
Neural Networks
High level notes

Artificial Neurons

Perceptron
Characteristics
Activation Function
Network
Layer
Single output
Bias
NAND Gate
Multiple Outputs, Same Destination

Sigmoid Neurons
Characteristics
Activation Function

Neural Network Architecture
Input/Output Layer Design
Hidden Layer Design
Types of Networks

Feedforward
Recurrent networks

Handwritten Digit Classifier
Segmentation problem
Network Design

Learning with gradient descent
MNIST data set
Cost Function
Gradient Descent

Implementing our network

Credit​
http://neuralnetworksanddeeplearning.com/chap1.html

http://neuralnetworksanddeeplearning.com/chap1.html

Artificial Neurons

Perceptron
Perceptrons were developed in the 1950s and 1960s… Today, it's more common to use other
models of artificial neurons…

Characteristics
●​ Many binary input values
●​ Single binary output value
●​ Weighted inputs
●​ Inputs are summed
●​ Has a threshold
●​ Activates if sum > threshold

Activation Function

Network

Layer
Depicted as a vertical column of perceptrons (neurons).

Single output
Perceptrons have a single output value. The arrows indicate the output from a perceptron is
used as input to several other perceptrons (easier than one line that splits).

Bias
Edit: no, this is wrong.
Simply negative threshold. Allows a simplified activation function. An inequality against 0. Fire if
sum is > 0, otherwise don’t fire.

Given a threshold -3 as an example, w * x > -3 is equivalent to w * x + 3 > 0. Another way to look
at this. Instead of totalling all inputs and testing if they exceed a threshold, we’ll prime the neuron
with a negative threshold and only fire if the sum of all inputs exceeds 0.

NAND Gate
Imagine a perceptron with a threshold of -3. It therefore has a bias of 3 (-threshold). It will fire if
the sum of all weights * inputs > -3. It will also fire if the sum of all weights * inputs + 3 <= 0.

Imagine it has two inputs with weights of -2.

input w*x + b = sum output
00 -2*0 + -2*0 + 3 = 3 1
10 -2*1 + -2*0 + 3 = 1 1
01 -2*0 + -2*1 + 3 = 1 1
11 -2*1 + -2*1 + 3 = -1 0

Now, we can see the output is 1 unless both inputs are not 1.

Multiple Outputs, Same Destination
A perceptron output can connect multiple times to another’s input. Really, this is the same as a
single connection with twice the weight. So, it doesn’t matter much.

Trainability
In order for a network to learn, it needs to be able to make small changes in the final output
toward the right answer. We’d make a small change to the weights and biases of the neurons in
order to get a small change in output. However, with binary inputs and outputs, a small change in
weights and biases in a perceptron network can radically change the final output. We can cause
a flip from 0 to 1 easily, setting off a chain reaction of radical change. This makes perceptrons not
well suited for controlled learning. We need something better. Like...

Sigmoid Neurons
a.k.a. Logistic Neurons

Largely the same as perceptrons, except the activation function is smoothed by a logistic
function; a sigmoid function.

Characteristics
●​ Many float input values (0-1)
●​ Single output value (0-1) - sigmoid, not linear
●​ Weighted inputs
●​ Inputs are summed
●​ Has a threshold
●​ Activates if sum > threshold

Activation Function

The smoothness of the activation function (sigmoid) means that small changes Δwj in the weights
and Δb in the bias will produce a small change Δoutput in the output from the neuron.

Neural Network Architecture

The above is a 4 layer network with 2 hidden layers. "Hidden" sounds mysterious, it only means
"not an input or an output". Sometimes confusingly called multilayer perceptrons or MLPs,
despite being made up of sigmoid neurons, not perceptrons.

Input/Output Layer Design
The design of the input and output layers in a network is often straightforward. To determine
whether a handwritten image depicts a "9" or not, encode the pixel intensities (scaled 0-1) into the
input neurons. A 64x64 image would have 4,096 input neurons. The output layer would contain
just a single neuron where output < 0.5 = “not a 9" and vice versa.

Fun fact: the human eye has 120-130 million rods and cones each feeding a synapse.

Hidden Layer Design
It's not possible to sum up the design process for the hidden layers with simple rules of thumb.
Neural networks researchers developed many design heuristics for hidden layers. Example, they
can help determine how to tradeoff the number of hidden layers against the time required to train
the network.

Types of Networks

Feedforward
Output from one layer is used as input to the next layer, no loops.

Recurrent networks
Neural networks in which feedback loops are possible.

Recurrent neural nets have been less influential than feedforward networks, in part because the
learning algorithms for recurrent nets are (at least to date) less powerful. Closer in spirit to how
our brains work.

Handwritten Digit Classifier

Segmentation problem
Break up the image into digits.

Segmentation is not so difficult to solve, once you have a good way of classifying individual digits.
One approach is to trial many different ways of segmenting the image, using the individual digit
classifier to score each trial segmentation.

Network Design
We will use a three-layer neural network:

Input layer contains 784=28×28 neurons receiving a pixel intensity float value of 0 (black) to 1
(white). Single hidden layer with 15 neurons. Output layer has 10 neurons, one for each digit.
Can be done with 4 output neurons, treating them as binary (2^4=16 outcomes). Turns out, 10
output neurons learns to recognize the digits better.

Learning With Gradient Descent

MNIST data set
70,000 handwritten digits (see images above) from 250 people and their classifications. 60k for
training, 10k for testing. 28x28 grayscale pixels.

Regard each training input x as a 28×28=784-dimensional vector.
Denote corresponding desired output by y=y(x), where y is a 10-dimensional vector.

If an image, x, depicts a 6, then y(x)=(0,0,0,0,0,0,1,0,0,0)T. “T” indicating transpose row vector to
column vector.

Cost Function
a.k.a loss or objective function

An algorithm letting us find weights and biases so that the output from the network approximates
y(x) for all training inputs x. To quantify how well we're achieving this goal we define a cost
function.

We'll call C the quadratic cost function; it's also sometimes known as the mean squared error or
just MSE. We want to find a set of weights and biases which make the cost, C(w,b), as small as
possible. We'll do that using an algorithm known as gradient descent.

We want the cost of the weights and biases, C(w,b), to be smaller when the outputs, y(x), are
closer to the correct output, a, and larger when the outputs are further from the correct output.
This allows us to quantify progress (or not) after making small changes to the weights and biases.

Gradient Descent
...you lost me at derivatives. Hope I don’t need to know this part, cause I’m skipping it.

In general, it’s a method for solving minimization problems. This entire process has lots of
variables like MNIST, network architecture, weights, biases, etc. It can be minimized. Realizing
this method, we can also minimize the cost function (problem with lots of variables) in the same
way.

...lots of math

Implementing Our Network
..starts with a `git clone`, I can do this :) Python and Numpy here. Wonder if I can re-implement
this in JS? Notes to follow...

	Neural Networks
	
	
	Artificial Neurons
	Perceptron
	Characteristics
	Activation Function
	
	
	
	Network
	Layer
	Single output
	Bias
	NAND Gate
	Multiple Outputs, Same Destination

	Sigmoid Neurons
	Characteristics
	Activation Function

	Neural Network Architecture
	Input/Output Layer Design
	Hidden Layer Design
	Types of Networks
	Feedforward
	Recurrent networks

	Handwritten Digit Classifier
	Segmentation problem
	Network Design

	Learning With Gradient Descent
	MNIST data set
	Cost Function
	Gradient Descent

	Implementing Our Network

