_p Hz, an antenna beam width θ_B degree and which scans at a rate of θ_S degree per sec is
	$n = \frac{\theta_B f_P}{\theta_S} = \frac{\theta_B f_P}{6 \omega_r}$
ω_r	= revolution per minute (rpm) for a 360° rotating antenna
n=	number of pulses received, usually known as hits per scan or pulses per scan
	☐ The process of summing all the radar echoes available from a target is known as Integration
	The most common radar integration method is the cathode-ray tube display combined with the integration properties of the Eye and brain of the Radar operator
	Integration may be accomplished in the radar receiver either before the second detector (in the IF) Or after the second detector (in the Video)
	Integration before the detector is called pre detection or coherent integration , while integration after the detection is called post detection or non-coherent detection
	Pre detection integration requires that the phase of echo signal is to be preserved if the full benefits is to be obtained from the summing process.
□ the i	If n pulses of same SNR is integrated by a lossless pre detection integrator , ntegrated SNR will be n times of signal pulse Then SNR in Radar equation becomes (SNR) _n =
	n pulses of same SNR is integrated by a post detection integrator ,the integrated SNR will be n times of signal pulse The integration efficiency for post detection integration is given by (n) =

Pulse-repetition frequency and range ambiguities

- ☐ The pulse repetition freq.(prf) is determined primarily by the maximum range at which targets are expected
- ☐ If the prf is made too high , the likelihood of obtaining target echoes from the wrong pulse transmission is increased.
- □ Echo signal received after an interval exceeding the pulse-repetition period are called *multiple time* around echoes.

 \Box target B is at a distance greater than R_{unamb} but less than $2R_{Unamb}$

 \square while target C is greater the $2R_{unabm}$ but less than 3RUnamb The appearance of the three targets on an A-scope is sketched in Fig. c

☐ The multiple-time-around echoes on the A-scope cannot be distinguished from proper target echoes actually within the maximum unambiguous range.

□ Only the range measured for target A is correct; those for B and C are not.

☐ One method of distinguishing multiple-time-around echoes from unambiguous echoes is to operate with a varying pulse repetition frequency.

 $R_{true} = f_1 \text{ or } (f_1 + R_{un1}) \text{ or } (f_1 + R_{un2}) \text{ or } ...$

 $\hfill\Box$ The correct range is that value which is the same with the two PRF, generally three

PRF are often use to resolve range ambiguities.

System Losses

Losses occurs due to,

- 1. Loss due to integration.
- 2. Loss due to fluctuating cross section.
- 3. Loss due to change in radar cross section of target.
- 4. Losses due to transmission line.
- 5. Losses due to various mechanical part of radar system

Types of losses:-

- 1. Microwave plumbing loss.
- 2. Duplexer loss.
- 3. Antenna loss.
- 4. Scanning loss..
- 5. Collapsing loss.
- 6. Operator loss.
- 7. Field degradation.
- 8. Transmission loss.