CIVIL AND ENVIRONMENTAL ENGINEERING MASTER'S PROGRAM

MIT School of Engineering - First Semester (Fall, Year 1)

Advanced Fundamentals and Core Engineering Principles

FIRST SEMESTER (Fall): Foundation Sciences and Advanced Engineering Principles

Week 1: Program Introduction and Mathematical Foundations

Monday: Orientation and Advanced Engineering Mathematics I

- Morning (4 hours):
 - o Program introduction and curriculum overview
 - Research opportunities and faculty introductions
 - o Advanced calculus review: multivariable calculus
 - Vector calculus and field theory
- Afternoon (4 hours):
 - Partial differential equations in engineering
 - Boundary value problems
 - Laboratory: Mathematical software introduction (MATLAB/Python)
 - Problem-solving workshop

Tuesday: Linear Algebra and Matrix Methods

- Morning (4 hours):
 - Matrix operations and properties
 - Eigenvalues and eigenvectors
 - Singular value decomposition
 - o Applications in structural analysis
- Afternoon (4 hours):
 - Matrix methods in finite element analysis
 - Computational linear algebra
 - Programming exercises
 - Engineering applications workshop

Wednesday: Structural Analysis Fundamentals

- Morning (4 hours):
 - o Review of statics and strength of materials
 - Statically indeterminate structures
 - Method of consistent deformations
 - Slope-deflection method
- Afternoon (4 hours):
 - Structural analysis laboratory
 - o Computer-aided structural analysis introduction
 - o Frame analysis exercises
 - Physical demonstrations

Thursday: Environmental Engineering Principles

- Morning (4 hours):
 - o Environmental systems overview
 - Mass and energy balances
 - Chemical equilibrium and kinetics
 - Reactor design principles
- Afternoon (4 hours):
 - o Environmental chemistry laboratory
 - o Water quality analysis
 - o Air quality measurements
 - Data analysis and interpretation

Friday: Professional Skills and Ethics

- Morning (4 hours):
 - Engineering ethics in civil and environmental practice
 - Sustainability principles
 - o Professional communication
 - Technical report writing
- Afternoon (4 hours):
 - Case studies in engineering ethics
 - o Sustainability assessment methods
 - o Team formation and project planning
 - Week 1 review and reflection

Assessment for Week 1:

- Mathematics diagnostic assessment (ungraded)
- Structural analysis problem set (10%)
- Environmental chemistry lab report (10%)
- Ethics case study analysis (5%)

Reading Materials:

- "Advanced Engineering Mathematics" (MIT OCW)
- "Matrix Structural Analysis" (McGuire, Gallagher, Ziemian Open Access)

- "Environmental Engineering: Fundamentals, Sustainability, Design" (Mihelcic & Zimmerman)
- "Ethics in Engineering Practice and Research" (OER Commons)
- "Introduction to MATLAB for Engineers" (William Palm Creative Commons)

Week 2: Numerical Methods and Structural Systems

Monday: Numerical Methods in Engineering

- Morning (4 hours):
 - Numerical solution of ODEs and PDEs
 - o Finite difference methods
 - Numerical integration and differentiation
 - o Error analysis and convergence
- Afternoon (4 hours):
 - Programming laboratory: numerical methods
 - Implementation of engineering algorithms
 - Validation and verification techniques
 - Engineering applications

Tuesday: Advanced Structural Analysis

- Morning (4 hours):
 - Moment distribution method
 - Influence lines for beams and frames
 - Moving loads analysis
 - o Approximate methods for lateral loads
- Afternoon (4 hours):
 - Structural analysis software workshop
 - Frame analysis projects
 - Load path analysis
 - o Performance evaluation

Wednesday: Materials Science for Civil Engineering

- Morning (4 hours):
 - o Concrete materials and properties
 - o Steel materials and behavior
 - Composite materials in construction
 - Material testing and characterization
- Afternoon (4 hours):
 - Materials testing laboratory
 - Concrete mix design
 - Steel tension testing
 - Microstructural analysis

Thursday: Environmental Systems Analysis

- Morning (4 hours):
 - Systems thinking in environmental engineering
 - Mass balance applications
 - Steady-state and dynamic systems
 - o Environmental fate and transport
- Afternoon (4 hours):
 - Systems modeling workshop
 - o Environmental simulation software
 - Case studies in environmental systems
 - Data analysis techniques

Friday: Probability and Statistics for Engineers

- Morning (4 hours):
 - o Probability theory review
 - Statistical distributions
 - Hypothesis testing
 - Regression analysis
- Afternoon (4 hours):
 - Statistical analysis workshop
 - o Engineering data analysis
 - Uncertainty quantification
 - Week 2 review and assessment preparation

Assessment for Week 2:

- Numerical methods programming assignment (15%)
- Structural analysis problems (15%)
- Materials laboratory report (10%)
- Statistical analysis project (10%)

Reading Materials:

- "Numerical Methods for Engineers" (Chapra & Canale Open Educational Resources)
- "Structural Analysis" (Hibbeler Open Access Chapters)
- "Materials for Civil and Construction Engineers" (Mamlouk & Zaniewski)
- "Environmental Systems Analysis" (MIT OCW)
- "Statistics for Engineers and Scientists" (OpenStax)

Week 3: Geotechnical Engineering and Environmental Chemistry

Monday: Soil Mechanics Fundamentals

- Morning (4 hours):
 - Soil formation and classification
 - o Soil structure and fabric

- Phase relationships
- o Index properties and characterization
- Afternoon (4 hours):
 - Soil testing laboratory
 - Classification tests
 - Compaction testing
 - o Permeability measurements

Tuesday: Soil Behavior and Properties

- Morning (4 hours):
 - Effective stress principle
 - Seepage and flow nets
 - Consolidation theory
 - Shear strength of soils
- Afternoon (4 hours):
 - Consolidation testing laboratory
 - Direct shear testing
 - Triaxial testing demonstration
 - o Data analysis and interpretation

Wednesday: Environmental Chemistry and Processes

- Morning (4 hours):
 - o Aquatic chemistry fundamentals
 - o Acid-base equilibria
 - o Complexation and precipitation
 - Oxidation-reduction reactions
- Afternoon (4 hours):
 - Environmental chemistry laboratory
 - Water chemistry analysis
 - o Chemical equilibrium modeling
 - Treatment process chemistry

Thursday: Finite Element Method Introduction

- Morning (4 hours):
 - o FEM theoretical foundations
 - Element formulation
 - Shape functions and interpolation
 - Assembly and solution procedures
- Afternoon (4 hours):
 - o FEM software introduction
 - Structural analysis applications
 - Mesh generation and refinement
 - o Results interpretation and validation

Friday: Fluid Mechanics for Civil Engineers

- Morning (4 hours):
 - o Fluid properties and statics
 - o Flow in pipes and channels
 - o Pump systems and design
 - Open channel flow principles
- Afternoon (4 hours):
 - Hydraulics laboratory
 - o Flow measurement techniques
 - Pump performance testing
 - Week 3 review and problem-solving

Assessment for Week 3:

- Soil mechanics problem set (15%)
- Environmental chemistry lab report (15%)
- FEM analysis assignment (15%)
- Fluid mechanics calculations (10%)

Reading Materials:

- "Principles of Geotechnical Engineering" (Das Open Access Chapters)
- "Environmental Chemistry" (Stanley Manahan OER)
- "Introduction to Finite Element Methods" (MIT OCW)
- "Fluid Mechanics for Civil Engineers" (Open Textbook Library)
- "Soil Mechanics Laboratory Manual" (Open Educational Resources)

Week 4: Structural Design and Environmental Processes

Monday: Reinforced Concrete Design Principles

- Morning (4 hours):
 - o RC design philosophy and codes
 - o Flexural design of beams
 - Shear design considerations
 - Development length and anchorage
- Afternoon (4 hours):
 - o RC design workshop
 - Beam design calculations
 - Design software introduction
 - Code compliance verification

Tuesday: Steel Structure Design Fundamentals

- Morning (4 hours):
 - Steel design philosophy and AISC code
 - o Tension member design
 - Compression member design

- Connection design basics
- Afternoon (4 hours):
 - Steel design laboratory
 - Member design calculations
 - Connection analysis
 - Failure mode evaluation

Wednesday: Water and Wastewater Treatment

- Morning (4 hours):
 - Water treatment process overview
 - Physical treatment processes
 - Chemical treatment processes
 - Biological treatment fundamentals
- Afternoon (4 hours):
 - Water treatment laboratory
 - Coagulation-flocculation testing
 - Filtration experiments
 - Disinfection studies

Thursday: Air Quality and Atmospheric Processes

- Morning (4 hours):
 - Atmospheric chemistry and physics
 - Air pollutant sources and types
 - o Dispersion modeling
 - Air quality regulations
- Afternoon (4 hours):
 - Air quality monitoring laboratory
 - Pollutant measurement techniques
 - Dispersion modeling software
 - o Data analysis and interpretation

Friday: Project Management for Engineers

- Morning (4 hours):
 - Project management fundamentals
 - Scheduling and resource allocation
 - Risk management
 - o Quality control and assurance
- Afternoon (4 hours):
 - Project planning workshop
 - Schedule development exercise
 - Team project kickoff
 - Week 4 review and assessment

Assessment for Week 4:

• RC design project (15%)

- Steel design calculations (15%)
- Water treatment lab report (15%)
- Air quality analysis assignment (10%)
- Project management plan (10%)

Reading Materials:

- "Design of Reinforced Concrete" (McCormac & Brown Open Access)
- "Steel Design" (Segui OER Chapters)
- "Water Treatment: Principles and Design" (MWH Open Educational Resources)
- "Air Pollution Control Engineering" (Noel de Nevers OER)
- "Project Management for Engineers" (Open Textbook Library)

Week 5: Structural Dynamics and Environmental Modeling

Monday: Structural Dynamics Fundamentals

- Morning (4 hours):
 - Single degree of freedom systems
 - o Free vibration analysis
 - o Forced vibration and resonance
 - Dynamic amplification factors
- Afternoon (4 hours):
 - Vibration testing laboratory
 - Natural frequency measurement
 - Damping evaluation
 - o Response simulation

Tuesday: Multi-Degree of Freedom Systems

- Morning (4 hours):
 - MDOF system formulation
 - Modal analysis
 - Mode superposition method
 - Response spectrum analysis
- Afternoon (4 hours):
 - o Dynamic analysis software workshop
 - Modal analysis applications
 - Earthquake response simulation
 - Engineering applications

Wednesday: Environmental Fate and Transport

- Morning (4 hours):
 - o Contaminant transport mechanisms
 - Advection-dispersion equation
 - Sorption and transformation

- Groundwater contamination
- Afternoon (4 hours):
 - Transport modeling laboratory
 - Numerical solution methods
 - o Parameter estimation
 - Case study analysis

Thursday: Water Resources Engineering

- Morning (4 hours):
 - Hydrologic cycle and processes
 - Precipitation and evapotranspiration
 - Surface water hydrology
 - o Groundwater flow principles
- Afternoon (4 hours):
 - Hydrology laboratory
 - Rainfall-runoff analysis
 - Flood frequency analysis
 - o Groundwater flow modeling

Friday: Sustainable Engineering Design

- Morning (4 hours):
 - Life cycle assessment
 - Green building principles
 - Sustainable materials
 - Energy efficiency in buildings
- Afternoon (4 hours):
 - Sustainability analysis workshop
 - LCA software tutorial
 - Green design case studies
 - Week 5 review and integration

Assessment for Week 5:

- Structural dynamics analysis (15%)
- Environmental transport modeling (15%)
- Hydrology problem set (15%)
- Sustainability assessment project (10%)

Reading Materials:

- "Dynamics of Structures" (Chopra MIT OCW)
- "Environmental Fate and Transport Analysis with Compartment Modeling" (OER)
- "Applied Hydrology" (Chow, Maidment, Mays Open Access)
- "Sustainable Engineering: Concepts, Design and Case Studies" (OER Commons)
- "Structural Dynamics Analysis Software Manual" (Open Educational Resources)

Week 6: Advanced Analysis Methods

Monday: Matrix Methods in Structural Analysis

- Morning (4 hours):
 - Stiffness method formulation
 - Coordinate transformations
 - Assembly of global matrices
 - Solution techniques
- Afternoon (4 hours):
 - Matrix analysis programming
 - o Frame analysis implementation
 - Computational efficiency
 - Verification and validation

Tuesday: Foundation Engineering

- Morning (4 hours):
 - Shallow foundation design
 - Bearing capacity theory
 - Settlement analysis
 - o Foundation selection criteria
- Afternoon (4 hours):
 - Foundation design workshop
 - Bearing capacity calculations
 - Settlement predictions
 - Design optimization

Wednesday: Environmental Biotechnology

- Morning (4 hours):
 - Microbiology fundamentals
 - Biological treatment processes
 - Activated sludge systems
 - Anaerobic treatment
- Afternoon (4 hours):
 - Biotechnology laboratory
 - Microbial growth studies
 - Treatment process operation
 - o Performance evaluation

Thursday: Transportation Engineering Fundamentals

- Morning (4 hours):
 - Transportation systems overview
 - Traffic flow theory
 - Highway geometric design
 - Pavement design principles
- Afternoon (4 hours):

- Transportation laboratory
- o Traffic flow analysis
- o Pavement materials testing
- Design applications

Friday: Computer-Aided Design and Modeling

- Morning (4 hours):
 - CAD software for civil engineering
 - o 3D modeling techniques
 - Building Information Modeling (BIM)
 - o Integration with analysis software
- Afternoon (4 hours):
 - CAD/BIM laboratory
 - Model development
 - Design documentation
 - Week 6 comprehensive review

Assessment for Week 6:

- Matrix analysis programming project (15%)
- Foundation design assignment (15%)
- Biotechnology lab report (10%)
- Transportation design problems (10%)
- CAD/BIM modeling project (15%)

Reading Materials:

- "Matrix Analysis of Structures" (Kassimali Open Access)
- "Foundation Analysis and Design" (Bowles OER Chapters)
- "Environmental Biotechnology: Principles and Applications" (OER)
- "Transportation Engineering: An Introduction" (Banks Open Textbook Library)
- "Building Information Modeling Guide" (Open Educational Resources)

Week 7: Earthquake Engineering and Advanced Environmental Systems

Monday: Earthquake Engineering Principles

- Morning (4 hours):
 - Seismology and ground motion
 - Seismic hazard analysis
 - o Response spectra
 - Building codes and design philosophy
- Afternoon (4 hours):
 - Seismic analysis laboratory
 - Ground motion records analysis
 - Response spectrum development

Code application exercises

Tuesday: Seismic Design of Structures

- Morning (4 hours):
 - Equivalent lateral force method
 - Modal response spectrum analysis
 - Seismic detailing requirements
 - o Performance-based design
- Afternoon (4 hours):
 - Seismic design workshop
 - Building analysis and design
 - o Code compliance verification
 - Performance evaluation

Wednesday: Advanced Water Treatment Technologies

- Morning (4 hours):
 - Membrane processes
 - Advanced oxidation processes
 - Electrochemical treatment
 - Emerging contaminants
- Afternoon (4 hours):
 - Advanced treatment laboratory
 - Membrane filtration testing
 - Advanced oxidation experiments
 - Technology comparison

Thursday: Environmental Risk Assessment

- Morning (4 hours):
 - Risk assessment methodology
 - Exposure assessment
 - o Dose-response relationships
 - Risk characterization
- Afternoon (4 hours):
 - Risk assessment workshop
 - Case study analysis
 - Uncertainty analysis
 - Risk communication

Friday: Coastal and Ocean Engineering

- Morning (4 hours):
 - Wave mechanics and coastal processes
 - Coastal structures design
 - Erosion and sedimentation
 - Climate change impacts
- Afternoon (4 hours):

- Coastal engineering laboratory
- Wave tank experiments
- Coastal modeling software
- Week 7 review and assessment

Assessment for Week 7:

- Seismic design project (20%)
- Advanced treatment analysis (15%)
- Risk assessment report (15%)
- Coastal engineering calculations (10%)

Reading Materials:

- "Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering" (OER)
- "Advanced Water Treatment Technologies" (MIT OCW)
- "Environmental Risk Assessment" (Open Educational Resources)
- "Coastal Engineering Manual" (US Army Corps of Engineers Open Access)
- "Seismic Design Guidelines" (Open Educational Resources)

Week 8: Computational Methods and Infrastructure Systems

Monday: Advanced Computational Methods

- Morning (4 hours):
 - Nonlinear finite element analysis
 - Material nonlinearity
 - Geometric nonlinearity
 - Solution algorithms
- Afternoon (4 hours):
 - Nonlinear FEA laboratory
 - Material model implementation
 - Convergence studies
 - Result interpretation

Tuesday: Infrastructure Systems Engineering

- Morning (4 hours):
 - Systems approach to infrastructure
 - Network analysis
 - Reliability and redundancy
 - Lifecycle management
- Afternoon (4 hours):
 - Infrastructure modeling workshop
 - Network optimization
 - Reliability analysis

Case studies

Wednesday: Solid Waste Management

- Morning (4 hours):
 - Waste generation and characterization
 - Collection and transport systems
 - Treatment and disposal methods
 - o Resource recovery and recycling
- Afternoon (4 hours):
 - Waste management laboratory
 - Waste characterization studies
 - Treatment process testing
 - System design exercises

Thursday: Construction Materials and Methods

- Morning (4 hours):
 - Advanced concrete technology
 - High-performance materials
 - Construction methods and equipment
 - Quality control and testing
- Afternoon (4 hours):
 - Construction materials laboratory
 - Advanced concrete testing
 - o Non-destructive testing methods
 - Quality assessment

Friday: Environmental Regulations and Policy

- Morning (4 hours):
 - Environmental law overview
 - Regulatory framework
 - Permitting processes
 - Compliance monitoring
- Afternoon (4 hours):
 - Regulatory case studies
 - Permit application workshop
 - Policy analysis
 - Week 8 comprehensive review

Assessment for Week 8:

- Nonlinear FEA project (20%)
- Infrastructure systems analysis (15%)
- Waste management design (15%)
- Materials testing report (10%)
- Regulatory compliance assignment (10%)

Reading Materials:

- "Nonlinear Finite Element Analysis" (MIT OCW)
- "Infrastructure Systems Engineering" (Open Educational Resources)
- "Solid Waste Management" (Tchobanoglous Open Access Chapters)
- "Construction Materials and Testing" (Open Textbook Library)
- "Environmental Law and Policy" (OER Commons)

Week 9: Hydraulic Engineering and Environmental Remediation

Monday: Open Channel Hydraulics

- Morning (4 hours):
 - Uniform flow principles
 - Energy and momentum equations
 - Gradually varied flow
 - Rapidly varied flow
- Afternoon (4 hours):
 - Hydraulics laboratory
 - Flow measurement techniques
 - o Channel design exercises
 - Computational modeling

Tuesday: Hydraulic Structures

- Morning (4 hours):
 - o Dam engineering principles
 - Spillway design
 - Culvert and bridge hydraulics
 - Energy dissipation structures
- Afternoon (4 hours):
 - Hydraulic design workshop
 - Structure sizing calculations
 - Model testing
 - Performance evaluation

Wednesday: Groundwater Engineering

- Morning (4 hours):
 - Groundwater flow equations
 - Well hydraulics
 - Aquifer testing
 - Groundwater modeling
- Afternoon (4 hours):
 - Groundwater modeling laboratory
 - Numerical simulation
 - o Parameter estimation

Contamination assessment

Thursday: Environmental Remediation

- Morning (4 hours):
 - o Contaminated site assessment
 - Remediation technologies
 - o In-situ and ex-situ treatment
 - Monitored natural attenuation
- Afternoon (4 hours):
 - Remediation design workshop
 - Technology selection
 - System design calculations
 - Monitoring strategies

Friday: Green Infrastructure and Low Impact Development

- Morning (4 hours):
 - o Green infrastructure principles
 - Stormwater management
 - Low impact development practices
 - Urban ecology considerations
- Afternoon (4 hours):
 - o Green infrastructure design
 - o BMP selection and sizing
 - Performance modeling
 - Week 9 review and integration

Assessment for Week 9:

- Hydraulic design project (20%)
- Groundwater modeling assignment (15%)
- Remediation system design (15%)
- Green infrastructure plan (15%)

Reading Materials:

- "Open Channel Hydraulics" (Henderson Open Access)
- "Groundwater Engineering" (Batu OER Chapters)
- "Environmental Remediation Technologies" (Open Educational Resources)
- "Green Infrastructure: Incorporating Plants and Enhancing Biodiversity" (OER)
- "Hydraulic Design Manual" (Open Educational Resources)

Week 10: Structural Health Monitoring and Advanced Environmental Analysis

Monday: Structural Health Monitoring

- Morning (4 hours):
 - SHM principles and methods
 - o Sensor technologies
 - Data acquisition systems
 - Signal processing techniques
- Afternoon (4 hours):
 - SHM laboratory
 - Sensor installation and testing
 - Data collection and analysis
 - Damage detection algorithms

Tuesday: Bridge Engineering

- Morning (4 hours):
 - o Bridge types and selection
 - Load analysis and distribution
 - Design specifications
 - Construction considerations
- Afternoon (4 hours):
 - o Bridge design workshop
 - Load calculations
 - Member sizing
 - o Detail design

Wednesday: Advanced Environmental Analytical Methods

- Morning (4 hours):
 - Instrumental analysis techniques
 - Chromatography and spectroscopy
 - o Quality assurance/quality control
 - Method validation
- Afternoon (4 hours):
 - Analytical chemistry laboratory
 - Instrument operation
 - Method development
 - Data quality assessment

Thursday: Climate Change and Infrastructure

- Morning (4 hours):
 - o Climate change science
 - o Infrastructure vulnerability assessment
 - Adaptation strategies
 - Resilience planning
- Afternoon (4 hours):
 - Climate adaptation workshop
 - Vulnerability analysis
 - Adaptation planning
 - Case study development

Friday: Professional Practice and Communication

- Morning (4 hours):
 - o Engineering reports and documentation
 - Technical presentation skills
 - Client communication
 - Professional development
- Afternoon (4 hours):
 - Presentation workshop
 - Report writing exercise
 - Peer review activities
 - Week 10 comprehensive assessment

Assessment for Week 10:

- SHM system design (15%)
- Bridge design project (20%)
- Analytical methods report (10%)
- Climate adaptation plan (15%)
- Technical presentation (10%)

Reading Materials:

- "Structural Health Monitoring of Civil Infrastructure Systems" (OER)
- "Bridge Engineering: Design, Rehabilitation, and Maintenance" (Open Access)
- "Environmental Analytical Chemistry" (Open Educational Resources)
- "Climate Change and Infrastructure Adaptation" (MIT OCW)
- "Technical Communication for Engineers" (Open Textbook Library)

Week 11: Advanced Geotechnical Engineering and Water Resources

Monday: Deep Foundations

- Morning (4 hours):
 - o Pile types and selection
 - Pile capacity analysis
 - o Group effects
 - Construction considerations
- Afternoon (4 hours):
 - Pile design workshop
 - Load capacity calculations
 - Settlement analysis
 - Installation methods

Tuesday: Slope Stability and Earth Retaining Structures

• Morning (4 hours):

- Slope stability analysis methods
- o Retaining wall design
- Earth pressure theories
- Slope stabilization techniques
- Afternoon (4 hours):
 - Stability analysis laboratory
 - o Retaining wall design
 - Software applications
 - Case studies

Wednesday: Urban Hydrology and Stormwater Management

- Morning (4 hours):
 - Urban watershed characteristics
 - Stormwater runoff modeling
 - Drainage system design
 - Water quality treatment
- Afternoon (4 hours):
 - Stormwater modeling laboratory
 - o Hydrologic simulation
 - System sizing calculations
 - o BMP effectiveness

Thursday: Water Distribution Systems

- Morning (4 hours):
 - Network hydraulics
 - Pump selection and operation
 - Water quality in distribution
 - System reliability
- Afternoon (4 hours):
 - Distribution system modeling
 - Network analysis software
 - Optimization techniques
 - o Performance assessment

Friday: Environmental Impact Assessment

- Morning (4 hours):
 - EIA methodology
 - o Impact identification and evaluation
 - Mitigation measures
 - Public participation
- Afternoon (4 hours):
 - o EIA workshop
 - Case study analysis
 - Impact assessment exercise
 - Week 11 review and synthesis

Assessment for Week 11:

- Deep foundation design (15%)
- Slope stability analysis (15%)
- Stormwater system design (15%)
- Water distribution analysis (15%)
- Environmental impact assessment (10%)

Reading Materials:

- "Deep Foundations: Analysis, Design, and Testing" (OER)
- "Slope Stability and Stabilization Methods" (Open Educational Resources)
- "Urban Stormwater Management" (Open Textbook Library)
- "Water Distribution System Analysis" (MIT OCW)
- "Environmental Impact Assessment" (Open Educational Resources)

Week 12: Integrated Systems Design and Optimization

Monday: Optimization Methods in Civil Engineering

- Morning (4 hours):
 - Optimization theory and methods
 - Linear and nonlinear programming
 - Genetic algorithms
 - Multi-objective optimization
- Afternoon (4 hours):
 - Optimization software workshop
 - Structural optimization
 - System optimization
 - Design applications

Tuesday: Prestressed Concrete Design

- Morning (4 hours):
 - o Prestressing principles
 - Material properties
 - Loss of prestress
 - Design procedures
- Afternoon (4 hours):
 - Prestressed design workshop
 - Member design calculations
 - Detail development
 - o Performance evaluation

Wednesday: Integrated Water Resources Management

• Morning (4 hours):

- IWRM principles
- Water resources planning
- Conflict resolution
- Adaptive management
- Afternoon (4 hours):
 - Water resources planning workshop
 - Stakeholder analysis
 - o System optimization
 - Policy development

Thursday: Smart Cities and Infrastructure Technology

- Morning (4 hours):
 - Smart city concepts
 - o loT in infrastructure
 - Data analytics applications
 - Technology integration
- Afternoon (4 hours):
 - Smart infrastructure laboratory
 - Sensor networks
 - Data collection and analysis
 - System integration

Friday: Capstone Project Preparation

- Morning (4 hours):
 - Project definition and scoping
 - Literature review techniques
 - Research methodology
 - Project planning
- Afternoon (4 hours):
 - Team formation and project selection
 - Proposal development
 - Faculty consultation
 - Week 12 comprehensive review

Assessment for Week 12:

- Optimization project (15%)
- Prestressed concrete design (15%)
- Water resources plan (15%)
- Smart infrastructure proposal (10%)
- Capstone project proposal (15%)

Reading Materials:

- "Optimization Methods for Civil Engineering" (Open Educational Resources)
- "Prestressed Concrete Design" (Nawy Open Access Chapters)
- "Integrated Water Resources Management" (MIT OCW)

- "Smart Cities: Technology and Infrastructure" (OER Commons)
- "Engineering Research Methods" (Open Textbook Library)

Week 13: Research Methods and Advanced Topics

Monday: Research Methodology in Civil and Environmental Engineering

- Morning (4 hours):
 - o Research design and planning
 - Experimental methods
 - Data collection and analysis
 - Statistical methods
- Afternoon (4 hours):
 - Research design workshop
 - Experimental planning
 - Statistical analysis software
 - Research ethics

Tuesday: Advanced Concrete Technology

- Morning (4 hours):
 - High-performance concrete
 - Self-consolidating concrete
 - o Fiber-reinforced concrete
 - o Durability and lifecycle
- Afternoon (4 hours):
 - Advanced concrete laboratory
 - Mix design optimization
 - Performance testing
 - Durability assessment

Wednesday: Advanced Environmental Processes

- Morning (4 hours):
 - Advanced oxidation processes
 - Membrane bioreactors
 - o Anaerobic membrane processes
 - Resource recovery
- Afternoon (4 hours):
 - Advanced processes laboratory
 - Process optimization
 - Performance evaluation
 - Economic analysis

Thursday: Forensic Engineering

Morning (4 hours):

- Failure analysis methodology
- Investigation techniques
- Cause determination
- Prevention strategies
- Afternoon (4 hours):
 - Forensic analysis workshop
 - Case study investigation
 - Report preparation
 - Expert testimony

Friday: Professional Development and Career Planning

- Morning (4 hours):
 - Career paths in civil and environmental engineering
 - o Professional licensure requirements
 - Continuing education
 - Leadership development
- Afternoon (4 hours):
 - Career planning workshop
 - Professional networking
 - Portfolio development
 - Week 13 review and reflection

Assessment for Week 13:

- Research proposal (20%)
- Advanced concrete testing report (15%)
- Process optimization project (15%)
- Forensic analysis report (10%)
- Professional development plan (5%)

Reading Materials:

- "Research Methods in Civil Engineering" (Open Educational Resources)
- "Advanced Concrete Technology" (MIT OCW)
- "Advanced Environmental Engineering Processes" (OER)
- "Forensic Engineering: Fundamentals and Applications" (Open Educational Resources)
- "Professional Development for Engineers" (Open Textbook Library)

Week 14: Integration and Advanced Applications

Monday: Multihazard Engineering

- Morning (4 hours):
 - Multiple hazard considerations
 - Risk assessment integration

- Resilience planning
- o Performance-based design
- Afternoon (4 hours):
 - Multihazard analysis workshop
 - o Risk integration methods
 - Resilience evaluation
 - Design optimization

Tuesday: Infrastructure Asset Management

- Morning (4 hours):
 - Asset management principles
 - Condition assessment methods
 - Lifecycle cost analysis
 - Maintenance optimization
- Afternoon (4 hours):
 - Asset management workshop
 - Condition evaluation
 - Decision support systems
 - o Implementation strategies

Wednesday: Environmental Nanotechnology

- Morning (4 hours):
 - Nanomaterials in environmental applications
 - Nanoparticle fate and transport
 - Treatment applications
 - Environmental implications
- Afternoon (4 hours):
 - Nanotechnology laboratory
 - Nanoparticle synthesis
 - Characterization techniques
 - Application testing

Thursday: Construction Automation and Robotics

- Morning (4 hours):
 - Automation in construction
 - Robotic applications
 - o 3D printing and digital fabrication
 - Quality control automation
- Afternoon (4 hours):
 - Construction technology laboratory
 - Automation demonstrations
 - Digital fabrication
 - Performance assessment

Friday: Capstone Project Development

- Morning (4 hours):
 - o Project progress review
 - Technical analysis
 - Problem-solving strategies
 - Faculty guidance
- Afternoon (4 hours):
 - Team project work
 - Design development
 - Analysis and simulation
 - Documentation preparation

Assessment for Week 14:

- Multihazard analysis project (15%)
- Asset management plan (15%)
- Nanotechnology lab report (10%)
- Construction automation analysis (10%)
- Capstone project progress (20%)

Reading Materials:

- "Multi-Hazard Risk Assessment" (Open Educational Resources)
- "Infrastructure Asset Management" (MIT OCW)
- "Environmental Nanotechnology" (OER Commons)
- "Construction Automation and Robotics" (Open Educational Resources)
- "Engineering Project Development" (Open Textbook Library)

Week 15: Final Review and Assessment

Monday: Structural Engineering Review

- Morning (4 hours):
 - Structural analysis principles review
 - Design methodology integration
 - Code applications
 - Advanced topics synthesis
- Afternoon (4 hours):
 - o Comprehensive problem-solving
 - Design case studies
 - Group review activities
 - Assessment preparation

Tuesday: Environmental Engineering Review

- Morning (4 hours):
 - Environmental processes review
 - System design integration

- Regulatory compliance
- Advanced applications
- Afternoon (4 hours):
 - Integrated system design
 - Case study analysis
 - Problem-solving workshop
 - Knowledge synthesis

Wednesday: Geotechnical and Water Resources Review

- Morning (4 hours):
 - Geotechnical engineering principles
 - Water resources systems
 - Analysis methods integration
 - Design applications
- Afternoon (4 hours):
 - Comprehensive design exercises
 - System integration
 - Performance evaluation
 - o Review activities

Thursday: Computational Methods and Professional Practice

- Morning (4 hours):
 - Computational methods review
 - Software applications
 - o Professional skills integration
 - Career preparation
- Afternoon (4 hours):
 - Portfolio development
 - Professional presentation
 - Peer evaluation
 - Final preparations

Friday: Semester Synthesis and Final Presentations

- Morning (4 hours):
 - Capstone project presentations
 - o Peer review and feedback
 - Knowledge integration
 - Learning reflection
- Afternoon (4 hours):
 - Final examinations
 - Course evaluation
 - Second semester preview
 - Professional development planning

Assessment for Week 15:

- Comprehensive structural engineering exam (25%)
- Comprehensive environmental engineering exam (25%)
- Integrated design project (25%)
- Final capstone presentation (15%)
- Professional portfolio (10%)

Reading Materials:

- "Civil and Environmental Engineering: Fundamentals and Applications" (OER)
- "Engineering Design Integration" (MIT OCW)
- "Professional Practice in Civil Engineering" (Open Educational Resources)
- "Comprehensive Review Materials" (Open Textbook Library)

SEMESTER ASSESSMENT SUMMARY

Grade Distribution:

- Weekly Assessments (40%)
- Laboratory Reports and Projects (25%)
- Midterm Examinations (15%)
- Final Examinations and Capstone (20%)

Required Minimum Scores:

Overall GPA: 3.0/4.0

Individual Course Minimum: 2.7/4.0
Professional Skills Competency: Pass
Laboratory Safety Certification: Pass

Professional Development Requirements:

- Technical presentation (minimum 2)
- Peer review participation
- Professional ethics certification
- Research methodology demonstration