
Main

Starlarkify Python flags
Please read Bazel Code of Conduct before commenting.

Authors: Greg Estren (gregce@bazel.build)​
Status: Implementing ()​Sep 8, 2025
Reviewers:

●​ Richard Levasseur (rules_python maintainer)

Created: ​Sep 8, 2025
Updated: Oct 23, 2025
Tracking issue: https://github.com/bazel-contrib/rules_python/issues/3252

Overview
Replace all Python language flags built into Bazel with Starlark definitions owned by rule
owners.

Python subtask of Starlarkify native Bazel flags.

This is an internal Bazel & rules_python cleanup change. It's mostly a no-op for end
users. The goal is to give Python rule owners full control over Bazel's Python support.

"bazel_py" flags
These Python flags are defined in BazelPythonConfiguration.java.

Goal: delete ctx.fragments.bazel_py and supporting Bazel code.

Sources: BazelPythonConfiguration.java, builtin_exec_platforms.bzl

flag type default references exec value decision

--python_top Label null Starlark API target value Starlarkify

--python_path String null Starlark API target value Starlarkify

--experimental_python_import_al
l_repositories

bool true Starlark API target value Starlarkify

Other builtin logic:

●​ BazelPyBuiltins.java: nothing flag related
●​ BazelPythonConfiguration.java

https://www.contributor-covenant.org/version/1/4/code-of-conduct
http://github.com/gregestren
mailto:gregce@bazel.build
https://github.com/rickeylev
https://github.com/bazel-contrib/rules_python
https://github.com/bazel-contrib/rules_python/issues/3252
https://docs.google.com/document/d/1yOvi4hVV7Ja32ocwVb4lsEUnijftk8nilXPncYm-BH8/edit?tab=t.0#heading=h.5mcn15i0e1ch
https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/bazel/rules/python/BazelPythonConfiguration.java
https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/bazel/rules/python/BazelPythonConfiguration.java
https://github.com/bazelbuild/bazel/blob/master/src/main/starlark/builtins_bzl/common/builtin_exec_platforms.bzl
https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/bazel/rules/python/BazelPyBuiltins.java
https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/bazel/rules/python/BazelPythonConfiguration.java

○​ Fails build if --python_path isn't absolute. Move to Python .bzl logic.
Challenge: OS-specific absolute path differences.

○​ Fails build if --python_top is set with
--incompatible_use_python_toolchains. Remove check and remove
ability to not use toolchains.

Summary:
●​ Remove --incompatible_use_python_toolchain
●​ Starlarkify everything else.

"py" flags
These Python flags are defined in PythonOptions.java.

Goal: delete ctx.fragments.py and supporting Bazel code.

Sources: PythonOptions.java, builtin_exec_platforms.bzl

flag type default references exec value decision

--build_python_zip TriState auto Starlark reference target value Different default for Windows host
machines. Use this or this or this?

--incompatible_remove_old_pyth
on_version_api

bool true
blazerc=tru
e

none target value No-op since 2020. Remove.

--incompatible_allow_python_ver
sion_transitions

bool true
blazerc=tru
e

none target value No-op since 2020. Remove.

--incompatible_py3_is_default bool true trivial Bazel ref target value PY2-related. Remove.

--incompatible_python_disable_p
y2

bool true
blazerc=tru
e

outdated Starlark
ref?

target value PY2-related. Remove.

--incompatible_py2_outputs_are_
suffixed

bool true old Bazel ref target value PY2-related. Remove.

--python_version Python
Version

null old Bazel refs depends on
PY2 vs. PY3

PY2-related. Remove.

--force_python Python
Version

null old Bazel refs default PY2-related. Remove.

--host_force_python Python
Version

blazerc=PY
3

old Bazel refs target value PY2-related. Remove.

--incompatible_disable_legacy_p
y_provider

bool true
blazerc=tru
e

none default No-op since 2022. Remove, but check
Bazel incompatible tracking bug status.

--incompatible_use_python_toolc
hains

bool true none target value Delete since flipped 2020.

--incompatible_default_to_explici
t_init_py

bool false default_to_ex
plicit_init_p

target value Starlarkify

https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/rules/python/PythonOptions.java
https://github.com/bazelbuild/bazel/blob/master/src/main/java/com/google/devtools/build/lib/rules/python/PythonOptions.java
https://github.com/bazelbuild/bazel/blob/master/src/main/starlark/builtins_bzl/common/builtin_exec_platforms.bzl
https://github.com/bazelbuild/bazel/blob/06ba60c86c79f9ce1b17207d26caf46f91646a3d/src/main/res/winsdk_configure.bzl#L58-L60
https://github.com/bazelbuild/bazel/blob/be4a4eb175b0dee5d1b7ccfc452be27021533967/src/main/starlark/builtins_bzl/common/builtin_exec_platforms.bzl#L19-L20
https://github.com/bazel-contrib/rules_python/blob/6046e9e0f0fa10e65936b5c6ae4ec18a173c4b7f/python/config_settings/BUILD.bazel#L96
https://github.com/bazelbuild/bazel/issues/7298

y

--python_native_rules_allowlist Label null
blazerc set

native_rules_
allowlist

target value Starlarkify

--incompatible_python_disallow_
native_rules

bool false
blazerc=tru
e

disallow_nati
ve_rules

target value Remove? Outdated?

--experimental_py_binaries_inclu
de_label

bool false include_label
_in_linkstamp

target value Starlarkify

--experimental_build_transitive_p
ython_runfiles

bool false​
blazerc=fal
se

None default Graveyarded 2023. Delete.

Summary:

●​ Remove outdated no-op flags.
●​ Replace Tristate --python_preload_swigdeps with pure bool if possible.
●​ Remove PY2/3 checking logic if possible.
●​ Support --host_* semantics with pending Starlark API or short-term hack.
●​ Move -python_is_target_config_internal_only_do_not_use somewhere more

generic.
●​ Starlarkify everything else.

Progress
Destination code:

●​ rules_python pre-existing Starlark flags - these are unrelated to native flags
●​ rules_python ctx.fragments calls
●​ no bazelbuild/ ctx.fragments.py or ctx.fragments.bazel_py references
●​ rules_python transition logic - has some programmatic complexity

Migration steps:

●​ Mention migration on rules_python, bazelbuild Completed
●​ Define equivalent Starlark flags Completed
●​ Update rules_python to support both native and Starlark flags. Completed

Builds still read native flags.
●​ Define flag aliases in rules_python's MODULE.bazel so Completed

--python_* syntax continues working
●​ Test that transitions still work when using Starlark flags Completed
●​ Test rules_python & bazelbuild CI works when using Starlark flags Completed
●​ Update rules_python to read from Starlark flags. This requires Completed

Bazel 9 or newer. Older Bazel versions will continue to use native flags.
●​ Remove ctx.fragments.bazel_py Not Started
●​ Remove ctx.fragments.py Not Started
●​ Remove native flags. Bazel 10+ now must use Starlark flags. In Progress
●​ Remove BazelPythonConfiguration.java Not Started
●​ Remove PythonOptions.java Not Started

https://github.com/bazelbuild/bazel/issues/17773
https://docs.google.com/document/d/1rUoaUwkyZ9xf0UWZnaXMbfqwkiEinDwXYoJXVX3T0Tk/edit?disco=AAABqMSeSsk&tab=t.0#heading=h.epjv6353d2y8
https://github.com/bazel-contrib/rules_python/blob/main/python/config_settings/BUILD.bazel
https://github.com/search?q=repo%3Abazel-contrib%2Frules_python+ctx.fragments&type=code
https://github.com/search?q=repo%3Abazel-contrib%2Frules_python+transition+path%3A*.bzl&type=code
https://github.com/bazel-contrib/rules_python/issues/3252
https://docs.google.com/document/d/1yOvi4hVV7Ja32ocwVb4lsEUnijftk8nilXPncYm-BH8/edit?tab=t.0#heading=h.5mcn15i0e1ch
https://docs.google.com/document/d/1yOvi4hVV7Ja32ocwVb4lsEUnijftk8nilXPncYm-BH8/edit?tab=t.0#heading=h.qn3unswby87l

●​ Update documentation if needed Not Started
●​ Starlarkify java tests or retain or remove as-is Not Started
●​ Check what's still needed in Not Started

src/main/java/com/google/devtools/build/lib/rules/python

Documentation
Python flags aren't particularly documented in Bazel's core docs but any such references
will be moved to rules_python.

Bazel's core docs mirror Python rule definitions. Flags will also be documented here.

Compatibility
Since this is an internal cleanup between rules_python and Bazel, we're trying to make it
as much of a no-op to users as possible.

But there will be some differences because Starlark and built-in Bazel flags aren't exactly
the same:

●​ Starlark flags don't support $ bazel build //foo --flagname flagvalue.
This must be $ bazel build //foo --flagname=flagvalue.

●​ Starlark flags don't work with ctx.fragments.py or ctx.fragments.bazel_py
Starlark APIs. The purpose of those APIs is to expose built-in Bazel logic to Starlark.
We consider it an improvement to eliminate them. But if anyone besides
rules_python has Starlark code that reads them it will fail.

●​ $ bazel build //foo --some_python_flag will no longer work if both:​

○​ the user hasn't loaded rules_python into their workspace
○​ we've removed the native flag definition from Bazel.

In that case, Bazel will emit a "No such flag" error.​
​
This is a no-op for anyone building Python since Bazel's Python support already
requires loading rules_python. But it can trigger if someone has, say, a genrule
that select()s on --some_python_flag.​
​
Bazel 9 will deprecate, but not remove, native flags. So this can't be an issue until
Bazel 10.

There's enough skew that we'll gate Starlark Python flags behind two Bazel 9 incompatible
flags:

●​ --incompatible_remove_ctx_py_fragment (#27079)
●​ --incompatible_remove_ctx_bazel_py_fragment (#27080)

https://bazel.build/docs/user-manual
https://github.com/bazel-contrib/rules_python
https://bazel.build/reference/be/python
https://bazel.build/versions/8.4.0/rules/lib/fragments/py
https://bazel.build/versions/8.4.0/rules/lib/fragments/bazel_py
https://registry.bazel.build/modules/rules_python
https://bazel.build/release/backward-compatibility#summary
https://bazel.build/release/backward-compatibility#summary
https://github.com/bazelbuild/bazel/issues/27079
https://github.com/bazelbuild/bazel/issues/27080

We expect users to address failures with reasonable user-side cleanups. For example,
anyone reading ctx.fragments.py can read the Starlarkified flags just as
rules_python does.

Bazel 8.x and lower will continue to work as they do now with any supported
rules_python version.

Overall, we don't anticipate major disruption.

Document History

Date Description

 Sep 8, 2025 First proposal

 Oct 23, 2025 Progress update, updated backward compatibility details

https://bazel.build/versions/8.4.0/rules/lib/fragments/py

Testing

Shell

Shell

Testing Starlark Python flags

Addendum tab for Starlarkify Python Flags

Overview
Moving Python flags from Bazel to rules_python`requires changes to the following:

●​ rules_python .bzl files
●​ rules_python's MODULE.bazel
●​ core bazel code

This tab describes how to test changes by properly staging all needed modifications.

Manual testing
1.​ Clone https://github.com/bazelbuild/bazel. This is the main testing workspace.
2.​ In this workspace, build a custom bazel@head:

$ bazelisk build //src:bazel
$ mkdir b
$ cp -f bazel-bin/bazel b/bazeldev

3.​ Clone https://github.com/bazel-contribu/rules_python into another directory.
4.​ Go back to the bazelbuild/bazel workspace and open its MODULE.bazel.
5.​ Add the following to MODULE.bazel:

local_path_verride(module_name = "rules_python", path =
"/path/to/rules_python"

​
This may require updating other bazel_dep dependencies in the main
MODULE.bazel since rules_python at head is newer than the released
rules_python. I had to update bazel_skylib from 1.7.1 to 1.8.1.​

6.​ Define a flag in rules_python/python/cofig_setting/BUILD.bazel.
7.​ Open rules_python/python/private/flags.bzl and change the second

_POSSIBLY_NATIVE_FLAGS tuple entry from "native" to "starlark".​
​

https://github.com/bazelbuild/bazel
https://github.com/bazel-contribu/rules_python
https://github.com/gregestren/rules_python/blob/main/python/config_settings/BUILD.bazel
https://github.com/bazel-contrib/rules_python/blob/5b5e58f4f6fe5e350826f34666570bf7d364e78d/python/private/flags.bzl#L39-L44

Shell

Shell

Shell

This forces Python to read the Starlark version of that flag even when
--incompatible_remove_ctx_py_fragment and
--incompatible_remove_ctx_bazel_py_fragment are unset. ​

8.​ Back in bazelbuild/bazel, create a simple python binary:​

$ cat testapp/BUILD​
load("@rules_python//python:py_binary.bzl", "py_binary")

py_binary(
 name = "py",
 srcs = ["py.py"],
)
​
$ cat testapp/py.py
print("Hello world!")

9.​ Test that the binary works:​

$ b/bazelde run //testapp:py

10.​Run rules_python and bazelbuild tests:​

$ cd ../rules_python​
$ bazelisk test //...​
​
$ cd ../bazel​
$ bazelisk test //...

See also
●​ https://github.com/bazelbuild/bazel/pull/27015 - "add flag_alias function"
●​ https://rules-python.readthedocs.io/en/latest/devguide.html
●​ https://github.com/bazel-contrib/rules_python/issues/3252
●​ https://github.com/bazel-contrib/rules_python/issues/3252#issuecomment-3304829

822: ​
​
"FYI: I've added a CI job that uses bazel rolling. It won't shorten the iteration cycle, but
you'll be able to more commit changes here with more confidence they work and won't

http://py.py
https://github.com/bazelbuild/bazel/pull/27015
https://rules-python.readthedocs.io/en/latest/devguide.html
https://github.com/bazel-contrib/rules_python/issues/3252
https://github.com/bazel-contrib/rules_python/issues/3252#issuecomment-3304829822
https://github.com/bazel-contrib/rules_python/issues/3252#issuecomment-3304829822

regress. If they do, we'll see it in typical PRs. The CI job is non-blocking, so we can still
merge, but it'll be much more visible."

	Main
	Starlarkify Python flags
	Overview
	"bazel_py" flags
	"py" flags
	Progress
	Documentation
	Compatibility
	Document History
	Testing
	Testing Starlark Python flags
	Overview
	Manual testing
	See also

