Experimental Staking Module —
Implementation Phase (Lean MVP) for

kBTC

To: Kintsugi / Interlay Community
Date: August 10, 2025

Preface — architectural direction (kept concise)

We initially assessed a native Substrate pallet approach. Given the ecosystem’s
shift toward JAM, broad EVM compatibility, and near-term PolkaVM
prospects, we prioritize an EVM-first module with a clear path to PolkaVM.

1) Executive summary

This document specifies a Lean MVP (Phase 1) for the kBTC staking module, intentionally
scoped to be feasible within ~3 months and within a $25k budget. The module enables
staking kBTC to accrue “Points” and, optionally, to mint an external ERC-20 reward
token if an address with MINTER_ROLE is provided. Heavy features (slashing, complex
oracles, dynamic bonding curves, full governance integrations) are deferred to Phase 2.

Lean MVP outcomes:

e On-chain:
o StakingVault (kBTC lock/unstake with cooldown).
o PointsEmitter with fixed-rate emissions per block or per second,
accruing to stakers pro rata.
o Optional ExternalTokenMinter adapter to mint rewards on a provided
ERC-20 (role-gated).

Client: minimal TypeScript SDK (stake/unstake/claim, read accruals).
Ul (alpha-lite): single-page stake/unstake/claim + balance/points view.
Quality: unit & integration tests; coverage 2 80% on core; Slither static analysis;
basic invariant checks (no reentrancy, conservation of value).

e Ops: testnet deployment scripts/configs; short runbook (emergency pause,
parameter changes); basic dashboard.

Out of scope (Phase 1): Slashing, RiskOracle, dynamic curves, governance
adapters/timelocks, subgraph, complex monitoring.

2) Context and strategic motivation

e Why EVM-first: faster iteration, better tooling, immediate dApp composability;
PolkaVM kept as a forward path via interface abstraction.

e Why Lean MVP: deliver a usable staking-to-points/rewards primitive quickly,
collect telemetry and user feedback, then graduate to Phase 2.

3) Purpose and value proposition

e Utility for kBTC: non-custodial staking that generates Points and, optionally,
external rewards.

e Low-friction integrations: dApps can read Points for boosts, allowlists, fee tiers, or
governance weight; or plug an ERC-20 for direct incentives.

e Replicability: simple primitives that other parachains can reuse.

4) Implementation scope — what will be delivered
(Phase 1)

1. Contracts (Solidity)

o

StakingVault: deposit/withdraw, cooldown, per-user accounting, pause
guard.

PointsEmitter: fixed emission rate; pro rata accrual by stake-time; claim to
non-transferable Points balance (event + mapping).
ExternalTokenMinter (optional): if configured with an ERC-20 that grants
minter rights, mirror claims as token mints.

Admin: set emission rate, pause/unpause, set cooldown; owner as 2-of-3
multisig (placeholder).

2. SDK (TypeScript)

o

Functions: stake (), requestUnstake(), executeUnstake(),

claimPoints(), claimExternal(), getAccrued(); typings and basic
examples.

3. Ul alpha-lite

o

Single screen: stake/unstake/claim; balances; read-only emission rate;
warnings on cooldowns/pauses.

4. Quality & ops

@)
O

o

Tests: unit + integration; coverage = 80%; basic invariant suite.

Static analysis (Slither); gas snapshots for core paths.

Scripts for devnet/testnet; minimal runbook (pause, parameter changes,
upgrade placeholder).

De-scoped to Phase 2: slashing policies, oracle adapters, dynamic reward curves,
timelocked governance, full subgraph/indexing, advanced dashboards.

5) Technical approach & minimal architecture

e Non-custodial: users hold kBTC in StakingVault; accounting uses shares with
precision math.

e Simple emissions: fixed emissionPerSecond (or per block) distributed via a
global cumulative index to avoid per-user loops.

e Points model: non-transferable by default (on-chain balance + events). Optional
mirroring to an external ERC-20 if provided.

e Upgrade posture: proxy avoided in Phase 1; instead, small contracts, a clear
migration path, and a pause switch.

e Observability: events for Stake, UnstakeRequested, UnstakeExecuted,

PointsAccrued, PointsClaimed, EmissionRateUpdated, Paused.

6) Test strategy (lean)

Unit/integration: deposit/withdraw flows, accrual math, cooldown edge cases.
Invariants (basic): conservation of shares, monotonic global index, no reentrancy,
no stuck funds.

Static analysis: Slither baseline; manual review checklist.

Coverage target: 2 80% on core modules.

Gas checks: deposit/unstake/claim snapshots.

7) UI/lUX — alpha-lite scope

e Minimal stake/unstake/claim; balances & accrued Points; copy for
cooldowns/pauses; hardware-wallet-friendly.
e No governance panels or advanced risk views in Phase 1.

8) Timeline & milestones (= 12 weeks)

1. Weeks 1-2 — Kickoff & scaffolding: finalize lean spec; repos; Cl; Slither in Cl;
minimal design doc.

2. Weeks 3-5 — Contracts v1: StakingVault + PointsEmitter; unit tests; gas
baselines.

Week 6 — Optional adapter: ExternalTokenMinter; integration tests.

Weeks 7-8 — SDK + Ul alpha-lite: core flows wired to testnet.

Week 9 — Hardening: invariants, static-analysis pass, pause drills; runbook v1.
Week 10 — Public testnet RC: community testing; bug triage.

Weeks 11-12 — RC2 & readiness: fixes, docs, handover; mainnet checklist (staged
caps).

No ok ow

9) Budget (fixed, Phase 1) — $25,000

Smart contracts (design/build/tests): $10,000
SDK + Ul alpha-lite: $6,000

QA & security (tests, Slither, invariants): $4,000
DevOps & testnet ops: $2,000

PM/coordination & contingency: $3,000

External audits and bug bounties are out of scope for this budget and
recommended for Phase 2.

10) Success metrics (Phase 1)

e Contracts deployed to public testnet; 2 50 successful stake/claim transactions
without incidents.
Coverage 2 80%; zero high-severity static-analysis findings outstanding.
Emission math verified against a reference model across 2 10 scenarios.
SDK and Ul alpha-lite used by at least two integration partners or community
testers.

e Mainnet readiness checklist completed with staged caps defined.

11) Risks & mitigations

e Parameter misconfiguration (emission/cooldown): guarded by a pause switch;
testnet telemetry before mainnet.
Integration drift: stable SDK; examples; semantic versioning.
Upgrade needs: small contracts + migration guide; proxy deferred to Phase 2 to
reduce complexity.

e Security gaps: basic invariants + Slither; external audit planned for Phase 2.

12) Governance, licensing & transparency

Public repos; MIT/Apache-2.0 for code; CC BY 4.0 for docs.
Lightweight changelog; parameters adjustable by multisig (Phase 1),
timelock/governance deferred to Phase 2.

e Biweekly status notes during the 12-week window.

13) Team & roles (lean)

Tech Lead / Solidity — contracts & reviews.
Frontend/SDK — Ul alpha-lite and TS client.
QA/Sec (part-time) — tests, invariants, Slither.
DevOps (part-time) — CI, deployments, testnet ops.
PM (part-time) — planning, coordination, reporting.

14) Dependencies & assumptions

e EVM-compatible environment; kBTC token interface; testnet faucet or provisioning.
e (Optional) external ERC-20 with MINTER_ROLE granted to the adapter.
e Community feedback during public testnet.

15) Next steps (Phase 2 candidates)

e Add slashing, risk oracles, dynamic reward curves, and timelocked
governance.
Formal verification/audit and richer dashboards/subgraph.
Portability work toward PolkaVM.

Lean, practical, and shippable in ~12 weeks with a $25k budget.

	Experimental Staking Module — Implementation Phase (Lean MVP) for kBTC
	1) Executive summary
	2) Context and strategic motivation
	3) Purpose and value proposition
	4) Implementation scope — what will be delivered (Phase 1)
	5) Technical approach & minimal architecture
	6) Test strategy (lean)
	7) UI/UX — alpha‑lite scope
	8) Timeline & milestones (≈ 12 weeks)
	9) Budget (fixed, Phase 1) — $25,000
	10) Success metrics (Phase 1)
	11) Risks & mitigations
	
	12) Governance, licensing & transparency
	13) Team & roles (lean)
	14) Dependencies & assumptions
	15) Next steps (Phase 2 candidates)

