
Web Bluetooth Persistent Permissions
This document is public

Status: Work in Progress
Authors: odejesush@chromium.org

Reviewed by: reillyg@, ortuno@
Last Updated: 2020-05-13

mailto:odejesush@chromium.org

One-page overview

Summary
Persist Web Bluetooth device permissions to allow sites to easily reconnect to permitted Web
Bluetooth devices. Expose Web Bluetooth permissions to Site Settings and Page Info to allow
users to have control over these permissions and allow users to grant a site permission to access
a Bluetooth device only for the current browsing session.

Platforms
Linux, Mac, Windows, Chrome OS, Android
Android WebView will not be supported, since it requires WebView API changes to support Web
Bluetooth.

Mailing List
web-bluetooth@chromium.org

Launch bug
https://crbug.com/974879

Code affected
Permissions, Bluetooth, Site Settings, WebUI, Page Info, Android Site Settings

mailto:web-bluetooth@chromium.org
https://crbug.com/974879

Design
It is currently not possible for the Web Bluetooth API to enable pages to maintain a persistent
connection to Bluetooth devices. The first issue is that the API does not provide a way to get a list
of devices that a site has permission to access, so it has to prompt the user every time that it's
loaded. The Bluetooth adapter logic also removes devices that haven't been seen in 3 minutes
from the cache, so a new scan is needed in order to find these devices. Users are also unable to
control permissions for Web Bluetooth because they are not exposed in settings UI. With
persistent device permissions, it is important for the user to be able to reset permissions that
have been granted to a site as well as be able to grant temporary device permissions.

To tackle the first issue, either the Permissions API Integration portion of the specification will be
implemented or a getDevices() method will be added to the specification. Through these two
APIs, a site can query the Bluetooth permissions and receive a list of Bluetooth devices that it
already has access to.

Since Bluetooth devices are removed from cache after 3 minutes of not being detected, a way to
create Bluetooth device objects using their address is needed. A new method will be added to
the BluetoothAdapter that can return a BluetoothDevice given its address using platform
specific APIs.

The last issue to resolve is allowing users to control Bluetooth permissions in settings UI and to
be able to choose between granting permission once or indefinitely. The settings UI can be done
by refactoring the Web Bluetooth permissions storage to use a class derived from
ChooserContextBase, since the Site Settings and Page Info UIs already support displaying data
from this class. This change would also make the Bluetooth permissions model and settings UI
consistent with the ones for WebUSB, WebHID, and WebSerial. To allow the user to choose to
grant a temporary or persistent permission, the chooser UI needs to be modified to display the
option to do so. In the backend, the permissions storage should not persist permissions that are
granted temporarily.

https://webbluetoothcg.github.io/web-bluetooth
https://docs.google.com/document/d/19hZCX64sERewJwJreFjkMCc_owp86N60fnoMBAYJKM4/preview
https://webbluetoothcg.github.io/web-bluetooth/#permission-api-integration

Detailed design
The first issue that needs to be solved is to give sites the ability to get a list of Bluetooth devices
that they can use. This issue can be resolved with either the getDevices() API or the permission
query algorithm. Since this change is public facing, it will be implemented behind a runtime
enabled flag.

Retrieve Permitted Devices

WebBluetoothService::GetDevices()
The first task is to add an API to the WebBluetoothService that gets the permitted devices for
the current site. The changes to the Web Bluetooth Mojo interface in web_bluetooth.mojom are
as follows:

//third_party/blink/public/mojom/bluetooth/web_bluetooth.mojom

interface WebBluetoothService {​
 GetDevices() => (Array<WebBluetoothDevice> devices);​
};

The WebBluetoothService Mojo interface is implemented by WebBluetoothServiceImpl.

//content/browser/bluetooth/web_bluetooth_service_impl.h

class CONTENT_EXPORT WebBluetoothServiceImpl​
 : public blink::mojom::WebBluetoothService,​
 public WebContentsObserver,​
 public BluetoothAdapter::Observer {​
 private:​
 // WebBluetoothService methods:​
 // ...​
 void GetDevices(GetDevicesCallback callback) override;​
};

WebBluetoothService uses the BluetoothAllowedDevices class to store permissions. The
BluetoothAllowedDevicesMap maintains a map of BluetoothAllowedDevices per origin.
BluetoothAllowedDevices stores the permissions for Bluetooth devices for a given origin by
associating the device's OS ID (MAC address for Windows, Linux, and Android and NSUUID for
MacOS) to a generated WebBluetoothDeviceId. BluetoothAllowedDevices will need a new
method that returns the WebBluetoothDeviceId and Bluetooth IDs pairs.

https://webbluetoothcg.github.io/web-bluetooth/#query-the-bluetooth-permission
https://webbluetoothcg.github.io/web-bluetooth/#query-the-bluetooth-permission
https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/bluetooth/web_bluetooth.mojom
https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/bluetooth/web_bluetooth.mojom
https://cs.chromium.org/chromium/src/content/browser/bluetooth/web_bluetooth_service_impl.h

Then, GetDevices() can use device::BluetoothAdapter::GetDevice() for each Bluetooth ID
to get the device::BluetoothDevice. This is needed in order to get the name for display to
populate each WebBluetoothDevice mojo struct. Once the list of WebBluetoothDevice is ready,
the callback can be run with the result.

This method will produce different results if BluetoothChooserContext is used. These differences
are explained in the Deprecating BluetoothAllowedDevices section.

Bluetooth::getDevices() API
A simpler alternative to integrating with the Permission API is to add a getDevices() API to the
Bluetooth interface, similar to the existing one for WebUSB.

[Exposed=Window, SecureContext]​
interface Bluetooth : EventTarget {​
 Promise<boolean> getAvailability();​
 Promise<sequence<BluetoothDevice>> getDevices();​
 attribute EventHandler onavailabilitychanged;​
 [SameObject]​
 readonly attribute BluetoothDevice? referringDevice;​
 Promise<BluetoothDevice> requestDevice(optional RequestDeviceOptions options);​
};

The Web Bluetooth spec will be updated with the algorithm for getDevices(). The devices
returned by getDevices() may contain devices that are not currently in range and connected.
The BluetoothDevice::watchAdvertisements() API can be used to detect when Bluetooth devices
come into range of the Bluetooth radio. Then calling BluetoothRemoteGATTServer.connect()
should resolve successfully if the device is able to be connected to.

To expose the new method, it needs to be added to the
//third_party/blink/renderer/modules/bluetooth/bluetooth.* files. The IDL files needs to be
modified to look like the code block above. The getDevices() method will perform the following
steps:

1.​ Check that the current context is supported.
a.​ If not, return a DOMException for a not supported error.

2.​ Check the the Web Bluetooth feature is enabled by feature policy.
a.​ If not, return a DOMException for a feature policy blocked error.

3.​ Ensure that a WebBluetoothService connection exists or create one if it doesn't.
4.​ Call GetDevices() on the service with a callback to OnGetDevices() which will eventually

resolve the promise with the results of GetDevices().

To use BluetoothChooserContext on a call to navigator.bluetooth.getDevices(), the
BluetoothDelegate::HasDevicePermission() will need to be called during
WebBluetoothServiceImpl::OnGetDeviceSuccess(). The ChromeBluetoothDelegate will

https://cs.chromium.org/search/?q=src/third_party/blink/renderer/modules/bluetooth/bluetooth%5C.&type=cs

forward the call to BluetoothChooseContext::HasDevicePermission(), which returns true if
the given requesting and embedding origins have permission to access the Bluetooth device.

Permissions API

High-level overview of the Bluetooth Permissions API integration.

The Permissions API defines a common infrastructure that other Web APIs such as Web
Bluetooth can use to interact with browser permissions. These interactions include the ability to
query and request changes to the status of a given permission. The Web Bluetooth specification
also defines how it integrates with the Permission API.

Chrome has an implementation for navigator.permissions.request(), but it is a non-standard
API as it is not defined in the Permissions API specification. As a result, only
navigator.permissions.query() will be implemented for Web Bluetooth. The method takes

https://www.w3.org/TR/permissions/
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/permissions/permissions.idl?rcl=0fa8eb0588fe0433ace6be9f1717c65015eabbaa&l=15
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/permissions/permissions.idl?rcl=0fa8eb0588fe0433ace6be9f1717c65015eabbaa&l=15

PermissionDescriptor as a parameter and returns a Promise that resolves with a
PermissionStatus. The specification for the Web Bluetooth API defines a
BluetoothPermissionDescriptor and a BluetoothPermissionResult that extend
PermissionDescriptor and PermissionStatus respectively. The Web Bluetooth API
specification needs to be updated to rename BluetoothPermissionResult to
BluetoothPermissionStatus in order for it to be consistent with the parent interface.

The BluetoothPermissionDescriptor enables the page to ask about permissions pertaining to
Bluetooth devices and to filter out permissions that it is not interested in. A deviceId can be
included in the descriptor to ask about the permission status for a specific device. A set of
BluetoothLEScanFilterInits in the descriptor can further filter out devices that the page is not
interested in. A set of BluetoothServiceUUIDs and a flag to accept all devices can also be
included in the descriptor, but these are not used by the query() algorithm.

The BluetoothPermissionStatus contains the PermissionState for the Web Bluetooth API, an
onchange event handler for the permission, and an array of permitted Bluetooth devices for the
current origin. The PermissionState can be set to "denied" or "prompt" depending on whether
the Web Bluetooth permission is set to "blocked" or "ask" by the user in Site Settings when this
UI is implemented. The onchange event handler will be executed when the permission state
changes (or when the permitted devices change?). Lastly, the devices array contains the
permitted Bluetooth devices for the current origin.

To implement query(), the blink::Permissions class needs to be updated to handle a
parameter containing a BluetoothPermissionDescriptor and return a promise that resolves
with a BluetoothPermissionStatus. The new descriptor can be added as the following file:

//third_party/blink/renderer/modules/permissions/bluetooth_permission_descriptor.idl

dictionary BluetoothPermissionDescriptor : PermissionDescriptor {​
 DOMString deviceId;​
 // These match RequestDeviceOptions. However, for query(), only |deviceId| and​
 // |filters| are used.​
 sequence<BluetoothLEScanFilterInit> filters;​
 sequence<BluetoothServiceUUID> optionalServices = [];​
 boolean acceptAllDevices = false;​
};

The new permission status can be added as the following file:

//third_party/blink/renderer/modules/permissions/bluetooth_permission_status.idl

[Exposed=Window]​
interface BluetoothPermissionStatus : PermissionStatus {​
 attribute FrozenArray<BluetoothDevice> devices;​

https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/permissions/bluetooth_permission_descriptor.idl
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/permissions/bluetooth_permission_status.idl

};

The BluetoothPermissionStatus class will implement the PermissionStatus class, and this will
require PermissionStatus to not be final. The new class will simply provide a method to access
the devices property for JS.

query() API
To add support for Web Bluetooth permissions in the Permissions API, a
blink::mojom::BluetoothPermissionDescriptor and
blink::mojom::BluetoothPermissionStatus struct needs to be added and the
blink::mojom::PermissionStatus enum needs to be refactored into a struct that can be
extended with extra data. The following demonstrates the changes to the Web Bluetooth and
Permissions API mojom files necessary for the integration:

//third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom

struct BluetoothPermissionDescriptor {​
 string deviceId;​
 array<WebBluetoothLeScanFilter>? filters;​
 // These two fields are only used when request permissions, so they won't be​
 // implemented unless navigator.permissions.request() is launched.​
 array<bluetooth.mojom.UUID> optional_services​
 bool accept_all_devices;​
};​
​
struct BluetoothPermissionStatus {​
 array<WebBluetoothDevice> devices;​
};

//third_party/blink/public/platform/modules/permissions/permission.mojom

import "third_party/blink/public/mojom/bluetooth/web_bluetooth.mojom"​
​
enum PermissionName {​
 GEOLOCATION,​
 // ...​
 BLUETOOTH,​
};​
​
union PermissionDescriptorExtension {​
 // BluetoothPermissionDescriptor is defined in web_bluetooth.mojom so that it can​
 // be used in the WebBluetoothService to get permission status.​
 BluetoothPermissionDescriptor bluetooth;​
 ClipboardPermissionDescriptor clipboard;​
 MidiPermissionDescriptor midi;​

https://cs.chromium.org/chromium/src/third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom
https://cs.chromium.org/chromium/src/third_party/blink/public/platform/modules/permissions/permission.mojom

};

//third_party/blink/public/platform/modules/permissions/permission_status.mojom

import "third_party/blink/public/mojom/bluetooth/web_bluetooth.mojom"​
​
enum PermissionState {​
 GRANTED,​
 DENIED,​
 ASK,​
 LAST = ASK​
};​
​
// Unions of possible extensions to the base PermissionResult type.​
union PermissionStatusExtension {​
 // BluetoothPermissionStatus is defined in web_bluetooth.mojom since the​
 // WebBluetoothService produces it.​
 BluetoothPermissionStatus bluetooth;​
};​
​
struct PermissionStatus {​
 PermissionState state;​
 PermissionStatusExtension? extension;​
};

The query() method accepts a PermissionDescriptor parameter type. For Web Bluetooth, this
would be the BluetoothPermissionDescriptor. navigator.permissions.query() is handled in
C++ by blink::Permissions::query(), which starts by converting the given permission
descriptor parameter into the appropriate type using ParsePermission() to check the name of
the descriptor and call the appropriate method in permission_utils.h. This method will need a
check for a descriptor with the name "bluetooth" and create a utility method to create the
BluetoothPermissionDescriptor.

Once the permission descriptor is parsed, it is sent to the PermissionService Mojo interface via
the PermissionService::HasPermission() method. This interface is implemented by the
PermissionServiceImpl in the content layer. The descriptor is used in
PermissionServiceImpl::GetPermissionStatus() to get a PermissionType enum value to use
for PermissionServiceImpl::GetPermissionStatusFromType(). It is here where the code path
for Bluetooth permission diverges from the other permission types because the Bluetooth
permission descriptor contains extra data that is used for processing the permission status.
Therefore, in GetPermissionStatus() if the permission type is PermissionType::BLUETOOTH,
the descriptor needs to be sent to the WebBluetoothService. Any other permission types that
require special logic to produce a permission status can branch off from this point. The special

https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/permissions/permission_status.mojom

logic for Web Bluetooth will be handled by WebBluetoothService::GetPermissionStatus()
described below:

//third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom

interface WebBluetoothService {​
 GetPermissionStatus(BluetoothPermissionDescriptor descriptor)​
 => (BluetoothPermissionStatus status);​
};

This new method will produce a BluetoothPermissionStatus that contains the permission state
and allowed devices for Web Bluetooth in the current origin. The devices returned are all of the
previously paired or currently paired Bluetooth devices, filtered out by the options contained
within BluetoothPermissionDescriptor.

The descriptor will be sent to WebBluetoothServiceImpl::GetPermissionStatus(), which will
produce the BluetoothPermissionStatus. The PermissionState will be determined by the
result of WebBluetoothServiceImpl::GetBluetoothAllowed(). If the PermissionState is
denied, the permission status will be produced with an empty devices array, even if the current
origin does have granted Bluetooth device permissions. However, if the PermissionState is
granted then the list of allowed devices will be generated by getting the list of all allowed devices
with WebBluetoothServiceImpl::GetDevices() and then applying the filters to that list. This list
will then be returned in the callback.

The PermissionStatus is received by TaskComplete() in the blink layer. Using the original
permission descriptor, if the PermissionStatus corresponds to Bluetooth, a
BluetoothPermissionStatus will be created to resolve the promise with it.

Detecting Previously Connected Devices
The BluetoothAdapter class contains a map of devices are paired with, connected to, or have
been discovered. This map can be used to retrieve a device, however this map is periodically
cleared when a device has not been seen by the adapter for over three minutes. This prevents
sites from being able to connect to devices that have been disconnected for over three minutes.
Therefore, a new API needs to be implemented that will allow devices to be retrieved by their
MAC address from the adapter using platform specific APIs. This API is described by the Device
Removal Proposal design document, which provides an idea for a
BluetoothAdapter::RetrievePeripheralFromAddress() API. Once this API is implemented, it
will be possible for sites to reconnect to devices, regardless of how long it has been since they
were last connected to.

https://cs.chromium.org/chromium/src/third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom
https://docs.google.com/document/d/19hZCX64sERewJwJreFjkMCc_owp86N60fnoMBAYJKM4/preview
https://docs.google.com/document/d/19hZCX64sERewJwJreFjkMCc_owp86N60fnoMBAYJKM4/preview

BluetoothDevice watchAdvertisements() and unwatchAdvertisements()
This API can allow a site to watch for advertisement packets from a device that it has permission
to access. This would allow a site to only detect if the specific device comes into range of the
Bluetooth adapter without starting a scan for all Bluetooth devices in range. The
unwatchAdvertisements() and watchingAdvertisements API will also be implemented.

The Web Bluetooth spec defines the steps that must be performed when this API is called:
The watchAdvertisements() method, when invoked MUST return a new promise promise and
run the following steps in parallel:

1.​ Ensure that the UA is scanning for this device's advertisements. The UA SHOULD NOT
filter out "duplicate" advertisements for the same device.

2.​ If the UA fails to enable scanning, reject promise with one of the following errors, and
abort these steps:

a.​ The UA doesn't support scanning for advertisements: NotSupportedError
b.​ Bluetooth is turned off: InvalidStateError
c.​ Other reasons: UnknownError

3.​ Queue a task to perform the following steps:
a.​ Set this.watchAdvertisements to true.
b.​ Resolve promise with undefined.

For step one, the WebBluetoothServiceImpl needs to start a scan with a filter that only includes
the Bluetooth device in which watchAdvertisements() was called. This will require a new
interface to WebBluetoothService which will behave similar to requestLEScan() with
keepRepeatedDevices set to true and the deviceId field populated. If an error is encountered
while attempting to start the scan, resolve the promise with the appropriate error. Otherwise,
add the device to a list of watched devices in the WebBluetoothServiceImpl so that the list can
be checked when DeviceAdvertisementReceived() is called on the service. Next, set the
watchAdvertisements field of the Bluetooth device to true and resolve the promise with
undefined.

When the Bluetooth adapter receives an advertisement packet and notifies all of its observers,
the WebBluetoothServiceImpl should iterate over the list of watched devices and compare the
advertisement packet with each device. If a match is found, the Blink layer should be notified to
fire an advertisementreceived event at the Bluetooth device object that corresponds to the
device.

To stop watching for advertisements, the unwatchAdvertisements() method can be called. The
Web Bluetooth spec defines the steps for this API as follows:
The unwatchAdvertisements() method, when invoked, MUST run the following steps:

1.​ Set this.watchingAdvertisements to false.

2.​ If no more BluetoothDevices in the whole UA have watchingAdvertisements set to true,
the UA SHOULD stop scanning for advertisements. Otherwise, if no more
BluetoothDevices representing the same device as this have watchingAdvertisements
set to true, the UA SHOULD reconfigure the scan to avoid receiving reports for this
device.

The first step for this API is to set watchingAdvertisements to false. Next, the
WebBluetoothServiceImpl should remove the device from the watched devices list and stop the
discovery session that corresponds to the device.

Web Bluetooth Mojo Interface Implementation
To implement these two interfaces, web_bluetooth.mojom will include the following changes:

//third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom

// Rename WebBluetoothScanResult to WebBluetoothAdvertisingEvent to better​
// fit its use.​
​
// Remove RequestScanningStartResult, since RequestScanningStart will not​
// use it anymore.​
​
interface WebBluetoothService {​
 WatchAdvertisementsForDevice(​
 WebBluetoothDeviceId device_id,​
 pending_associated_remote<WebBluetoothDeviceAdvertisementClient>​
 client) => (​
 WebBluetoothResult result);​
 // Refactor RequestScanningStart​
 RequestScanningStart(​
 pending_associated_remote<WebBluetoothDeviceAdvertisementClient>​
 client,​
 WebBluetoothRequestLEScanOptions options) => (​
 WebBluetoothResult result);​
 UnwatchAdvertisementsForDevice(WebBluetoothDeviceId device_id);​
};​
​
// Refactor WebBluetoothScanClient to this to generalize its use.​
interface WebBluetoothDeviceAdvertisementClient {​
 AdvertisingEvent(WebBluetoothAdvertisingEvent advertisement);​
};

WebBluetoothService::WatchAdvertisementsForDevice() will accept two parameters, a
WebBluetoothDeviceId corresponding to the Bluetooth device to watch and a

https://cs.chromium.org/chromium/src/third_party/blink/public/platform/modules/bluetooth/web_bluetooth.mojom

WebBluetoothDeviceAdvertisementClient interface so that WebBluetoothService is able to
notify the client of matching advertisements.

WebBluetoothService::UnwatchAdvertisementsForDevice() will accept a
WebBluetoothDeviceId parameter to cancel the watch for advertisement for that device.

Lastly, WebBluetoothDeviceAdvertisementClient::AdvertisingEvent() will accept a
WebBluetoothScanResult structure that contains the advertisement data received for the
watched device.

WebBluetoothServiceImpl Implementation
The WebBluetoothService interface is implemented by WebBluetoothServiceImpl. Therefore,
the following changes need to be made.

//content/browser/bluetooth/web_bluetooth_service_impl.h

class CONTENT_EXPORT WebBluetoothServiceImpl​
 : public blink::mojom::WebBluetoothService,​
 public WebContentsObserver,​
 public BluetoothAdapter::Observer {​
 private:​
 // The watchAdvertisements() feature can share some of the functionality of​
 // this class, so DeviceAdvertisementClient can become the base class for​
 // both WatchAdvertisementsClient and ScanningClient.​
 class DeviceAdvertisementClient {​
 public:​
 // Unlike ScanningClient, this will always send the advertising event,​
 // since DeviceAdvertisementClient will be destroyed by ​
 // UnwatchAdvertisementsForDevice().​
 virtual bool SendEvent(WebBluetoothAdvertisingEventPtr event);​
​
 // Same as current implementation of ​
 // ScanningClient::RunRequestScanningStartCallback().​
 void RunCallback(WebBluetoothResult result);​
​
 protected:​
 DeviceAdvertisementClient(​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client,​
 base::OnceCallback<void(WebBluetoothResultPtr)> callback);​
​
​
 private:​
 // Same as ScanningClient implementation.​

https://cs.chromium.org/chromium/src/content/browser/bluetooth/web_bluetooth_service_impl.h

 void DisconnectionHandler();​
​
 bool disconnected_ = false;​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client_;​
 base:OnceCallback<void(WebBluetoothResult)> callback_;​
 };​
​
 class WatchAdvertisementsClient : public DeviceAdvertisementClient {​
 public:​
 WatchAdvertisementsClient(​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client,​
 WebBluetoothDeviceId device_id,​
 base::OnceCallback<void(WebBluetoothResultPtr)> callback);​
 WebBluetoothDeviceId device_id();​
​
 private:​
 WebBluetoothDeviceId device_id;​
 };​
​
 class ScanningClient : public DeviceAdvertisementClient {​
 public:​
 ScanningClient(​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client,​
 WebBluetoothRequestLEScanOptionsPtr options,​
 base::OnceCallback<void(WebBluetoothResultPtr)> callback,​
 BluetoothDeviceScanningPromptController* prompt_controller);​
​
 // DeviceAdvertisementClient implementation:​
 bool SendEvent(WebBluetoothAdvertisingEventPTr event) override;​
​
 // There is only one use of set_prompt_controller, it should be renamed​
 // to ClearPromptController() instead, which will set prompt_controller​
 // to nullptr.​
 void ClearPromptController();​
 BluetoothDeviceScanningPromptController* prompt_controller();​
 void set_allow_send_event(bool allow_send_event);​
 const WebBluetoothRequestLEScanOptions& scan_options();​
​
 private:​
 void AddFilteredDeviceToPrompt(​
 const string& device_id,​
 const base::Optional<string>& device_name);​

​
 bool allow_send_event_ = false;​
 WebBluetoothRequestLeScanOptionsPtr options_;​
 BluetoothDeviceScanningPromptController* prompt_controller_;​
 };​
​
 // WebContentsObserver methods:​
 // ...​
 void OnWebContentsLostFocus(RenderWidgetHost* render_widget_host);​
​
 // WebBluetoothService methods:​
 // ...​
 void WatchAdvertisementsForDevice(​
 WebBluetoothDeviceId device_id,​
 mojo::PendingAssociatedRemote<WebBluetoothDeviceAdvertisementClient>​
 client_info,​
 WatchAdvertisementsForDeviceCallback callback) override;​
 void UnwatchAdverisetmentsForDevice(​
 WebBluetoothDeviceId device_id) override;​
​
 void WatchAdvertisementsForDeviceImpl(​
 WebBluetoothDeviceId device_id,​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client,​
 WatchAdvertisementsForDeviceCallback callback,​
 scoped_refptr<BluetoothAdapter> adapter);​
​
 void OnStartDiscoverySessionForWatchAdvertisements(​
 mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client,​
 WebBluetoothDeviceId device_id,​
 unique_ptr<BluetoothDiscoverySession> session);​
​
 void MaybeStopDiscovery();​
​
 vector<unique_ptr<WatchAdvertisementsClient>>​
 watch_advertisements_clients_;​
 std::unique_ptr<BluetoothDiscoverySession>​
 watch_advertisements_discovery_session_;​
};

On a call to OnWebContentsLostFocus(), these step will be performed at the end of the current
implementation:

1.​ Clear watch_advertisements_clients_.

On a call to WatchAdvertisementsForDevice(), these steps will be performed:

1.​ Perform the same steps as RequestScanningStart() to convert client_info into a
mojo::AssociatedRemote<WebBluetoothDeviceAdvertisementClient> client and
acquire the BluetoothAdapter to pass into the actual implementation of this method,
WatchAdvertisementsForDeviceImpl().

WatchAdvertisementsForDeviceImpl() will perform these steps:

1.​ Check that device_id and adapter are valid.
2.​ Check that Web Bluetooth is allowed to be used.
3.​ If there is an existing watch_advertisements_discovery_session_:

a.​ A WatchAdvertisementsClient will be created and added to
watch_advertisements_clients_.

b.​ If not, then create a BluetoothDiscoveryFilter filter with the device name,
address, and known service UUIDs.

c.​ Call StartDiscoverySessionWithFilter() on adapter with filter and the
success callback being OnStartDiscoverySessionForWatchAdvertisements().

OnStartDiscoverySessionForWatchAdvertisements() will move session into
watch_advertisements_discovery_session_ and create the WatchAdvertisementsClient to
add to watch_advertisements_clients_.

On a call to UnwatchAdvertisementsForDevice(), these steps will be performed:

1.​ Find the WatchAdvertisementsClient matching device_id in
watch_advertisements_clients_.

2.​ If one is found, remove it from watch_advertisements_clients_
3.​ Call MaybeStopDiscovery() to check if discovery can be stopped.

On a call to MaybeStopDiscovery(), these steps will be performed after scanning_clients_ is
checked:

1.​ if watch_advertisements_clients_ is empty,
a.​ Call Stop() on watch_advertisements_discovery_session_.
b.​ Set watch_advertisements_discovery_session_ to nullptr.

The method will be called at the end of DeviceAdvertisementReceived() in place of the existing
check for is scanning_clients_ empty.

Modify DeviceAdvertisementReceived() to perform these steps after iterating over
scanning_clients_:

1.​ Iterate over a watch_advertisements_client in watch_advertisements_clients_:
a.​ Get the BluetoothDevice device corresponding to

watch_advertisements_client->device_id().
b.​ If device_address matches device->GetAddress():

i.​ Create a WebBluetoothAdvertisingEventPtr event from the method's
parameters.

ii.​ Call watch_advertisement_client->SendEvent(event).

Blink IDL Implementation
Once the backend is able to watch for and filter out device advertisements for a particular
device, this functionality needs to be exposed in Blink.

//third_party/blink/render/modules/bluetooth/bluetooth_device.idl

interface BluetoothDevice : EventTarget {​
 [CallWith=ScriptState, RaisesException] Promise<void> watchAdvertisements();​
 void unwatchAdvertisements();​
 readonly attribute boolean watchingAdvertisements;​
​
 attribute EventHandler onadvertisementreceived;​
};

//third_party/blink/render/modules/bluetooth/bluetooth_device.h

class BluetoothDevice final​
 : public EventTargetWithInlineData,​
 public ActiveScriptWrappable<BluetoothDevice>,​
 public ExecutionContextClient,​
 public mojom::blink::WebBluetoothDeviceAdvertisementClient {​
 public:​
 // IDL exposed interface:​
 ScriptPromise watchAdvertisements(ScriptState*, ExceptionState&);​
 void unwatchAdvertisements();​
 bool watchingAdvertisements();​
​
 // ActiveScriptWrappable implementation:​
 bool HasPendingActivity();​
​
 // WebBluetoothDeviceAdvertisementClient implementation:​
 void AdvertisingEvent(WebBluetoothDeviceAdvertisementEventPtr event) override;​
​
 DEFINE_ATTRIBUTE_EVENT_LISTENER(advertisementreceived, kAdvertisementreceived)​
​
 private:​
 void WatchAdvertisementsCallback(ScriptPromiseResolver*,​
 WebBluetoothResult);​
​

https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/bluetooth/bluetooth_device.idl
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/bluetooth/bluetooth_device.h

 mojo::AssociatedReceiver<WebBluetoothDeviceAdvertisementClient>​
 client_receiver_;​
};

On a call to watchAdvertisements(), these steps will be performed:

1.​ Check that the current context is valid.
2.​ Create a ScriptPromiseResolver resolver from script_state.
3.​ If watching_advertisements_ is true, resolve resolver with undefined and return.
4.​ Store promise from resolver->Promise().
5.​ Create a mojo::PendingAssociatedRemote<WebBluetoothDeviceAdvertisementClient>

client.
6.​ Bind client to client_receiver_.
7.​ Call bluetooth_->Service()->WatchAdvertisementsForDevice() using device_id,

client, and a bound callback to WatchAdvertisementsCallback() with this and
resolver passed to it.

WatchAdvertisementsCallback() will perform these steps:

1.​ Verify that context from resolver is still valid.
2.​ If result is an error, reject resolver.
3.​ Resolve resolver with undefined.

On a call to unwatchAdvertisements(), these steps will be performed:

1.​ Check that the current context is valid.
2.​ If watching_advertisements_ is false, return.
3.​ Call bluetooth_->Service()->UnwatchAdvertisementsForDevice() using device_id.
4.​ Reset client_receiver_.

watchingAdvertisements() will return true if client_receiver_ is bound.

On a call to HasPendingActivity(), these steps will be performed:

1.​ Return true if context is valid and HasEventListeners() is true.

On a call to AdvertisingEvent(), these steps will be performed:

1.​ Check that the current context is valid.
2.​ Create a BluetoothDevice bluetooth_device from event.
3.​ Create a BluetoothAdvertisingEvent advertising_event from bluetooth_device and

result.
4.​ DispatchEvent(*advertising_event).

BluetoothDiscoveryFilter Refactor
For watchAdvertisements(), the most effective filter will be the device address, since device
names can be shared. The BluetoothDiscoveryFilter will have the following additions:

//device/bluetooth/bluetooth_discovery_filter.h

class DEVICE_BLUETOOTH_EXPORT BluetoothDiscoveryFilter {​
 public:​
 struct DEVICE_BLUETOOTH_EXPORT DeviceInfoFilter {​
 std::string address;​
 };​
};

The BluetoothDiscoveryFilter::DeviceInfoFilter class will contain a new address field for the device
MAC address. The equality operator methods will be updated to take this new field into account.

Each platform's implementation of Bluetooth discovery will require an update to make use of the
device address filter.

●​ Android
○​ android.bluetooth.le.ScanFilter can accept a device address filter.
○​ Update ChromeBluetoothScanFilterBuilder to use the new DeviceInfoFilter

field.
●​ Windows

○​ The BluetoothDiscoveryFilter seems to be unused in bluetooth_adapter_winrt.cc
○​ A

winrt::Windows::Devices::Bluetooth::Advertisement::BluetoothLEAdvertis

ement will need to be created from the properties in BluetoothDiscoveryFilter
○​ There is not a specific field for device address, so perhaps they can be set in the

raw DataSections of the BluetoothLEAdvertisement object.
■​ 0x1B is the value for LE Bluetooth Device Address

(https://www.bluetooth.com/specifications/assigned-numbers/generic-acce
ss-profile/), a MAC address is a fixed 6 bytes.

■​ Create a BluetoothLEAdvertisementBytePattern with its Data property
set to the MAC address and the DataType set to 0x1B.

■​ There seems to be two ways to set a filter for device address.
●​ BluetoothLEAdvertisementFilter::BytePatterns().
●​ BluetoothLEAdvertisementFilter::Advertisement(), with a

BluetoothLEAdvertisement that contains a
BluetoothLEAdvertisementDataSection with the correct Data and
DataType for the MAC address.

○​ The device name can be set with BluetoothLEAdvertisement::LocalName().
○​ The services can be set with BluetoothLEAdvertisement::ServiceUuids().

●​ Linux
○​ BluetoothAdapterBlueZ::SetDiscoveryFilter() constructs the

bluez::BluetoothAdapterClient::DiscoveryFilter. It looks like the device
address can be set in the Pattern property.

https://cs.chromium.org/chromium/src/device/bluetooth/bluetooth_discovery_filter.h
https://developer.android.com/reference/android/bluetooth/le/ScanFilter
https://cs.chromium.org/chromium/src/device/bluetooth/android/java/src/org/chromium/device/bluetooth/ChromeBluetoothScanFilterBuilder.java
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisement
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisement
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementdatasection.datatype#Windows_Devices_Bluetooth_Advertisement_BluetoothLEAdvertisementDataSection_DataType
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile/
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementfilter.bytepatterns
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementfilter.advertisement#Windows_Devices_Bluetooth_Advertisement_BluetoothLEAdvertisementFilter_Advertisement
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisement
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisementdatasection
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisement.localname#Windows_Devices_Bluetooth_Advertisement_BluetoothLEAdvertisement_LocalName
https://docs.microsoft.com/en-us/uwp/api/windows.devices.bluetooth.advertisement.bluetoothleadvertisement.localname#Windows_Devices_Bluetooth_Advertisement_BluetoothLEAdvertisement_ServiceUuids
https://source.chromium.org/chromium/chromium/src/+/master:device/bluetooth/bluez/bluetooth_adapter_bluez.cc;l=1641
https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/src/adapter.c#n6204
https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc/adapter-api.txt#n122

●​ macOS
○​ CBCentralManager::scanForPeripherals() initiates a scan for Bluetooth devices,

however it only provides the ability to filter devices using service UUIDs. The scan
would need to be started with the service UUIDs of the device in question, and
then perform further filtering when the advertisement is received. This will be
done in WebBluetoothServiceImpl::DeviceAdvertisementReceived().

Refactor to use ChooserContextBase

High-level overview of how permissions will work using a BluetoothChooserContext.

With persistent device permissions, it is important to allow users to control these permissions.
This can be achieved by refactoring the Web Bluetooth permissions systems to store permissions
using a ChooserContextBase. The refactor has a couple of advantages. The first advantage is that
the ChooserContextBase class is already supported by Site Settings and Page Info, so minimal
changes are required to be able to display Bluetooth device permissions in these UIs. The second
advantage is that it will make Bluetooth device permissions homogenous with the other device
API permissions. The WebUSB and WebSerial permissions systems will be used as references for
implementing the permissions system for Web Bluetooth. The current Web Bluetooth
permissions are stored in the content/ directory, but the ChooserContextBase class is under the
chrome/ directory. To cross the boundary between these two directories, an abstract

https://developer.apple.com/documentation/corebluetooth/cbcentralmanager/1518986-scanforperipherals
https://cs.chromium.org/chromium/src/content/
https://cs.chromium.org/chromium/src/chrome/

BluetoothDelegate class that is a public export of the content layer is needed. Then, a
ChromeBluetoothDelegate class can implement BluetoothDelegate to provide a bridge
between content/ and chrome/.

BluetoothChooserContext
The BluetoothChooserContext class will inherit from the ChooserContextBase class and
implement the following methods:

//chrome/browser/bluetooth/bluetooth_chooser_context.h

class BluetoothChooserContext : public ChooserContextBase {​
 public:​
 explicit BluetoothChooserContext(Profile* profile);​
 ~BluetoothChooserContext() override;​
 WebBluetoothDeviceId GetWebBluetoothDeviceId(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const string& device_address);​
 string GetDeviceAddress(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const WebBluetoothDeviceId& device_id);​
 WebBluetoothDeviceId AddScannedDevice(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin, ​
 const std::string& device_address);​
 WebBluetoothDeviceId GrantServiceAccessPermission(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const BluetoothDevice* device,​
 const WebBluetoothRequestDeviceOptionsPtr* options);​
 bool HasDevicePermission(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const WebBluetoothDeviceId& device_id);​
 bool IsAllowedToAccessService(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const WebBluetoothDeviceId& device_id,​
 const BluetoothUUID& service);​
 bool IsAllowedToAccessAtLeastOneService(​
 const Origin& requesting_origin,​
 const Origin& embedding_origin,​
 const WebBluetoothDeviceId& device_id);​
​
 private:​

https://cs.chromium.org/chromium/src/content/
https://cs.chromium.org/chromium/src/chrome/
https://cs.chromium.org/chromium/src/chrome/browser/bluetooth/bluetooth_chooser_context.h

 const bool is_incognito_;​
};

The BluetoothChooserContext will provide the interface to grant or query the permissions for a
Bluetooth device for a set of requesting and embedding origins. Additionally, the various settings
UIs use the ChooserContextBase::GetGrantedObjects() and
ChooserContextBase::GetAllGrantedObjects() methods to retrieve the chooser based
permissions for display. Therefore, the addition of this class will facilitate the ability to display
what Bluetooth devices are allowed to be accessed by which pair or origins.

Storing Persistent Web Bluetooth Permissions

Permissions storage model with BluetoothAllowedDevices.

Web Bluetooth generates a WebBluetoothDeviceId for each WebBluetoothDevice so that the
device can be identified without exposing its MAC address. The current method that it uses to
create WebBluetoothDeviceIds is to generate a random 128-bit string, and then base64 encode
that string. These IDs are stored in the BluetoothAllowedDevices class in two separate maps for
WebBluetoothDeviceId to the device address and vice versa. Each origin has its own

BluetoothAllowedDevices in the BluetoothAllowedDevicesMap. The
BluetoothAllowedDevicesMap is stored in a StoragePartition that is the default browser
context storage partition. The data in the storage partition is persisted if the current browser
context is not an off-the-record context.

The WebBluetoothDeviceIds are created for a device in two cases. The first is through the
requestDevice() API after a user selects a Bluetooth device from the chooser prompt. This ID
and corresponding device address are stored along with the services provided in the filters for
requestDevice(), and the device is marked as connectable. The second is through the
requestLEScan() API after a device advertisement is received. As with the first case, the ID and
corresponding device address are stored but no services are stored and the device is not marked
as connectable.

This diagram demonstrates the structure of the base::Value objects that will store Bluetooth
permissions when the ID generation algorithm is completely random.

The ChooserContextBase stores permissions into the HostContentSettingsMap, which stores
preferences for a profile. This allows the permissions to be persistent across browsing sessions
on the same machine. To store the permissions, Web Bluetooth will need two new
ContentSettingsType enums named CONTENT_SETTINGS_TYPE_BLUETOOTH_GUARD and
CONTENT_SETTINGS_TYPE_BLUETOOTH_CHOOSER_DATA. The first content settings type is used to

toggle the ability to use the Web Bluetooth API. The second content settings type is used to store
Bluetooth device permissions for each site. This setting unique for each pair of requesting and
embedding origins and it is stored as a dictionary type base::Value object. For each Bluetooth
device permission, this base::Value object will store the ID, address, and list of allowed services
as shown in the diagram above.

GrantServiceAccessPermission() stores Bluetooth device permissions granted for a site. The
permission is stored into HostContentSettingsMap using the base class
GrantObjectPermission() method where it will be persisted until the user revokes the
permission.

Checking Web Bluetooth Permissions
The HasDevicePermission() method provides the ability to check Web Bluetooth device
permissions. This method gets the object list for the current site and iterates over the list to find
a matching WebBluetoothDeviceId. If a match is found, that means that the site does have
permission to use the device and the method returns true.

Web Bluetooth also requires a site to have permission to use a GATT service, so the
IsAllowedToAccessService() method provides the ability to check these permissions. This
method also iterates through the object list for the current site to find a matching
WebBluetoothDeviceId. If an object with WebBluetoothDeviceId is found, then the services
stored in the permission object is iterated over to find a matching BluetoothUUID. If a match for
the service is found, then the site does have permission to access the service and the method
returns true.

There is a special error returned by the Web Bluetooth API when a site has permission to use a
Bluetooth device, but not any of its services. The IsAllowedToAccessAtLeastOneService()
method iterates over the object list to find an object that contains a matching
WebBluetoothDeviceId. If a match is found, then the services list of the object is checked to see
if it's not empty and this result is returned.

There is one case where a device address needs to be retrieved from a device ID in the Web
Bluetooth service. The GetDeviceAddress() method provides this capability by iterating over the
object list to find an object with a matching WebBluetoothDeviceId. If a match is found, the
corresponding address is returned. Otherwise, an empty string is returned.

For the Web Bluetooth Scanning API, the AddScannedDevice() method can be used to generate
a WebBluetoothDeviceId without granting permission to the Web Bluetooth API to GATT connect
to the device. If the device is granted permission through
navigator.bluetooth.requestDevice(), then the ID that was generated with
AddScannedDevice() is stored in persistent storage. AddScannedDevice() will then return this
persistent ID the next time that the device is detected.

BluetoothDelegate
The BluetoothDelegate provides an interface between the chrome and content layers by being
an abstract class in the content layer that can be implemented in the chrome layer. The
BluetoothDelegate class has the following interface:

//content/public/browser/bluetooth_delegate.h

class CONTENT_EXPORT BluetoothDelegate {​
 public:​
 struct PermittedDevice {​
 WebBluetoothDeviceId device_id;​
 string device_name;​
 };​
 virtual ~BluetoothDelegate() = default;​
 virtual WebBluetoothDeviceId GetWebBluetoothDeviceId(​
 RenderFrameHost* frame,​
 string device_address) = 0;​
 virtual string GetDeviceAddress(​
 RenderFrameHost* frame,​
 WebBluetoothDeviceId device_id) = 0;​
 virtual WebBluetoothDeviceId AddScannedDevice(​
 RenderFrameHost* frame,​
 const std::string& device_address) = 0;​
 virtual WebBluetoothDeviceId GrantServiceAccessPermission(​
 RenderFrameHost* frame,​
 const BluetoothDevice* device,​
 const WebBluetoothRequestDeviceOptionsPtr& options) = 0;​
 virtual bool HasDevicePermission(​
 RenderFrameHost* frame,​
 WebBluetoothDeviceId device_id) = 0;​
 virtual bool IsAllowedToAccessService(​
 RenderFrameHost* frame,​
 WebBluetoothDeviceId device_id,​
 BluetoothUUID service) = 0;​
 virtual bool IsAllowedToAccessAtLeastOneService(​
 RenderFrameHost* frame,​
 WebBluetoothDeviceId device_id) = 0;​
 virtual vector<PermittedDevice> GetPermittedDevices(RenderFrameHost* frame)​
 = 0;​
};

ChromeBluetoothDelegate
The ChromeBluetoothDelegate implements BluetoothDelegate, and it lives in
//chrome/browser/bluetooth/. The class allows the WebBluetoothServiceImpl and
BluetoothChooserContext to interact with each other.

https://cs.chromium.org/chromium/src/content/public/browser/bluetooth_delegate.h
https://cs.chromium.org/chromium/src/chrome/browser/bluetooth

The methods grab the requesting and embedding origins from the RenderFrameHost* to pass to
the methods of the same name in BluetoothChooserContext. The GetDevices() method
instead calls BluetoothChooserContext::GetGrantedObjects() to create WebBluetoothDevice
objects from the base::Value objects returned by that method.

Deprecating BluetoothAllowedDevices
Once the BluetoothChooserContext and BluetoothDelegate classes are implemented, they can
replace permissions checks in WebBluetoothServiceImpl, which are handled by
BluetoothAllowedDevices.

WebBluetoothServiceImpl::IsDevicePaired()
This method checks if BluetoothAllowedDevices contains a mapping of the given device
address to a device ID. To make this method work with BluetoothChooserContext, it simply
needs to call BluetoothDelegate::HasDevicePermission() with the device address.

WebBluetoothServiceImpl::DeviceAdvertisementReceived()
This method is overridden from BluetoothAdapter::Observer, and it is called when the
Bluetooth adapter receives advertisement packets from nearby Bluetooth devices. When there
are active ScanningClients, detected devices are added to BluetoothAllowedDevices. Using
the new permissions storage model, this logic can be replaced with a call to
BluetoothDelegate::AddScannedDevice() to return in the
blink::mojom::WebBluetoothScanResult.

WebBluetoothServiceImpl::RemoteServerConnect()
BluetoothAllowedDevices is used in this method to check if it is allowed to make a GATT
connection to a device with the given ID. This check was added after devices detected by the Web
Bluetooth Scanning API were added to the maps in BluetoothAllowedDevices so that they had a
WebBluetoothDeviceId. Prior to that change, a WebBluetoothDeviceId was guaranteed to
correspond to a Bluetooth device that was paired. With BluetoothChooserContext, this check
can be done with a call to BluetoothDelegate::HasDevicePermission() using the device ID.

WebBluetoothServiceImpl::RemoteServerGetPrimaryServices()
This method uses BluetoothAllowedDevices twice. The first use is to check if the device with
device_id is allowed to access at least one service. The second use is to check if the device with
device_id is allowed to access the service passed into this method. The two checks are
necessary because different errors are returned if the checks fail. Therefore, the first check can
be done with a call to BluetoothDelegate::IsAllowedToAccessAtLeastOneService(), while the
second check can be done with BluetoothDelegate::HasDevicePermission().

WebBluetoothServiceImpl::RemoteServerGetPrimaryServicesImpl()
This method simply uses BluetoothAllowedDevices to check if each of the primary GATT
services is able to be accessed, and ignore the services that are not allowed. Therefore, this can
be done with BluetoothDelegate::HasDevicePermission() check for each primary GATT
service.

WebBluetoothServiceImpl::OnGetDeviceSuccess()
This method is the success callback that is run after the user selects a Bluetooth device from the
chooser prompt. BluetoothAllowedDevices is used here to add the selected device's address
and requested services to the maps, essentially granting permission to use them. This logic can
be replaced with BluetoothDelegate::GrantServiceAccessPermission() with the device
address, the services requested, and whether the user chose to grant the permission temporarily
or not.

WebBluetoothServiceImpl::QueryCacheForDevice()
This method tries to find the BluetoothDevice object that corresponds to the given
WebBluetoothDeviceId from the BluetoothAdapter. Before it is able to query the adapter for
the device, the ID needs to be used to get the address of the device. This is simply replaced with
a call to BluetoothDelegate::GetDeviceAddress().

WebBluetoothServiceImpl::GetDevices()
The list of devices can be grabbed using BluetoothDelegate::GetPermittedDevices(). The
method will return a vector `PermittedDevice` structs which contain the device ID and name in
order to contruct the WebBluetoothDevice objects needed by the corresponding JavaScript API.

UI Changes

Desktop Site Settings
Once Web Bluetooth is using ChooserContextBase, getting the Bluetooth permissions to show
up in Site Settings and Page Info is trivial. For the desktop Site Settings WebUI page, the following
changes need to be done. First, the appropriate ContentSettingsTypeNameEntry and
ChooserTypeNameEntry entries need to be added to kContentSettingsTypeGroupNames[] and
kChooserTypeGroupNames[] respectively in site_settings_helper.cc. These changes also need to
be reflected on the WebUI side in constants.js. Then a new entry needs to be added to the
chrome://settings/content page by modifying the privacy_page.html to add an entry similar to
the one that already exists for WebUSB. The chooser_exception_list.js file should add a case to
chooserTypeChanged_() to display the appropriate empty list message for Bluetooth devices.

https://cs.chromium.org/chromium/src/chrome/browser/ui/webui/site_settings_helper.cc
https://cs.chromium.org/chromium/src/chrome/browser/resources/settings/site_settings/constants.js
https://cs.chromium.org/chromium/src/chrome/browser/resources/settings/privacy_page/privacy_page.html
https://cs.chromium.org/chromium/src/chrome/browser/resources/settings/site_settings/chooser_exception_list.js

Bluetooth devices entry in Site Settings page.

Bluetooth device permission page in Site Settings. Users will be able to revoke site access to devices

here or block Web Bluetooth entirely.

Bluetooth devices entry in Site Details page. Users will be able to block Web Bluetooth for a given site

in this menu.

Desktop Page Info
The Page Info dialog box is also fairly trivial to implement. The only change needed is to add an
appropriate ChooserUIInfo entry needs to be created for kChooserUIInfo[].

Bluetooth device permissions in Page Info. Users will be able to quickly revoke device permissions for

the current site or block Web Bluetooth for the site.

Android Site Settings
The Android Site Settings is again fairly trivial to implement. The SiteSettingsCategory class will
need to be updated with support for the CONTENT_SETTINGS_TYPE_BLUETOOTH_GUARD and
CONTENT_SETTINGS_TYPE_BLUETOOTH_CHOOSER_DATA content settings types. The
SiteSettingsPreferences class implements the PreferenceFragment that renders all of the site
settings, therefore it needs to be updated to display Bluetooth settings as well. The
ContentSettingsResources class is used to retrieve the assets used by a specific setting, such as
the USB icon for CONTENT_SETTINGS_TYPE_USB_GUARD, therefore this class also needs to be
updated to be able to return Bluetooth settings assets.

Bluetooth entry in the Site Settings menu.

First Bluetooth permissions screen that is displayed after tapping on the Bluetooth entry in Site

Settings. This screen groups Bluetooth device permissions under the device's name.

Second Bluetooth permissions screen that is displayed after tapping on a Bluetooth device name. This

screen displays all of the sites that are allowed to connect to the device.

Site details screen that is displayed after tapping on a site URL. This screen displays all of the

permissions that the site has.

The first Bluetooth permissions screen when Web Bluetooth is blocked entirely.

Android Page Info
Page Info for Android is automatically implemented through the same code path as the desktop
implementation.

The Page Info dialog displaying an entry for a granted Bluetooth device permission.

Android Scan Notification
When a scan is active as a result of a call to BluetoothDevice.watchAdvertisement(), Android
needs to display a notification to inform the user that the site has started a scan. To implement
this UI change, the MediaCaptureNotificationService class can be used as a reference. A similar
BluetoothNotificationService class can be created.

When a scan is started, WebContentsImpl::{In,De}crementBluetoothConnectedDeviceCount() is
used to update the number of active scans. This method will trigger a tab invalidation
notification, which will end up in
TabWebContentsDelegateAndroidImpl.navigationStateChanged(). This is where the
BluetoothNotificationService should add a notification if there is a scan active using
WebContents::IsScanningForBluetoothDevices(). This method can be exposed to Java by using
the WebContentsAndroid class, which wraps around WebContentsImpl.

https://source.chromium.org/chromium/chromium/src/+/master:chrome/android/java/src/org/chromium/chrome/browser/media/MediaCaptureNotificationService.java
https://source.chromium.org/chromium/chromium/src/+/master:chrome/android/java/src/org/chromium/chrome/browser/tab/TabWebContentsDelegateAndroidImpl.java;l=173;drc=ea2cbba52f8adc3a8febc91be94cfec3bb218e3b

Alternative designs

request() API
The navigator.permissions.request() API is non-standard, but it is defined in a separate
specification, titled Requesting Permissions. This API won't be implemented for Web Bluetooth
because it is non-standard.

The navigator.permissions.request() method in JS calls the
blink::Permissions::request() method in C++. This method uses a helper method to convert
the given PermissionDescriptor into a PermissionDescriptorPtr while filling in any extra data
attached to the permission descriptor.

The PermissionDescriptorPtr is then passed to the RequestPermission() method of the
PermissionService, which is an abstract class that is implemented by PermissionServiceImpl.
The actual permission request is performed by the RequestPermissions() method, which
processes a list of permissions, but only one is passed into this method by
RequestPermission(). In this method, if the request is coming from a context where it's not
possible to show a permission prompt, then GetPermissionStatus() is called, which is what the
query() API does. If a permission prompt is able to be shown, then the list of permissions is
processed by converting the PermissionDescriptorPtr to a PermissionType. The conversion is
done with the PermissionDescriptorToPermissionType() method, so a PermissionType for
Bluetooth will need to be added.

Check Chooser Permissions from PermissionServiceImpl
The PermissionServiceImpl::RequestPermissions() method is a great spot to diverge from
the normal permissions request logic to perform chooser permissions request instead because it
still contains the PermissionDescriptor. If the PermissionDescriptor belongs to Web
Bluetooth, then the WebBluetoothServiceImpl::RequestDevice() method can be called with a
WebBluetoothRequestDeviceOptionsPtr constructed from the PermissionDescriptor
extension data.

When the BluetoothChooserContext is implemented, a specific RequestChooserPermissions()
method can be created in the PermissionServiceImpl that can call the appropriate chooser
context based on the PermissionType. A map of PermissionType to ChooserContextBase* can
be done, similar to kChooserTypeGroupNames[] in site_settings_helper.cc, to use the appropriate
chooser context.

Check Chooser Permissions from PermissionManager
Alternatively, the check for chooser permissions can be performed once the chrome layer is
reached. To do this, the PermissionDescriptor will need plumbed all the way to

https://wicg.github.io/permissions-request/#dom-permissions-request
https://cs.chromium.org/chromium/src/chrome/browser/ui/webui/site_settings_helper.cc?rcl=939fa23eb94b0f62f9dd04490927eb3d5e503a8e&l=249

PermissionManager::RequestPermissions() in order to be able to use the extra Bluetooth
request options attached to it. The PermissionManager needs to create a
BluetoothDeviceChooserController (for other chooser APIs, it will need to show the
appropriate chooser) and call GetDevice() on it with the request device options and callbacks
for success and failure. The BluetoothDelegate class will need to provide a way for the
PermissionManager to access the chooser controller, or an equivalent class needs to be
implemented in the chrome layer.

Once a device is selected by the user, the chooser controller needs to be destroyed and the
BluetoothDevice needs to be retrieved using the device address from the Bluetooth adapter
class. Then a WebBluetoothDeviceId needs to be generated. Lastly, a WebBluetoothDevice
needs to be created with the generated ID and the device name. The BluetoothDelegate will
need to provide an interface for generating the ID, since WebBluetoothDeviceId is in the content
layer.

Once the WebBluetoothDevice is created, the last step is to create the
BluetoothPermissionStatus with PermissionState = "granted", the onchange
EventHandler, and the devices array populated with the granted device, and resolve the
promise with this permission status.

Refactor navigator.bluetooth.requestDevice()
One support for the Permissions API has been implemented, the
navigator.bluetooth.requestDevice() method can be updated to call
navigator.permissions.request() internally, since both methods will essentially perform the
same function. Eventually, the navigator.bluetooth.requestDevice() API should be deprecated in
favor of the Permissions API.

Permission Storage

Storing Temporary Web Bluetooth Permissions
Alternatively, if GrantServiceAccessPermission() is called with is_persistent set to false,
then the Bluetooth device permission is stored in maps within the class that are structured
similarly to the maps in BluetoothAllowedDevices. These maps are cleared when the class is
destroyed upon the closing of the browser.

The permissions for Bluetooth devices detected through requestLEScan() should be cleared
when the browser is closed. Therefore, the BluetoothChooserContext can store these in maps
within the class, which will be cleared when the class is destroyed upon the closing of the
browser.

The BluetoothChooserContext returns WebBluetoothDeviceIds for devices with the
GetWebBluetoothDeviceId() method. The method iterates over the object list to find a matching

device address. If a match is found, the corresponding device ID is returned. If a match is not
found, then the scanning maps are queried. If the maps have an entry for the device address, the
ID value is returned. Otherwise, the device is new and an ID is generated for it. The address and
ID are stored in the scanning maps to store their association temporarily.

When permission is granted to a site, the scanning maps are checked first for an existing device
entry. If an entry exists, the ID is used when creating the permission object for the device. After
the permission object is created and stored, the entry in the scanning map is cleared.

Deterministic ID Generation
With the current method being used to generate the Bluetooth ID, it is not possible to generate
the same ID for the same device. In order to associate the generated ID to the device is via two
maps. For devices added through the requestDevice() API, the size of these maps should be
pretty low. However, through the requestLEScan() API, the size of these maps can become very
large, depending on how many Bluetooth devices are around the user that are sending out
advertisements. The Bluetooth devices detected by the Scanning API are not actually
connectable, so an additional map is needed to specify which devices can be connected to. Using
deterministic ID generation is not necessary for this feature, and it matters more for the Web
Bluetooth Scanning API.

Instead, the method used to generate the Bluetooth ID can be changed to one that will be able to
generate the same, unique ID for a given Bluetooth device. This would eliminate the need to
keep maps to associate the ID and device address. However, to prevent sites from fingerprinting
users, the generated ID should have the following properties:

●​ The Bluetooth device identifiers should not be able to be reversed engineered from the
generated ID.

●​ The generated ID should be different across origins for the same Bluetooth device.
●​ The generated ID should be different for the same origin after a site permission reset.

The table below demonstrates the factors that determine whether a generated ID would be the
same for a Bluetooth device or different.

Bluetooth Device IDs Requesting and
Embedding Origins

Permissions Cleared Generated IDs
Before and After

Same Same No Same

Different Same No Different

Same Different No Different

Same Same Yes Different

The HMAC algorithm using the SHA256 hash algorithm can provide an ID that fits these
constraints, and it can be used to verify the integrity and authentication of the Bluetooth ID
created from it. The crypto::HMAC class provides an implementation of this algorithm. The class
must be initialized with a key, and this key can be unique for each pair of requesting and
embedding origins. That way, the signed data produced by the algorithm is unique for each site
for the same Bluetooth device.

The key for the algorithm can be created with the crypto::SymmetricKey class using the
HMAC_SHA1 algorithm and stored in the user's settings. If the user resets a site's permissions,
then the key will be destroyed so that a new one is created the next time that a Web Bluetooth
permission is granted. The data that is signed by the HMAC algorithm will be a concatenation of
the Bluetooth device identifier and the requesting and embedding origins that are requesting
permission. To check if a Bluetooth device corresponds to ID, the crypto::HMAC::Verify()
method can be used with the concatenated Bluetooth device identifier and origin data and the
signed data.

Storing Web Bluetooth Permissions
BluetoothAllowedDevices contains several maps that map the following:

●​ device address string to WebBluetoothDeviceId
●​ WebBluetoothDeviceId to device address string
●​ WebBluetoothDeviceId to a set of BluetoothUUIDs
●​ WebBluetoothDeviceId to a boolean that is set to true if the device can be connected to.

Most of these maps are needed because the generated Bluetooth ID is completely random, so an
association with the ID and device is needed. Additionally, the maps can contain devices that
have been detected through the Web Bluetooth Scanning API, but haven't been allowed to be
accessed by the site.

This diagram demonstrates the structure of the base::Value objects that will store Bluetooth
permissions when the ID generation algorithm is deterministic.

With deterministic ID generation, only the WebBluetoothDeviceId to a set of BluetoothUUIDs
will be needed. When GrantServiceAccessPermission() is called, a dictionary type
base::Value object will be created to store the device permission. The object will contain a
"device-address" key to store the device address and a "services" key to store the
BluetoothUUIDs. The "services" key will contain another dictionary type object with a key for
each BluetoothUUID, essentially making it a set. After the permission for the device is added
using ChooserContextBase::GrantObjectPermission(), a WebBluetoothDeviceId will be
generated to return. If this is the first time granting a Web Bluetooth permission for this pair of
origins, then a new key needs to be generated to initialize the HMAC algorithm that will be used
to create device IDs.

Checking Web Bluetooth Permissions
When checking Web Bluetooth permissions, the given WebBluetoothDeviceId from the content
layer needs to be verified using crypto::HMAC::Verify() against all of the device addresses
stored for that site. If the method returns true, then that means that the device is allowed to be
used by the current origin.

Web Bluetooth may also require checking the services that are allowed to be used by the current
origin. The allowed services are stored in the permissions for each Bluetooth device so this list
can be iterated over to check if the service UUIDs match.

There is one case where a device address needs to be retrieved from a device ID in the Web
Bluetooth service. In this case, the same logic to check the WebBluetoothDeviceId against the
device address stored in permissions can be done to find a match. When a match is found, the
device address can simply be returned.

Bluetooth Chooser Prompt
The Bluetooth chooser prompt needs to be able to give the user the option to grant Bluetooth
device permissions once until the browser is closed or persistently across browsing sessions.

Developer requests
This is a list of developers who have expressed interest in having a feature like this or had
problems that can potentially be addressed by this feature.

●​ https://bugs.chromium.org/p/chromium/issues/detail?id=974879#c1
●​ https://bugs.chromium.org/p/chromium/issues/detail?id=577953#c13
●​ https://github.com/WebBluetoothCG/web-bluetooth/issues/211#issue-130699789
●​ https://github.com/WebBluetoothCG/web-bluetooth/issues/365#issue-225334091
●​ https://github.com/WebBluetoothCG/web-bluetooth/issues/411
●​ https://github.com/WebBluetoothCG/web-bluetooth/issues/358
●​ https://github.com/WebBluetoothCG/web-bluetooth/issues/31#issuecomment-34391929

9
●​ https://stackoverflow.com/questions/45467214/is-it-possible-to-persist-a-bluetooth-le-con

nection-on-browser-refresh
●​ https://stackoverflow.com/questions/60604388/web-bluetooth-get-paired-devices-list
●​ https://stackoverflow.com/questions/60603666/web-bluetooth-bypass-pairing-screen-for-

a-known-device-id
●​ https://stackoverflow.com/questions/59077656/automate-connecting-to-bluetooth-device

s-from-chrome
●​ https://stackoverflow.com/questions/55531254/web-bluetooth-bypass-pairing-screen
●​ https://stackoverflow.com/questions/53467676/remembering-the-device-and-reconnectin

g-to-it
●​ https://stackoverflow.com/questions/43633589/web-bluetooth-api-store-connection-obje

ct

https://bugs.chromium.org/p/chromium/issues/detail?id=974879#c1
https://bugs.chromium.org/p/chromium/issues/detail?id=577953#c13
https://github.com/WebBluetoothCG/web-bluetooth/issues/211#issue-130699789
https://github.com/WebBluetoothCG/web-bluetooth/issues/365#issue-225334091
https://github.com/WebBluetoothCG/web-bluetooth/issues/411
https://github.com/WebBluetoothCG/web-bluetooth/issues/358
https://github.com/WebBluetoothCG/web-bluetooth/issues/31#issuecomment-343919299
https://github.com/WebBluetoothCG/web-bluetooth/issues/31#issuecomment-343919299
https://stackoverflow.com/questions/45467214/is-it-possible-to-persist-a-bluetooth-le-connection-on-browser-refresh
https://stackoverflow.com/questions/45467214/is-it-possible-to-persist-a-bluetooth-le-connection-on-browser-refresh
https://stackoverflow.com/questions/60604388/web-bluetooth-get-paired-devices-list
https://stackoverflow.com/questions/60603666/web-bluetooth-bypass-pairing-screen-for-a-known-device-id
https://stackoverflow.com/questions/60603666/web-bluetooth-bypass-pairing-screen-for-a-known-device-id
https://stackoverflow.com/questions/59077656/automate-connecting-to-bluetooth-devices-from-chrome
https://stackoverflow.com/questions/59077656/automate-connecting-to-bluetooth-devices-from-chrome
https://stackoverflow.com/questions/55531254/web-bluetooth-bypass-pairing-screen
https://stackoverflow.com/questions/53467676/remembering-the-device-and-reconnecting-to-it
https://stackoverflow.com/questions/53467676/remembering-the-device-and-reconnecting-to-it
https://stackoverflow.com/questions/43633589/web-bluetooth-api-store-connection-object
https://stackoverflow.com/questions/43633589/web-bluetooth-api-store-connection-object

Metrics

Success metrics
Success for this feature can be measured as follows:

1.​ Sites are able to get a list of all Bluetooth devices that it has permission to access
regardless of whether they are currently connected or not.

2.​ Users are able to use a Bluetooth device that they paired with a site without needing to
grant permission to the site again. This should happen in the following scenarios:

a.​ A Bluetooth device that has gone out of range/powered off goes back into range of
the Bluetooth adapter.

b.​ A Bluetooth adapter that has been powered off/removed is powered back on.
c.​ The user closes the browser/tab and returns to the website at a later time.

3.​ Users are able to see all of the sites that have been granted permission to use a Bluetooth
device and manage these permissions.

Regression metrics
Regression for this feature can be measured as follows:

1.​ The Web Bluetooth API no longer works as it did before the feature.
2.​ Sites see Bluetooth devices that they don't have permission to access or don't see

Bluetooth devices that they do have permission to access.
3.​ Bluetooth devices that have gone out of range and back into range are not able to be

used properly.
4.​ Bluetooth permissions are not displayed properly or are not able to be manipulated by

the user.

Rollout plan
Waterfall

Core principle considerations

Security
This feature will allow the Web Bluetooth permission model to be consistent with how the
permissions are done for WebUSB. A site will only be able to use a Bluetooth device if the user
has allowed the site to access the device through a chooser prompt. In addition, this feature will
allow the user to manage the permissions that have been granted for Bluetooth devices, allowing
them more control over Bluetooth device access than was previously available.

Privacy considerations
This feature will enable websites to get a list of permitted Bluetooth devices using
navigator.permissions.query(). These devices include ones that are not currently in the range
of the adapter. In order for a device to be included in this list, the user needs to explicitly grant
the site permission to use the device. A random device ID is generated for each device and for
each site when the device permission is granted, and the ID is cleared when the permission is
reset. Therefore, it would be difficult to fingerprint a user with this API since the site needs to
have permission for the device before they can see it and the random IDs prevent devices from
being able to be tracked across sites.

As mentioned in the Core principle considerations section, users will now have greater control
over the Bluetooth devices permissions that have been granted to sites. They will be able to see
all of the Bluetooth devices and the corresponding sites that have permission to use the device,
and revoke any permissions that they choose. These permissions will be visible in Site Settings
for desktop and Android, as well as the Page Info dialog box. Device permissions granted in
incognito mode are revoked upon the destruction of the off the record profile.

Testing plan
The implementation of the Fake Bluetooth scanning API should be implemented in order to
create web platform tests that ensure the consistent behavior of reconnecting Bluetooth devices.

Implementation plan
These are the tasks required to implement this feature:

Task Bug Progress

Get permitted devices. 577953 Implemented behind
#enable-experimental-web-platform-fe
atures flag.

Refactor permissions backend. 589228 Implemented behind
#web-bluetooth-new-permissions-back
end flag.

BluetoothDevice.watchAdvertisements(). 681435 WIP behind
#enable-experimental-web-platform-fe
atures flag.

https://crbug.com/577953
https://crbug.com/589228
https://crbug.com/681435
https://chromium-review.googlesource.com/c/chromium/src/+/2112966

Desktop Site Settings 563724
601523

Implemented behind
#web-bluetooth-new-permissions-back
end flag.

Desktop Page Info 689240 Implemented behind
#web-bluetooth-new-permissions-back
end flag.

Android Site Settings 659337 WIP behind
#web-bluetooth-new-permissions-back
end flag.

Android Page Info 659337 Implemented behind
#web-bluetooth-new-permissions-back
end flag.

Update connect to use platform APIs to
get device or discover device.

681435 Not started.
Best case: 2 weeks
Worst case: 8 weeks

https://crbug.com/563724
https://crbug.com/601523
https://crbug.com/689240
https://crbug.com/659337
https://chromium-review.googlesource.com/c/chromium/src/+/2194722
https://crbug.com/659337
https://crbug.com/681435

Web Bluetooth API status for each operating system:

API Windows macOS Linux Android ChromeOS

getDevices() Working Working TBD Working TBD

watchAdvertisements() WIP Working TBD Working TBD

https://chromium-review.googlesource.com/c/chromium/src/+/2187032

	Web Bluetooth Persistent Permissions
	One-page overview
	Summary
	Platforms
	Mailing List
	Launch bug
	Code affected

	Design
	Detailed design
	Retrieve Permitted Devices
	WebBluetoothService::GetDevices()
	Bluetooth::getDevices() API
	Permissions API
	query() API

	Detecting Previously Connected Devices
	BluetoothDevice watchAdvertisements() and unwatchAdvertisements()
	Web Bluetooth Mojo Interface Implementation
	WebBluetoothServiceImpl Implementation
	Blink IDL Implementation
	BluetoothDiscoveryFilter Refactor

	Refactor to use ChooserContextBase
	BluetoothChooserContext
	Storing Persistent Web Bluetooth Permissions
	Checking Web Bluetooth Permissions

	BluetoothDelegate
	ChromeBluetoothDelegate
	Deprecating BluetoothAllowedDevices
	WebBluetoothServiceImpl::IsDevicePaired()
	WebBluetoothServiceImpl::DeviceAdvertisementReceived()
	WebBluetoothServiceImpl::RemoteServerConnect()
	WebBluetoothServiceImpl::RemoteServerGetPrimaryServices()
	WebBluetoothServiceImpl::RemoteServerGetPrimaryServicesImpl()
	WebBluetoothServiceImpl::OnGetDeviceSuccess()
	WebBluetoothServiceImpl::QueryCacheForDevice()
	WebBluetoothServiceImpl::GetDevices()

	UI Changes
	Desktop Site Settings
	Desktop Page Info
	Android Site Settings
	Android Page Info
	Android Scan Notification

	Alternative designs
	request() API
	Check Chooser Permissions from PermissionServiceImpl
	Check Chooser Permissions from PermissionManager
	Refactor navigator.bluetooth.requestDevice()

	Permission Storage
	Storing Temporary Web Bluetooth Permissions

	Deterministic ID Generation
	Storing Web Bluetooth Permissions
	Checking Web Bluetooth Permissions
	Bluetooth Chooser Prompt

	Developer requests
	Metrics
	Success metrics
	Regression metrics

	Rollout plan
	Core principle considerations
	Security

	Privacy considerations
	Testing plan
	Implementation plan

