
Experimental Staking Module —
Implementation Phase (Lean MVP) for
kBTC
To: Kintsugi / Interlay Community​
Date: August 10, 2025​

Preface — architectural direction (kept concise)​
We initially assessed a native Substrate pallet approach. Given the ecosystem’s
shift toward JAM, broad EVM compatibility, and near‑term PolkaVM
prospects, we prioritize an EVM‑first module with a clear path to PolkaVM.

1) Executive summary
This document specifies a Lean MVP (Phase 1) for the kBTC staking module, intentionally
scoped to be feasible within ~3 months and within a $25k budget. The module enables
staking kBTC to accrue “Points” and, optionally, to mint an external ERC‑20 reward
token if an address with MINTER_ROLE is provided. Heavy features (slashing, complex
oracles, dynamic bonding curves, full governance integrations) are deferred to Phase 2.

Lean MVP outcomes:

●​ On‑chain:
○​ StakingVault (kBTC lock/unstake with cooldown).
○​ PointsEmitter with fixed‑rate emissions per block or per second,

accruing to stakers pro rata.
○​ Optional ExternalTokenMinter adapter to mint rewards on a provided

ERC‑20 (role‑gated).

●​ Client: minimal TypeScript SDK (stake/unstake/claim, read accruals).
●​ UI (alpha‑lite): single‑page stake/unstake/claim + balance/points view.
●​ Quality: unit & integration tests; coverage ≥ 80% on core; Slither static analysis;

basic invariant checks (no reentrancy, conservation of value).
●​ Ops: testnet deployment scripts/configs; short runbook (emergency pause,

parameter changes); basic dashboard.

Out of scope (Phase 1): Slashing, RiskOracle, dynamic curves, governance
adapters/timelocks, subgraph, complex monitoring.

2) Context and strategic motivation
●​ Why EVM‑first: faster iteration, better tooling, immediate dApp composability;

PolkaVM kept as a forward path via interface abstraction.
●​ Why Lean MVP: deliver a usable staking‑to‑points/rewards primitive quickly,

collect telemetry and user feedback, then graduate to Phase 2.

3) Purpose and value proposition
●​ Utility for kBTC: non‑custodial staking that generates Points and, optionally,

external rewards.
●​ Low‑friction integrations: dApps can read Points for boosts, allowlists, fee tiers, or

governance weight; or plug an ERC‑20 for direct incentives.
●​ Replicability: simple primitives that other parachains can reuse.

4) Implementation scope — what will be delivered
(Phase 1)

1.​ Contracts (Solidity)
○​ StakingVault: deposit/withdraw, cooldown, per‑user accounting, pause

guard.
○​ PointsEmitter: fixed emission rate; pro rata accrual by stake‑time; claim to

non‑transferable Points balance (event + mapping).
○​ ExternalTokenMinter (optional): if configured with an ERC‑20 that grants

minter rights, mirror claims as token mints.
○​ Admin: set emission rate, pause/unpause, set cooldown; owner as 2‑of‑3

multisig (placeholder).
2.​ SDK (TypeScript)

○​ Functions: stake(), requestUnstake(), executeUnstake(),
claimPoints(), claimExternal(), getAccrued(); typings and basic
examples.

3.​ UI alpha‑lite
○​ Single screen: stake/unstake/claim; balances; read‑only emission rate;

warnings on cooldowns/pauses.
4.​ Quality & ops

○​ Tests: unit + integration; coverage ≥ 80%; basic invariant suite.
○​ Static analysis (Slither); gas snapshots for core paths.
○​ Scripts for devnet/testnet; minimal runbook (pause, parameter changes,

upgrade placeholder).

De‑scoped to Phase 2: slashing policies, oracle adapters, dynamic reward curves,
timelocked governance, full subgraph/indexing, advanced dashboards.

5) Technical approach & minimal architecture

●​ Non‑custodial: users hold kBTC in StakingVault; accounting uses shares with
precision math.

●​ Simple emissions: fixed emissionPerSecond (or per block) distributed via a
global cumulative index to avoid per‑user loops.

●​ Points model: non‑transferable by default (on‑chain balance + events). Optional
mirroring to an external ERC‑20 if provided.

●​ Upgrade posture: proxy avoided in Phase 1; instead, small contracts, a clear
migration path, and a pause switch.

●​ Observability: events for Stake, UnstakeRequested, UnstakeExecuted,
PointsAccrued, PointsClaimed, EmissionRateUpdated, Paused.

6) Test strategy (lean)
●​ Unit/integration: deposit/withdraw flows, accrual math, cooldown edge cases.
●​ Invariants (basic): conservation of shares, monotonic global index, no reentrancy,

no stuck funds.
●​ Static analysis: Slither baseline; manual review checklist.
●​ Coverage target: ≥ 80% on core modules.
●​ Gas checks: deposit/unstake/claim snapshots.

7) UI/UX — alpha‑lite scope
●​ Minimal stake/unstake/claim; balances & accrued Points; copy for

cooldowns/pauses; hardware‑wallet‑friendly.
●​ No governance panels or advanced risk views in Phase 1.

8) Timeline & milestones (≈ 12 weeks)
1.​ Weeks 1–2 — Kickoff & scaffolding: finalize lean spec; repos; CI; Slither in CI;

minimal design doc.
2.​ Weeks 3–5 — Contracts v1: StakingVault + PointsEmitter; unit tests; gas

baselines.

3.​ Week 6 — Optional adapter: ExternalTokenMinter; integration tests.
4.​ Weeks 7–8 — SDK + UI alpha‑lite: core flows wired to testnet.
5.​ Week 9 — Hardening: invariants, static‑analysis pass, pause drills; runbook v1.
6.​ Week 10 — Public testnet RC: community testing; bug triage.
7.​ Weeks 11–12 — RC2 & readiness: fixes, docs, handover; mainnet checklist (staged

caps).

9) Budget (fixed, Phase 1) — $25,000
●​ Smart contracts (design/build/tests): $10,000
●​ SDK + UI alpha‑lite: $6,000
●​ QA & security (tests, Slither, invariants): $4,000
●​ DevOps & testnet ops: $2,000
●​ PM/coordination & contingency: $3,000

External audits and bug bounties are out of scope for this budget and
recommended for Phase 2.

10) Success metrics (Phase 1)
●​ Contracts deployed to public testnet; ≥ 50 successful stake/claim transactions

without incidents.
●​ Coverage ≥ 80%; zero high‑severity static‑analysis findings outstanding.
●​ Emission math verified against a reference model across ≥ 10 scenarios.
●​ SDK and UI alpha‑lite used by at least two integration partners or community

testers.
●​ Mainnet readiness checklist completed with staged caps defined.

11) Risks & mitigations
●​ Parameter misconfiguration (emission/cooldown): guarded by a pause switch;

testnet telemetry before mainnet.
●​ Integration drift: stable SDK; examples; semantic versioning.
●​ Upgrade needs: small contracts + migration guide; proxy deferred to Phase 2 to

reduce complexity.
●​ Security gaps: basic invariants + Slither; external audit planned for Phase 2.

12) Governance, licensing & transparency
●​ Public repos; MIT/Apache‑2.0 for code; CC BY 4.0 for docs.
●​ Lightweight changelog; parameters adjustable by multisig (Phase 1),

timelock/governance deferred to Phase 2.
●​ Biweekly status notes during the 12‑week window.

13) Team & roles (lean)
●​ Tech Lead / Solidity — contracts & reviews.
●​ Frontend/SDK — UI alpha‑lite and TS client.
●​ QA/Sec (part‑time) — tests, invariants, Slither.
●​ DevOps (part‑time) — CI, deployments, testnet ops.
●​ PM (part‑time) — planning, coordination, reporting.

14) Dependencies & assumptions
●​ EVM‑compatible environment; kBTC token interface; testnet faucet or provisioning.
●​ (Optional) external ERC‑20 with MINTER_ROLE granted to the adapter.
●​ Community feedback during public testnet.

15) Next steps (Phase 2 candidates)
●​ Add slashing, risk oracles, dynamic reward curves, and timelocked

governance.
●​ Formal verification/audit and richer dashboards/subgraph.
●​ Portability work toward PolkaVM.

Lean, practical, and shippable in ~12 weeks with a $25k budget.

	Experimental Staking Module — Implementation Phase (Lean MVP) for kBTC
	1) Executive summary
	2) Context and strategic motivation
	3) Purpose and value proposition
	4) Implementation scope — what will be delivered (Phase 1)
	5) Technical approach & minimal architecture
	6) Test strategy (lean)
	7) UI/UX — alpha‑lite scope
	8) Timeline & milestones (≈ 12 weeks)
	9) Budget (fixed, Phase 1) — $25,000
	10) Success metrics (Phase 1)
	11) Risks & mitigations
	
	12) Governance, licensing & transparency
	13) Team & roles (lean)
	14) Dependencies & assumptions
	15) Next steps (Phase 2 candidates)

