
Performance & Memory Impacts
of a Hopefully Final Version
of a Generational DOM GC

Kentaro Hara (haraken@chromium.org)
2012 Oct 19

Summary: This document demonstrates performance & memory impacts of a hopefully final
version of a generational DOM GC. The impacts are promising:

- For micro benchmarks and Dromaeo, the generational DOM GC significantly reduced
the maximum stop time and improved throughput.

- For real world applications, minor GC cycles of the generational DOM GC freed a
substantial amount of memory (24 MB for Facebook, 235 MB for Google Calendar) with
acceptable overhead (~10 ms per minor GC cycle). For Facebook, Gmail, Google
Presentation and Google Calendar, minor GC cycles reclaimed more than 40% of all
Node wrappers.

(Note: This document just explains the results of performance & memory investigations. Please
read this document first.)

Experimental settings
Evaluation in the most pathological case
Evaluation in micro benchmarks

Micro benchmarks
Overall performance
Break-down of the non-generational / generational DOM GC
How much work minor GC cycles did

Evaluation in Dromaeo
Overall performance
Break-down of the non-generational / generational DOM GC
How much work minor GC cycles did

Evaluation in real world applications
Real world applications
Break-down of the generational DOM GC
How much work minor GC cycles did

Summary

1

mailto:haraken@chromium.org
https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#
https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#
https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#

Experimental settings
Experimental settings are as follows:

- Chromium r161309
- WebKit r130715
- V8 r12691
- Xeon E5520 2.27GHz x 6 cores with hyper-threading disabled
- 24 GB of memory
- Linux 2.6.38.8

In this document, a non-generational DOM GC means the GC in the current WebKit + V8. A
generational DOM GC means the GC we have been proposing in this document. (See the V8
side patch and the WebKit side patch for more details.)

Evaluation in the most pathological case
To observe the performance for the most pathological case, I measured the execution time of
each iteration of the following code:

for (var iter = 0; iter < 300; iter++) { // each iteration
 for (var i = 0; i < 100000; i++)
 document.createElement(“div”);
}

2

https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#
https://chromiumcodereview.appspot.com/11085015/
https://chromiumcodereview.appspot.com/11085015/
https://bugs.webkit.org/attachment.cgi?id=168144&action=review

Fig.1 Execution time of 100000 createElement()s

Fig.1 shows the execution time of each iteration, which consists of 100000 createElement()s.
From Fig.1, we can observe the following points:

- The maximum stop time is 4072 ms for the non-generational DOM GC and 348 ms for
the generational DOM GC.

- The median time is 70 ms for the non-generational DOM GC and 63 ms for the
generational DOM GC.

- The average time is 123 ms for the non-generational DOM GC and 118 ms for the
generational DOM GC.

In summary, the generational DOM GC significantly reduces the maximum stop time and slightly
improves throughput.

3

(Note: If the generational DOM GC could reclaim all Nodes in minor GC cycles, the execution
times of the generational DOM GC would become constant. So you may wonder why the
execution times are not constant. The reason is that not all Nodes are reclaimed by minor GC
cycles due to the GC complexity. I will explain the details later.)

Evaluation in micro benchmarks

Micro benchmarks
I prepared the following 4 micro benchmarks, which will be most affected by GC performance:

// [createElement]
// Create a lot of Elements
for (var i = 0; i < 100000; i++)
 document.createElement("div");

// [appendChild-1]
// Construct a tree by appendChild(), and then make the tree
unreachable
for (var i = 0; i < 50000; i++) {
 var div = document.createElement("div");
 for (var j = 0; j < 100; j++)
 div.appendChild(document.createElement("div"));
}

// [appendChild-2]
// Construct a tree by appendChild(), and then keep the tree
reachable
var div = document.createElement("div");
for (var i = 0; i < 50000; i++) {
 for (var j = 0; j < 100; j++)
 div.appendChild(document.createElement("div"));
}

function binTree(depth) {
 return depth == 0 ? "" : ("<div>" + binTree(depth - 1) +
binTree(depth - 1) + "</div>");
}

// [innerHTML]
// Construct a tree by innerHTML, and then make the tree
unreachable

4

https://bugs.webkit.org/attachment.cgi?id=169542

var html = binTree(4);
for (var i = 0; i < 100000; i++) {
 var div = document.createElement("div");
 div.innerHTML = html;
}

Overall performance

 average
(non-gen
GC) [ms]

median
(non-gen
GC) [ms]

max
(non-gen
GC) [ms]

average
(gen GC)
[ms]

median
(gen GC)
[ms]

max
(gen GC)
[ms]

perf diff

createElement 92.5 55.0 2803 87.9 46.0 264 +5.0%

appendChild-1 5633 6665 6747 5418 5418 5538 +3.8%

appendChild-2 6773 7353 7838 6755 6981 7665 +2.6%

innerHTML 3057 2164 6599 2475 2470 2516 +19.0%

Table.1 Performance comparison (micro benchmarks)

Table.1 shows the performance of the 4 micro benchmarks. The first 3 columns indicate the
average/median/max of the non-generational DOM GC, and the following 3 columns indicate
the average/median/max of the generational DOM GC. perf diff is calculated by 1 - average
(gen GC) / average (non-gen GC).

 (Note: The numbers in Table.1 are the averages/medians/maxes of enough runs. I observed
that standard deviations of these numbers are a bit large due to the GC complexity.)

From Table.1, we can observe the following points:

- The generational DOM GC is faster than the non-generational DOM GC for all micro
benchmarks. This indicates that the throughput of the generational DOM GC is larger
than that of the non-generational DOM GC.

- The maximum stop time of the generational DOM GC is smaller than that of the
non-generational DOM GC, especially for createElement and innerHTML.

- The difference between max and average is smaller in the generational DOM GC than
in the non-generational DOM GC. This indicates that the generational DOM GC is more
stable than the non-generational DOM GC.

5

Break-down of the non-generational / generational DOM GC
To break down the overall performance, I measured how much time is consumed by minor GC
cycles and how much time is consumed by major GC cycles.

Before looking at the results, please keep the following points in mind:

- In the non-generational DOM GC, minor GC cycles do nothing for Nodes. All the
burden is on major GC cycles. Thus, minor GC cycles will finish very quickly and major
GC cycles will take a long time.

- In the generational DOM GC, minor GC cycles can reclaim dead Nodes. However, we
cannot expect that all dead Nodes are reclaimed by minor GC cycles, due to the GC
complexity:

- Normally, wrappers survive two minor GC cycles and then are promoted to the
old space.

- However, in a situation where wrappers are created at high speed (Note: In
particular this situation is likely to happen in micro benchmarks. Even in real
world applications, this is not a rare situation.), the new space becomes 25% full
shortly. If the new space becomes 25% full, wrappers in the new space are
forcibly promoted to the old space without surviving two minor GC cycles. In this
way, wrappers can be promoted to the old space at the first minor GC cycle. In
addition, when a major GC cycle is triggered, all wrappers in the new space are
forcibly promoted to the old space. In summary, the condition under which a
wrapper X is promoted to the old space is as follows:

- The wrapper X survived two minor GC cycles; or

- A major GC cycle is triggered; or

- The new space is 25% full.

- It requires two GC cycles to reclaim wrappers. The first GC cycle disposes the
wrappers. The second GC cycle reclaims the wrappers. Therefore, the only case
where minor GC cycles can reclaim dead wrappers is the case where the
wrappers survive two minor GC cycles. Otherwise (i.e. in a case where wrappers
are promoted to the old space at the first minor GC cycle), the wrappers have to
be reclaimed by the next major GC cycle.

- The size of the new space changes dynamically. The new space can expand or

6

shrink dynamically depending on its saturation.

- The minor GC algorithm is conservative. The algorithm might fail to reclaim
Nodes that are actually dead. Specifically, the Nodes that the minor GC algorithm
can reclaim are only Nodes in a DOM tree X that meets the following condition:

- All wrappers in the DOM tree X have been created since the most recent
minor/major GC cycle. All the wrappers are neither strongly-reachable nor
weakly-reachable.

(Note: These GC heuristics are designed based on the assumption that minor GC cycles cannot
reclaim Nodes. Now minor GC cycles can reclaim a lot of Nodes, we might want to optimize the
heuristics so that the generational DOM GC works more smartly.)

 minor
count

minor
avg
[ms]

minor
max
[ms]

minor
total
[ms]

major
count

major
avg
[ms]

major
max
[ms]

major
total
[ms]

GC
total
[ms]

createElement 1500 1.1 16 1598 9 1687 3852 15187 16785

appendChild-1 1260 1.1 16 1339 8 1658 4534 13265 14604

appendChild-2 1240 1.1 16 1367 7 2274 5208 15923 17290

innerHTML 6 4.5 9 27 2 590 907 1180 1207

Table.2 Break-down of the non-generational DOM GC (micro benchmarks)

 minor
count

minor
avg
[ms]

minor
max
[ms]

minor
total
[ms]

major
count

major
avg
[ms]

major
max
[ms]

major
total
[ms]

GC
total
[ms]

createElement 64 203 223 13017 61 65 69 3977 16994

appendChild-1 40 134 157 5365 37 178 198 6581 11946

appendChild-2 992 2.1 26 2085 6 1721 4703 10324 12409

innerHTML 5 153 402 767 2 233 315 466 1233

Table.3 Break-down of the generational DOM GC (micro benchmarks)

Table.2 and Table.3 show the break-down of the non-generational / generational DOM GC,
respectively. Each column indicates the following values:

7

minor count: How many times minor GC cycles are triggered.

minor avg: The average time of minor GC cycles.

minor max: The maximum time of minor GC cycles.

minor total: The total time consumed by minor GC cycles. minor avg = minor total / minor
count.

major count: How many times major GC cycles are triggered.

major avg: The average time of major GC cycles.

major max: The maximum time of major GC cycles.

major total: The total time consumed by major GC cycles. major avg = major total / major
count.

GC total: The total time consumed by minor and major GC cycles. GC total = minor total
+ major total.

(Note: I measured these GC statistics in a separate run from the run to measure the overall
performance shown in Table.1 (because the overhead to measure the GC statistics is not
ignorable). Thus, comparing the values in Table.1 with the values in Table.2 and Table.3 does
not make sense.)

From Table.2 and Table.3, we can observe the following points:

- In the non-generational DOM GC, a minor GC cycle finishes very quickly. It just takes
1.1 ms or 4.5 ms in average. On the other hand, in the generational DOM GC, a minor
GC cycle takes ~203 ms in average.

- The maximum stop time can be calculated as max(minor max, major max). This value
is much smaller in the generational DOM GC than in the non-generational DOM GC. For
example, for appendChild-1, while the maximum stop time of the non-generational DOM
GC is 4534 ms, the maximum stop time of the generational DOM GC is 198 ms.

- GC total is smaller in the generational DOM GC than in the non-generational DOM GC.

- One interesting thing is that although GC total of innerHTML is almost the same
between the non-generational DOM GC and the generational DOM GC, the overall
performance of the generational DOM GC is significantly better than the
non-generational DOM GC in Table.1. This would be due to cache efficiency (at the level

8

of hardware cache or at the level of the tcmalloc algorithm). Since the generational DOM
GC can reclaim dead Nodes earlier, the amount of memory used by a program is
reduced, which would lead to the better performance.

How much work minor GC cycles did

 Reclaimed
Nodes

Disposed
Node
wrappers

Promoted Node
wrappers to Old

Minor GC rate

createElemen
t

29700000 29700000 9 100%

appendChild-
1

25186774 25186774 5400 100%

appendChild-
2

15000003 15000561 24894334 37%

innerHTML 6400000 400000 10 100%

Table.4 How much work minor GC cycles did in the generational DOM GC (micro benchmarks)

Next, I measured how much work minor GC cycles did in the generational DOM GC.
Specifically, I measured the following values:

Reclaimed Nodes: The number of Nodes destructed by minor GC cycles. Specifically, I
counted the number of Node destructors called inside weakNodeCallback() called back
by minor GC cycles.

Disposed Node wrappers: The number of Node wrappers disposed by minor GC cycles.
Some Node wrappers might be promoted to the old space and wait for the next major
GC cycle that will reclaim the Node wrappers. Remember that it takes two GC cycles to
reclaim wrappers: the first GC cycle disposes a wrapper, and the second GC cycle
reclaims the wrapper.

Promoted Node wrappers to Old: The number of Node wrappers that are promoted to
the old space. This value does not include the number of Node wrappers that are
disposed just after the promotion (i.e. this value does not include the number of Node
wrappers that are promoted to the old space and just waiting for the next major GC cycle
that will reclaim the Node wrappers). Also this value does not include the number of
non-Node wrappers, which we are not interested in now.

9

http://code.google.com/codesearch#OAMlx_jo-ck/src/third_party/WebKit/Source/WebCore/bindings/v8/DOMDataStore.cpp&exact_package=chromium&q=domdatastore&type=cs&l=147

Minor GC rate: The rate of Node wrappers that are disposed by minor GC cycles to the
whole Node wrappers. This value is calculated by Disposed Node wrappers / (Disposed
Node wrappers + Promoted Node wrappers to Old). This value indicates “how helpful
minor GC cycles are”.

From Table.4, we can observe the following points:

- For createElement, appendChild-1 and innerHTML, 100% of Node wrappers are
disposed by minor GC cycles. This is an expected behavior. Minor GC cycles are super
helpful.

Evaluation in Dromaeo
I conducted the same experiment for Dromaeo.

Overall performance

 average (non-gen
GC) [runs/s]

average (gen GC)
[runs/s]

perf diff

dom-attr 6309.95 6352.98 +0.68%

dom-modify 3866.63 4173.96 +7.95%

dom-query 786324.76 784739.41 -0.20%

dom-traverse 2592.00 2578.67 -0.51%

Table.5 Performance comparison (Dromaeo)

Table.5 shows the performance of Dromaeo. Note that dom-modify is the only benchmark that
will be affected by GC performance. dom-attr, dom-query and dom-traverse do not create a lot
of Nodes. From Table.5, we can observe 8% speed-up for dom-modify.

Break-down of the non-generational / generational DOM GC

 minor
count

minor
avg
[ms]

minor
max
[ms]

minor
total
[ms]

major
count

major
avg
[ms]

major
max
[ms]

major
total
[ms]

GC
total
[ms]

dom-attr 440 0.0 1 2 107 4.2 8 452 454

10

http://dromaeo.com/?dom

dom-modify 402 1.4 21 577 46 155 910 7134 7711

dom-query 540 0.0 1 3 1 5.0 5 5 8

dom-traverse 4 1.0 1 4 0 0.0 0 0 4

Table.6 Break-down of the non-generational DOM GC (Dromaeo)

 minor
count

minor
avg
[ms]

minor
max
[ms]

minor
total
[ms]

major
count

major
avg
[ms]

major
max
[ms]

major
total
[ms]

GC
total
[ms]

dom-attr 680 0.0 1 3 109 4.2 8 463 466

dom-modify 452 10 343 4763 52 21 152 1127 5890

dom-query 480 0.0 1 3 1 5.0 5 5 8

dom-traverse 4 1.0 1 4 0 0.0 0 0 4

Table.7 Break-down of the generational DOM GC (Dromaeo)

Table.6 and Table.7 show the break-down of the non-generational / generational DOM GC.
Focusing on dom-modify, the generational DOM GC succeeds in significantly reducing the time
consumed by major GC cycles (7134 ms → 1127 ms) instead of increasing the time consumed
by minor GC cycles (577 ms → 4763 ms). As a result, the GC total time is significantly reduced
(7711 ms → 5890 ms).

How much work minor GC cycles did

 Reclaimed
Nodes

Disposed
Node
wrappers

Promoted Node
wrappers to Old

Minor GC rate

dom-attr 247 222 204 52%

dom-modify 13003980 8207561 1376 100%

dom-query 27 149 593 20%

dom-traverse 202 175 1358 11%

Table.8 How much work minor GC cycles did in the generational DOM GC (Dromaeo)

11

Table.8 shows how much work minor GC cycles did in the generational DOM GC. Focusing on
dom-modify, 100% of DOM nodes are disposed by minor GC cycles. Perfect.

Evaluation in real world applications

Real world applications
Finally, I measured the performance & memory impacts of the generational DOM GC on real
world applications. Specifically, I manually crawled the following web applications for 2 mins and
measured the GC behavior (a.k.a. network stalking):

- Facebook
- Twitter
- Gmail
- Google Docs
- Google SpreadSheet
- Google Presentation
- Google Calendar

I conducted this experiment for the generational DOM GC only. Because the manual crawling is
not reproducible, it does not make sense to compare the results between the non-generational
DOM GC and the generational DOM GC.

Break-down of the generational DOM GC

 minor
count

minor
avg
[ms]

minor
max
[ms]

minor
total
[ms]

major
count

major
avg
[ms]

major
max
[ms]

major
total
[ms]

GC
total
[ms]

Facebook 28 8.2 15 231 14 33 100 462 693

Twitter 17 8.5 19 144 10 28 75 285 429

Gmail 14 9.2 18 129 9 39 128 356 485

Docs 24 9.5 20 228 7 24 47 168 396

Spreadsheet 9 2.0 4 18 16 19 48 297 315

Presentation 52 5.6 17 292 7 24 70 171 463

Calendar 103 2.5 10 260 18 39 90 705 965

12

Table.9 Break-down of the generational DOM GC (real world applications)

Table.9 shows the break-down of the generational DOM GC. We can observe the following
points:

- The average time of minor GC cycles is ~10 ms in average. The maximum time of
minor GC cycles is ~20 ms. This would be acceptable for a stop time of minor GC
cycles. (When I observed 300 ms~ stop time of minor GC cycles for micro benchmarks
in Table.3, I was afraid that such a heavy minor GC would not be acceptable. However,
such a pathological case seems not to happen in real world applications.)

- On the other hand, the average time of major GC cycles is ~40 ms. The maximum time
of major GC cycles is ~705 ms.

- One interesting thing is that the GC total time is smaller than I expected. Although I
manually crawled each application for 2~ mins, the GC total time is just ~965 ms.

How much work minor GC cycles did

 Reclaimed
Nodes

Disposed
Node wrappers

Promoted Node
wrappers to Old

Minor GC
rate

Freed memory

Facebook 59010 17156 19780 46% 24.7 MB

Twitter 97149 5450 10697 34% 8.07 MB

Gmail 7941 3858 5201 43% 1.90 MB

Docs 3060 2511 18678 12% 1.72 MB

Spreadsheet 1452 958 1917 33% 0.51 MB

Presentation 60265 36975 28525 56% 35.3 MB

Calendar 1452833 7308 11190 40% 235 MB

Table.10 How much work minor GC cycles did in the generational DOM GC (real world

applications)

Table.10 shows how much work minor GC cycles did in the generational DOM GC. Freed
memory indicates the amount of memory freed inside Node destructors triggered by minor GC
cycles. I measured the amount by hooking TcMalloc. From Table.10, we can observe the
following points:

13

- For Facebook, Gmail, Presentation and Calendar, the minor GC rate is 40% or more.
This implies that minor GC cycles will reduce the work of major GC cycles by roughly
40% or more. This will reduce the maximum stop time of major GC cycles.

- Minor GC cycles freed 25 MB for Facebook, 35 MB for Presentation, and 235 MB for
Calendar.

Overall, the fact that minor GC cycles can free a substantial amount of memory just with the
overhead of ~10 ms per cycle demonstrates the effectiveness of the generational DOM GC.

Summary
This document demonstrated performance & memory impacts of a hopefully final version of a
generational DOM GC. The impacts are promising:

- For micro benchmarks and Dromaeo, the generational DOM GC significantly reduced
the maximum stop time and improved throughput.

- For real world applications, minor GC cycles of the generational DOM GC freed a
substantial amount of memory (24 MB for Facebook, 235 MB for Google Calendar) with
acceptable overhead (~10 ms per minor GC cycle). For Facebook, Gmail, Google
Presentation and Google Calendar, minor GC cycles reclaimed more than 40% of all
Node wrappers.

14

https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#
https://docs.google.com/a/google.com/document/d/16DeHrzkm3cO9XCPT1aK3Y5qgUxXB3RFmueqQWYmN2rI/edit#

	Experimental settings
	Evaluation in the most pathological case
	Evaluation in micro benchmarks
	Micro benchmarks
	Overall performance
	Break-down of the non-generational / generational DOM GC
	How much work minor GC cycles did

	Evaluation in Dromaeo
	Overall performance
	Break-down of the non-generational / generational DOM GC
	How much work minor GC cycles did

	Evaluation in real world applications
	Real world applications
	Break-down of the generational DOM GC
	How much work minor GC cycles did

	Summary

