Permanently affiliated to JNTUH

Department of CSE & IT

UNIT WISE QUESTION BANK

	<u>UNIT-I</u>			
	BOOLEAN ALGEBRA AND LOGIC GATES			
S.No	Questions	BT	CO	PO
	Part – A (Short Answer Questions)		ļ.	
1	Write short notes on binary number systems?	L3	CO1	PO1
2	Discuss 1's and 2's complement methods of subtraction?	L3	CO1	PO1
3	Discuss octal number system?	L3	CO1	PO1
4	Write a short note on five-bit BCD codes?	L3	CO1	PO2
6	Write a short note on error correcting codes?	L3	CO1	PO3
7	State De-Morgan theorem?	L4	CO1	PO1
8	Convert given gray code to binary code (1001001011110010)g	L5	CO1	PO1
9	Convert given binary code to gray code (1001001011110010)b	L5	CO1	PO1
10	Write the steps involved in unsigned binary subtraction using complements with examples?	L3	CO1	PO2
11	Explain the addition of two signed binary number along with examples?	L5	CO1	PO1
12	Differentiate between binary code and BCD code?	L4	CO1	PO2
13	Write the Axiomatic Definitions of Boolean Algebra?	L3	CO1	PO1
	Part – B (Long Answer Questions)			
16 a)	Perform the following conversions:.	L4	CO1	PO2
	(a) (3A.2F)16 to binary (b) (573)8 to decimal			
	(c) (11011.011)2 to octal (d) (245)10 to			
	Excess-3 code			
b)	State and prove the any four Theorems of Boolean algebra.	L5	CO1	PO1

		<u> </u>			
17		Solve (3250-72532)10 using 10'scomplement?	L5	CO1	PO3
18		Convert 1101101.0111 to octal equivalent and hexadecimal	L5	CO1	PO1
		equivalent?.			
19		Simplify: A'B'C' + A'B'C + A'BC'+AB'C'+ABC' using	L6	CO1	PO5
		Boolean Theorems?			
20	a)	convert the given SOP to Standard SOP form	L5	CO1	PO1
		F(A,B,C) = A'C' + A'B' + BC' + AB'C' + ABC'			
	b)	convert the given POS to Standa <mark>rd</mark> POS form			
		F(A,B,C) = (A'+B)(A'+C)			
21		State and prove any 4 Bo <mark>olea</mark> n theorems with examples?	L5	CO1	PO1
22	(a)	Perform addition of 01100100+0 <mark>0011</mark> 001	L6	CO1	PO1
		Perform the following in 2's complement:			
	(b)	(a) 011010 (b) 110010			
23		Explain the truth tables of X-OR, NAND and NOR gates?	L5	CO1	PO5
				l	
		<u>UNIT-II</u>			
		GATE -LEVEL MINIMIZATION			
S.	No	Questions	BT	CO	PO
		Part – A (Short Answer Questions)			
	1	What is a Karnaugh Map (K-Map)? How many cells are	L3	CO2	PO2
		there in a 4-variable K-map?			
	2	Define min term and max term?	L3	CO2	PO2
	3	Convert f(x)=x+y'z in to canonical form?	L5	CO2	PO2
	4	What is meant by a don't care condition in K-Map	L3	CO2	PO2
		simplification?			
	5	Simplify the Boolean expression using K-Map:	L6	CO2	PO1
		$F(A,B)=\Sigma(0,1,2,3).$			
	6	Summarize the Boolean function x'yz+x'yz'+xy'z'+xy'z	L6	CO2	PO1
		without using K- map?			
	7	Explain the properties of EX-OR gate?	L5	CO2	PO2
	8	Draw a 4-variable K-Map and label its cells.	L5	CO2	PO1
	9	Sketch the following logic function using k-map and	L6	CO2	PO1
		implement it using logic gates?			
		$Y(A,B,C,D)=\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$			
]	10	What is a prime implicant?	L3	CO2	PO1

		Part – B (Long Answer Questions)			
10		Using Karnaugh map. Solve	L5	CO2	PO2
		$F(A,B,C,D)=\Sigma(0,1,2,5,6,7,8,9,10,13,14,15).$			
11		Reduce using mapping the expression	L4	CO2	PO1
		f=ПМ(2,8,9,10,11,12,14) and implement the real minimal			
		expression in universal logic			
12		Summarize the following Boolean expressions using K-map	L6	CO2	PO1
		and implement them using NOR gates:			
	(a)	F(A,B,C,D)=AB'C'+AC+A'CD'			
	(b)	F(W, X,Y,Z)=W'X'Y'Z'+WXY'Z'+W'X'YZ+WXYZ.			
13		Realize the AND, OR, NOT, EX-OR gates by using	L3	C02	PO2
		universal gates?			
14		Reduce the following expressions using K-Map.	L4	C02	PO1
		(a) (A+B)(A+B'+C)(A+C') (b)			
		A(B+C')(A+B')(B+C+D')			
15		Convert the following to minterms:	L5	C02	PO1
		(b) A+B'C' (b) A'+B+CA			
		(c) ABC+AB+DC+D' (d) ABCDE+ABE'+ACD			
16		Simplify the following function	L6	C02	PO3
		$f(w,x,y,z)=\sum (1,2,3,5,9,12,14,15)+d(4,8,11)$			
17		Implement the function F with the following four two-level	L4	C02	PO3
		forms:			
		(c) NAND-AND (b) AN <mark>D-N</mark> OR			
		(c) OR-AND (d) NOR-OR			
		<u>UNIT-III</u>		l	
		COMBINATIONAL LOGIC			
S.	No 🔻	Questions C11CC	ВТ	CO	PO
		Part – A (Short Answer Questions)	, ,	• •	
:	1	What is a combinational circuit?	L3	C03	
,	2	Explain the design procedure for combinational circuits?	L5	CO3	PO4
	3	Design a combinational logic circuit with 3 input variables	L5	CO3	PO5
		that will produce logic 1 output when more than one input			
		variables are logic1?			
	4	What is a half adder? Write its Boolean expression?	L3	CO3	PO4

5	Define magnitude comparator?	L3	CO3	PO4
6	Write the Boolean expressions for the sum and carry	L3	CO3	PO4
	outputs of a full adder.			
7	How many select lines are required for an 8-to-1	L3	CO3	PO4
	multiplexer?			
8	Define magnitude comparator?	L3	CO3	PO5
9	How many output lines does a 3-to-8 decoder have?	L3	CO3	PO3
10	Design a 4-bitpriority encoder?	L5	CO3	PO4
11	Differentiate multiplexer and demultiplexer?	L4	CO3	PO3
12	Explain the working of 8:1multiplexer?	L5	CO3	PO2
	Part – B (L <mark>ong Answ</mark> er Questions)			
13	Design full adder with two half adders and OR gate?	L5	C03	PO3
14	Design a 4-bit adder-subtractor circuit and explain the	L5	C03	PO3
	operation in detail?			
15	Explain the functionality of a 3 to 8 line decoder with a	L5	C03	PO1
	neat diagram?			
16	With the help of a block diagram explain the working of a	L5	C03	PO1
	serial adder?			
17	With the help of a logic diagram explain a parallel	L5	C03	PO1
	adder/subtractor using 2's complement system?			
18	Explain the functionality of a 8*1multiplexer with neat	L5	C03	PO1
	diagram?			
19	Design 1-bit comparator using logic gates?	L5	CO3	PO4
20	With the help of a logic diagram and truth table	L5	CO3	PO3
	explain (a) a 1-line to 4-line demultiplexer and			
	(b) a 1-line to 8-line demultiplexer.			
21	Construct 16:1 multiplexer using 8:1 and 2:1multiplexer?	L3	CO3	PO3
	Tour roots to succes	00	• •	
	<u>UNIT-IV</u>			
	SEQUENTIAL LOGIC			
S.No	Questions	ВТ	CO	PO
	Part – A (Short Answer Questions)	1		
			 	DO2
1	Differentiate combinational and sequential logic circuits?	L4	CO4	PO3

	counter?			
3	Illustrate applications of shift registers?	L4	CO4	PO3
4	What is a flip flop?	L3	CO4	PO3
5	Classify the basic types of counters?	L3	CO4	PO3
6	What are the two types of flip-flops?	L3	CO4	PO3
7	Explain the operation of a JK flip-flop?	L5	CO4	PO1
8	Distinguish between synchronous and asynchronous	L4	CO4	PO2
	latches?			
9	Explain the operation of a SR flip-flop?	L5	CO4	PO1
10	What is meant by race around condition in flip-flop?	L3	CO4	PO3
11	Explain what do you mean a stable state?	L5	CO4	PO1
12	What is a register?	L3	CO4	PO3
	Part – B (Long Answer Questions)			
13	Differentiate combinational and sequential logic circuits?	L4	CO4	PO3
14	Explain about design procedure of sequential circuit?	L5	CO4	PO3
15	Explain the working of the following:	L5	CO4	PO3
	(a) J-K Flip-flop (b) SR Flip-flop (c) D Flip-flop			
16	What are the different types of shift registers? Explain any	L3	CO4	PO3
	one type of shift register?			
17	Explain about parallel in serial out shift register with neat	L5	CO4	PO3
	diagram?			
18	Design a 3-bit synchronous counter using JK Flip-flop?	L5	CO4	PO3
19	Draw the circuit diagram of a 3-bit ripple counter using JK	L3	CO4	PO1
20	flip-flops and explain its operation? (a) What is state assignment? Explain with a suitable	L3	CO4	PO1
	example?			
	(b) Explain the working of the following:			
7	(a) D Flip-flop (b) T Flip-flop	25		
21	Design a 4-bit Ring counter?	L5	CO4	PO4
22	Design and draw the 3 bit up-down Asynchronous counter?	L5	CO4	PO4
23	Explain the state reduction and state assignment in	L5	CO4	PO3
	designing sequential circuit. Consider one example in			
	the above process?			
	<u>UNIT-V</u>			
	MEMORIES AND ASYNCHRONOUS SEQUENTIAL LO	GIC		

S.No	Questions	BT	СО	PO
Part – A (Short Answer Questions)				
1	Explain the block diagram of memory unit?	L5	CO5	PO3
2	Explain in detail about RAM and types of RAM?	L5	CO5	PO3
3	Illustrate the features of a ROM cell?	L3	CO5	PO3
4	Explain in detail about ROM and types of ROM?	L5	CO5	PO3
5	Differentiate static and dynamic RAM?	L4	CO5	PO3
6	Explain what is the use of cache memory?	L5	CO5	PO3
7	Explain PLA with the help of block diagram?	L5	CO5	PO3
8	Explain the advantage of PLA over ROMs?	L5	CO5	PO3
	Part – B (Long Answer Questions)			
9	Sketch the PLA program table for the four Boolean	L5	CO5	PO3
	functions .Minimize the number of product terms?			
	$A(x,y,z)=\Sigma(0,1,3,5) B(x,y,z)=\Sigma(2,6)$			
	$C(x,y,z)=\Sigma(1,2,3,5,7) D(x,y,z)=\Sigma(0,1,6)$			
	Discuss about Programmable Array	L3	CO5	PO3
10	Logic(PAL)?			
11	Explain the logic implementation of a 32X4 bit	L5	CO5	PO1
	ROM using decoder of a suitable size?			
12	List the PLA programming table for the BCD	L3	CO5	PO3
	to Excess -3 converter?			
	Solve the following two Boolean functions using a PLA	L5	CO5	PO3
13	having 3-inputs,4 product terms and 2 outputs?			
	$F1(A,B,C)=\Sigma(0,1,2,4)$			
	$F2(A,B,C)=\Sigma(0,5,6,7)$			
	Draw the logic diagram of Programmable Logic Array	L3	CO5	PO1
13	with 3 inputs, 4 product terms and 2 outputs?			
14	What are different types of ROMs and compare them?	L3	CO5	PO1
15	Differentiate the PROM, PLA and PLD?	L4	CO5	PO3
	Implement the following two Boolean			
	functions with a PLA.			
	$F1(A,B,C) = \Sigma m(0,1,2,4)$			
	$F2(A,B,C)=\Sigma m(0,5,6,7)$			

* Blooms Taxonomy Level (BT) (L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analyzing; L5 – Evaluating; L6 – Creating)

your roots to success...