
IATI API Conventions / Standards
This is a 0.1 document produced as the result of a meeting of the IATI community in November
2012 and revised following conversations in January 2013.

A slide deck summarising key issues discussed on the 15th January is here,
There are also some notes from the meeting

IATI API Conventions / Standards
RFC Draft: International Aid Transparency Initiative APIs

What is an IATI API?
Why do we need an API standard?
Balancing standardisation and flexibility
Importing and transforming data
Endpoints

Versioning
Query parameters

Parameter naming
Logic
Query types
Additional parameters

Return formats
Response headers
XML serialisation
CSV Serialisation
JSON serialisation

Common additions
For transactions:
For budgets
Start and end-dates
Hierachical codelists
Other additions?

Aggregation
RESTful URLs
Processing

Other considerations
Workshop Plan

Participants
Modality
Resources
Agenda

1

https://docs.google.com/file/d/0B5qzJROt-jZ0MVU5b0ZnVlZpUkU/edit
https://docs.google.com/document/d/10BzHixZ2QI7ApP3aiCQU0nGxKg1ZECzLeamxNwy1Y1o/edit#heading=h.ln9xb7wv79an

Existing/emerging APIs
User stories for APIs
Resource document

RFC Draft: International Aid Transparency Initiative APIs
This document uses the terms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY
according to RFC2119 (http://www.ietf.org/rfc/rfc2119.txt).

What is an IATI API?
An IATI Application Programming Interface (API) is a programming interface to give access to
all, or a subset of, data published according to the International Aid Transparency Initiative
standard (www.iatistandard.org).

Any APIs MAY serve a range of purposes and offer a range of different features, including
simple access to data, search over data fields, alternative serialisations of data, geographic
search, and returning aggregate figures from data.

Terminology
The following terminology and abbreviations are used in this document:​

●​ Publishers - used to refer to any entity publishing a file using the IATI standard.
Publishers could include donors, implementing agencies and third-parties providing
additional data about an aid activity. Publishers will have produced at least one
organisation or activity file. ​

●​ IATI Standard - includes both the Organisational File and Activity File standards​

●​ Organisation File - is an XML file prepared to the IATI Organisation Standard
(http://iatistandard.org/organisation-standard). ​

●​ Activity File - is an XML file prepared to the IATI Activity Standard
(http://iatistandard.org/activities-standard)​

●​ IATI Activity - is a single aid activity contained within the <iati-activity></iati-activity>
elements of an Activity File XML document. ​

●​ IATI Standard Version - refers to versions of the Organisation and Activity Standards.
These are synchronised, so that an increase in version number of one is matched by an
increase in the version number of the other. A schema is published for each version of
the Organisation and Activity standards​

2

http://www.ietf.org/rfc/rfc2119.txt
http://www.iatistandard.org
http://iatistandard.org/organisation-standard
http://iatistandard.org/activities-standard

●​ IATI Codelists - refers to the codelists provided alongside the IATI Standard. ​

●​ IATI Registry - is a data catalogue that records meta-data on IATI Activity Files, IATI
Organisation Files, and meta-data on Publishers. It is accessible through the Registry
API​

●​ Registry API - provides programmatic access to the data catalogue of available IATI
Activity Files and IATI Organisation Files.

Why do we need an API standard?
The International Aid Transparency Initiative requires that organisations publish XML files (a)
about their organisations; and (b) about aid activities that they are involved in. The
segmentation policy of IATI
(http://iatistandard.org/guides/data-considerations/segmenting-your-data) means that donors
should publish one IATI Activity file per region or country they work in, and that an activity
should only ever be included in one file. This means that users cannot be sure they have found
all the activities for a given country, or a given sector, without searching through all available
IATI Activity files. It also means that there are considerable technical barriers for anyone wishing
to use IATI data, requiring them to download, parse and manipulate XML data.

Many uses of IATI data therefore involve placing the data into some form of data store or
database, and their retrieving it from there, without primary regard to the separate files it was
distributed in. Many such stores of IATI data will provide API access to their contents, and to
analytic functions over the data. If each available service doing so takes a different approach to
providing access to that data, and serialising the results of queries, then users still face a high
barrier when encountering any new platform, and tools built on top of these platforms will need
to be customised for each data store they use. An API Standard will increase the interoperability
of tools for working with IATI data, and will lower the barriers for anyone seeking to use the data.

An API standard can also help developers to address some of the complexity of working with
IATI data by recording common patterns and logic for dealing with difficult issues such as
versioning, double-counting, JSON and CSV serialisation of XML data, and so-on.

Balancing standardisation and flexibility
A structured set of data can be queried in many different ways. The expressive power (and
complexity) of languages like SQL and xQuery demonstrates just how many different ways it
might be possible to query and work with even a small set of IATI data. The goal of an API
Standard is not to replicate these rich query languages, but is to provide some basic common
conventions and patterns for handling and accessing IATI data.

This means that:​

3

http://iatistandard.org/guides/data-considerations/segmenting-your-data

●​ It should allow users to switch between APIs providing comparable features without
making substantial changes to their code or working practice​

●​ It should not prevent API from implementing advanced and specialist features, or
serving particular niche needs

Some user needs will still be best served by processing IATI data directly, rather than using a
data store and API.

Design principles
A number of design principles guide the development of an IATI API.

1) RESTFul API
APIs should follow a RESTful pattern, using URLs for key services, and query string parameters
for any filters and settings to be applied to responses.

2) Fidelity to the IATI standard
The IATI Schema provides clear definitions of a wide range of elements.

Names used in any API should be based closely upon the names in the IATI Standard schemas.
The schemas and code lists provide the authoritative definition of terms. The use of nested
elements in the IATI XML schema is semantically important.
The rendering of element names and structures in different serialisations (e.g. CSV, JSON)
should use predictable rule-based transformations of the element names and structures from
the schema.

3) Query by codes, rather than names
IATI has been designed (a) to support multilingual data; (b) to enable users to review individual
XML files without reference to code list look-up tables. This means there are places where both
a code or reference, and a text description can be given against an element. The text
descriptions of code list entries can vary across language, but the codes will always stay the
same. For this reason, the default behaviour should be to use codes in queries rather than the
text of elements.

4) Accountability and provenance
Most APIs will perform some transformation on the raw IATI XML data they consume. It is
important for users to be able to discover (a) what IATI data any public API covers; (b) what
processes have been applied to data to clean, transform or augment it.

Importing and transforming data
API platforms will generally import and cache IATI XML data before providing access to it

4

through an API. API platforms MAY choose to pre-process or transform the data in some way,
either at import or query time. API platforms should keep a record of any transformations made,
and SHOULD make this accessible in a human readable form. They MAY make it accessible in
a machine readable form.

No convention for expressing this provenance information has yet been agreed.

A number of common transformations are address in a following section.

Endpoints
APIs MAY choose to provide any of the following endpoints. Any additional endpoints SHOULD
be added according to the convention below. In the case of any ambiguity over what to name a
new endpoint please consult with the IATI Technical mailing list.

The endpoints follow the pattern of using the singular name of an element for retrieval of a
single record, and the english plural for endpoints that will list records. Singular endpoints
accept a single value (the record identifier) at the end of the URL. List endpoints accept multiple
parameters (specified below).

The use of separate access/ and aggregate/ endpoints allows a provider to easily use
different back-end systems where this is required to meet the computationally distinct
requirements of returning records in response to a query, and providing totals by
calculation across records.

access/ - for all queries that return lists, collections or individual records

activity/ - for returning a list of activities.

activity/{iati-identifier} - for returning a single activity. APIs SHOULD NOT expose any
identifier other than their iati-identifier.

transaction/ - for returning a list of transactions.

transaction/{transaction-identifier} - for returning a single transaction. ​

Note: {transaction-identifier} is not specified by the standard, and it is possible in
data from multiple sources that transaction/@ref will not be a unique value. For
this reason, APIs providing direct access to individual transactions will need to
create their own transaction-identifier.

organisations/ - for returning a list of organisations based on organisational files

5

organisation/{reporting-org/@ref} - for returning a single organisations details based on
organisation files

A number of entities occur across activities, and have no single unique representation within
IATI Activity or Organisation files. This includes sectors, countries, organisations and
classifications applied to activities. Endpoints may be provided which return a general
description of these entities based upon code lists and/or upon information derived from the
available data. Examples include:

participating-org/ - providing a list of know participating organisations​

(To get just funding organisations use
/access/participating-orgs/?role=Funding)​

participating-org/{@ref} - information on a specific participating organisation​

sector/{@vocabulary} - providing a list of sectors. {@vocabulary} is optional.​

sector/{@vocabulary}/{@code} - providing details of a specific sector​

recipient-country/{@code} - providing details of a specific country​

recipient-region/{@code} - providing details of a specific region

​
aggregate/ - the aggregate endpoint should be used for all aggregations across activities or
organisations.

(Note: some APIs MAY also choose to provide per-activity aggregation: for example, to
add up the total value of transactions by type for an activity, and to add this to the data
returned against that activity. This type of activity-level aggregation is exposed under the
access/ endpoint.)

Under aggregate/ the following common endpoints may be provided:

activity/ - for total numbers of activities in an area

transaction/ - for aggregating transactions

budget/ - for aggregating budget values

planned-disbursement/ - for aggregating planned disbursements

organisation/

6

provenance/ - this endpoint could be used for machine readable provenance data. Not detailed
use case or specification is worked out yet.

about/ - this endpoint should return a human and machine readable description of the API,
including information about the creator, the features the API implements, and any special
considerations for users of the data. No detailed specification for this is worked out yet.

Versioning
An endpoint without version numbers should point to the most recent version of the endpoint.
Version numbers may be prefixed to address a particular version of an API. For example, if the
current version is 1.2 then:

/1.1/access/ talks to version 1.1
/1.2/access/ talks to version 1.2
/access/ talks to version 1.2

Please detail in /about/ and in API responses which version of the IATI standard you are using in
rendering output.

Query parameters
List endpoints MAY accept parameters used to filter their output. APIs MUST accept parameters
as part of the querystring in a GET request. APIs MAY accept parameters in a POST request.

Users may want to query against top-level elements of an IATI Activity or Organisation file, or
against nested elements.

Parameter naming
The default naming pattern for parameters should be:

{parent-element-name}_{element-name}.{attribute-name}

Where the parent is iati-activity or iati-organisation, then {parent-element-name}_ may be
omitted.

When .{attribute-name} is omitted, the API should use a default behaviour based on the
following rules:​

●​ For elements where the schema allows @code or @ref values, then search on the value
of @code or @ref

●​ For elements without @code or @ref specified, then search on the value of the element

7

Examples:
●​ ?sector=60061 searches on //sector[@vocabulary=’DAC’]/@code
●​ ?sector.text =Debt searches on //sector[@vocabulary=’DAC’]/text()
●​ ?participating-org=GB-1-123 searches on //participating-org/@ref
●​ ?participating-org.text=Oxfam searches on //participating-org/text()
●​ ?iati-identifier=GB-1-123 searches on //iati-identifier/text()
●​ ?location_name=Oxford searches on //location/name/text()
●​ ?transaction_value=1000 searches on //transaction/value/text()

Where a default behaviour is provided it MUST be possible to also use the canonical parameter
name. For example, ?sector.code and ?sector should both be valid to search
//sector[@vocabulary=’DAC’]/@code

It MUST be possible to search on the element value with .text.

Logic
When multiple distinct parameters are provided the default behaviour MUST be to combine
these on the basis of ‘AND’.

For example, /access/activities/?recipient-country=AF&reporting-org=GB-1 would lead to the
query:

//iati-activity[recipient-country/@code=’AF’ and reporting-org/@ref=’GB-1’]

Some parameters may accept multiple values. These can be separated with ‘|’ to indicate that
the values should be combined with an ‘OR’ operation. To perform an AND operation the
parameters should be repeated.

For example: /access/activities/?recipient-country=KE|UG would lead to the query:
​ //iati-activity[recipient-country/@code=’KE’ or recipient-country/@code=’UG’]​

whereas /access/activities?receipient-country=KE&recipient-country=UG would lead to the
query:
​ //iati-activity[recipient-country/@code=’KE’ and recipient-country/@code=’UG’]

APIs MAY choose to allow wildcards in searches

●​ * = any value
●​ % = a single character

Query types
By default ‘=’ means exact match. (The additional ?q and ?query-fields parameters detailed
below can be used to provide a default fuzzy match search over fields)

A query can be modified using the following suffixes on the parameter. These are preceded by a

8

double underscore. The following SHOULD be provided by all APIs for free text, date or
numerical parameters:

●​ __gt - greater than (numerical and date parameters)
●​ __lt - less than (numerical and date parameters)
●​ __contains - contains (free text parameters)
●​ __icontains - case insensitive contains (free text parameters)
●​ __iexact - case insensitive exact match (free text parameters)

The expected behaviour for a __gt or __lt search over a date field is that data comparison will
be used. Over numeric fields the expected behaviour is a numerical sort.

An API MAY choose to implement other modifiers. We recommend using the django lookup
types as a starting point, and consulting with the IATI Technical list if implementing any lookup
types not included on that list.

Additional parameters
The following additional parameters MAY be provided:

●​ ?q - for running a case insensitive contains query over free text. The default behaviour
would be to search title, description and sector text. For example ?q=debt would search:​
​ //iati-activity[contains(lower-case(title),lower-case($query)) or
contains(lower-case(description),lower-case($query)) or
contains(lower-case(sector),lower-case($query))] ​

●​ ?query-fields - to modify a ?q query and specify the fields that a search should be run
over. For example, specifying ?q=goma&query-fields=title|location_name would search:​
​ //iati-activity[contains(lower-case(title),lower-case($query)) or
contains(lower-case(location/name),lower-case($query))]

The following parameters SHOULD be used to control output.

●​ ?format= - for choosing whether to retrieve JSON, XML, CSV and so-on
○​ Valid options include xml, json, csv, rdf and html
○​ If csv is selected, a default csv option SHOULD be supplied, but in most cases this would

be combined with a &response-profile parameter to specify an approach to flattening data
to be used.

●​ ?lang= - APIs MAY offer the user a choice of what language to retrieve text and codelist fields in

where multiple languages are available. Languages should be specified using ISO 639 codes. ​

●​ ?limit= - the number of records to return​

●​ ?start= - the offset to use in fetching records. E.g. if ?limit=10 then &start=11 fetches the second
page of results.

9

https://docs.djangoproject.com/en/dev/ref/models/querysets/#field-lookups
https://docs.djangoproject.com/en/dev/ref/models/querysets/#field-lookups

The following parameters MAY be offered to control output​

●​ ?fields= - APIs MAY offer the user the chance to specify a comma separated list of elements to
include in the response, using the same naming convention as for querying. The following
keywords could also be made available:

○​ All - return all fields

●​ ?fields-exclude= to exclude particular elements from the response ​

●​ ?response-profile= to specify how much detail should be included in the returned data. The
exact treatment of this parameter may vary between APIs, but as a outline suggestion we might
have:

○​ codes - omit all but essential text descriptions and only provide codelist codes (e.g. for
sector)

○​ summary - provide only top-level fields about an activity, excluding transactions etc.
○​ extended - provide additional information, such as annotations on organisations, sector

codes etc. ​

●​ ?sort-by= specifying a comma separated list of fields to sort by​

●​ ?sort-order = ASC|DESC - specifying the order to sort in​

●​ ?split-by = used in constructing CSV output

Return formats
APIs may provide a range of different formats in which data is returned.

Response headers
The response should be wrapped within an iati-activities or iati-organisations block, with
attributes for:

●​ version - the version of the IATI standard used in the output
●​ generated-datetime - when the response was generated/cached
●​ default-currency - the default currency used (optional)

The following response headers may be provided, wrapped within a query block (and serialised
using the same approach as specified for different formats below. In the case of CSV, this could
be written to a header or footer. These are defined according to their parameter definitions
above and would have the parameter passed, or default value, set unless otherwise specified:

●​ total-count - the total number of results available
●​ warnings - and specific considerations as user should pay attention to. Particularly

important for aggregate queries, where double-counting or mixed currency warnings may
be appropriate.

●​ limit

10

●​ start
●​ lang
●​ response-profile
●​ sort-by
●​ sort-order
●​ any other parameter

For example, the query: access/activities?recipient-country=GH&limit=100&start=101 would
have the header:

​ <iati-activities version=”1.01” generated-datetime=’2011-09-26T13:40:52.98’
default-currency=’GBP’>

​ <query>
<total-count>521</total-count>
<limit>100</limit>
<start>101</start>
<lang>en</lang>
<response-profile>default</response-profile>
<sort-by>iati-identifier</sort-by>
<sort-order>ASC</sort-order>
<recipient-country>GH</recipient-country>

​ </query>
​ …
​ results
​ ...

​ </iati-activities>

XML serialisation
XML serialisation should follow the IATI standard as closely as possible. With the exception of
allowed additions, augmented and additional data should be provided in application-specific
namespaces.

CSV Serialisation
There is no simple way to flatten XML as CSV. However, we can assume a number of defaults
unless over-ridden using a response-profile or group-by parameter.

By default:

●​ Queries to an activity endpoint should return one row per activity;
●​ Queries to a transaction endpoint should return one row per transaction. Transaction

responses should always include an additional column for the related activity
iati-identifier, and may choose to also include other activity meta-data;

●​ Queries to an organisation endpoint should return one row per organisation;

11

The default approach for column names should follow the naming of parameters (e.g.
title,recipient-country,recipient-country.text,description
Project A,AF,Afghanistan,A project in Afghanistan

Where a field has multiple values, these should be concatenated into a cell using ‘;’. For
example, if two recipient countries are given:
​ title,recipient-country,recipient-country.text
​ Project B,KE;UG,Kenya;Uganda

Where an element has attributes, these should precede the text() of the element in the CSV
structure. For example, with the allowed additional data for total-commitments etc. the output
should be:
​ total-commitment.currency,total-commitment.value-date,total-commitment
​ GBP,2010-10-01,230000

An API optimising CSV for human readability MAY choose to replace ‘-’ and ‘.’ in output with
spaces, and to capitalise column headings.

Alternative CSV output can be provided using either:

●​ ?response-profile= to select some pre-determined CSV serialisation approach. At
present no library of approaches exists.

●​ ?split-by= to provide one or more comma separated elements which should be used to
determine duplication of rows.

For example /access/activities/?format=csv&split-by=sector would produce a file which repeats
each iati-activity row once for each sector it contains. An example output:​

​ iati-identifier,title,sector,sector.percentage,sector.text,recipient-country
​ GB-1-123456,Project A,31166,Agricultural extension,50,KE;GH
​ GB-1-123456,Project A,11330,Vocational training,50,KE;GH
​ GB-1-876543,Project B,11420,Higher education,100,UG

Using two or more ?group-by options would increase the row duplication further. For example:
/access/activities/?format=csv&split-by=sector,recipient-country would generate: ​

​ iati-identifier,title,sector,sector.percentage,sector.text,recipient-country
​ GB-1-123456,Project A,31166,Agricultural extension,50,KE
​ GB-1-123456,Project A,11330,Vocational training,50,KE
​ GB-1-123456,Project A,31166,Agricultural extension,50,GH
​ GB-1-123456,Project A,11330,Vocational training,50,GH
​ GB-1-876543,Project B,11420,Higher education,100,UG

12

JSON serialisation
JSON SHOULD map to the structure of the XML as closely as possible, with element names and nesting
identical to the XML Schema, even when providing abbreviated data.

Note, this requires that property names are always quoted, to avoid validation errors because of the
presence of hyphens in element names. Quoting property names is good practice in JSON in any case.

Where an element has attributes, return an object, using the following rules to set the attributes:

●​ xml:lang becomes ‘lang’
●​ If the element schema shows the element type is ‘currencyType’ place the value of text() in an

attribute named ‘value’, otherwise place it in an attribute named ‘text’.
●​ Name all other json attributes after the xml attribute

For example:

<iati-activity>
 <iati-identifier>21020-3DFMYAN</iati-identifier>
 <reporting-org ref="21020" type="21">International HIV/AIDS Alliance</reporting-org>
 <title xml:lang='en'>Three Diseases Fund for Myanmar</title>
 <description type="1">The three dieseases fund aims to contribute to achieving the UN Millennium
Development goals in Myanmar by reducuing the burden of communicable disease morbidity/mortality.
Activities will be undertaken to reduce transmission and enhance provision of treatment and care for HIV
and AIDS,turberculosis (TB) and malaria</description>
 <activity-date type="start-actual" iso-date="2007-05-15">2007-05-15</activity-date>
 <transaction>
 <value value-date="2011-09-11">2096562</value>
 <transaction-type code="C">Commitment</transaction-type>
 <transaction-date iso-date="2011-09-11">Total Project Budget</transaction-date>
 </transaction>
</iati-activity>

would become:

{
 "iati-activity": {
 "iati-identifier": "21020-3DFMYAN",
 "reporting-org": {
 "ref": "21020",
 "type": "21",
 "text": "International HIV/AIDS Alliance"
 },
 "title": {
 "lang": "en",
 "text": "Three Diseases Fund for Myanmar"
 },
 "description": {
 "type": "1",
 "text": "The three dieseases fund aims to contribute to achieving the UN Millennium Development goals in Myanmar by
reducuing the burden of communicable disease morbidity/mortality. Activities will be undertaken to reduce transmission and

13

enhance provision of treatment and care for HIV and AIDS,turberculosis (TB) and malaria"
 },
 "activity-date": {
 "type": "start-actual",
 "iso-date": "2007-05-15",
 "text": "2007-05-15"
 },
 "transaction": {
 "value": {
 "value-date": "2011-09-11",
 "value": "2096562"
 },
 "transaction-type": {
 "code": "C",
 "text": "Commitment"
 },
 "transaction-date": {
 "iso-date": "2011-09-11",
 "text": "Total Project Budget"
 }
 }
 }
}

If an API is only providing a single language (either as a default behaviour, or by request), and the only
attribute of an element is xml:lang, then it may choose to return the value as a string, rather than an
object.

For example:

 "title": "Three Diseases Fund for Myanmar"
rather than:

 "title": {
 "lang": "en",
 "text": "Three Diseases Fund for Myanmar"
 },

RDF serialisation
To be agreed

HTML serialisation
APIs may choose to provide a HTML rendering of responses. No standard is proposed for this.

Common additions
APIs may choose to add some convenience aggregations to their output for activities, such as
aggregating transaction values, or providing a start-date and end-date based on the planned
and actual start and end-dates.

14

Aggregation elements should be lowercase, and prefixed with ‘total-’. They should be
generated using the following rules:

For transactions:
Name the element after the english language code description for
transaction/transaction-type/@code

For example, the aggregate of all Commitments for an activity would be placed in an element
named total-commitment as follows:

<iati-activity>
​ <iati-identifier>GB-1-123456</iati-identifier>
​ ….
​ <total-commitment currency=’GBP’ value-date=’2010-10-7’>100000</total-commitment>
</iati-activity>

Note that the element otherwise inherits the properties of transaction/value.

For budgets
Name the element total-budget

For example:
<iati-activity>
​ <iati-identifier>GB-1-123456</iati-identifier>
​ ….
​ <total-budget currency=’GBP’ period-start=’2010-01-01’
period-end=’2012-01-01’>100000</total-commitment>
</iati-activity>

It is possible to use total-budget multiple times to provide yearly budgets for an activity that
provides quarterly budgets and so-on.

Start and end-dates
APIs may wish to accept queries against the start-date and end-date of an activity to escape the
complex logic involved in querying for activity-date by types.

They may add a ‘start-date’ and ‘end-date’ element directly to the activity based on the
convention that:

●​ start-date = activity-date[@type=’start-actual’] or, if this is missing, then
activity-date[@type=’start-planned’]

●​ end-date = activity-date[@type=’end-actual’] or, if this is missing, then
activity-date[@type=’end-planned’]

15

The @type attribute on these elements should be set, so that a user can clearly determine
whether the start-date and end-date are actual or planned dates. For example:

<activity-date type="start-planned">2006-04-01Z</activity-date>​
<activity-date type="start-actual">2007-01-01Z</activity-date>​
<activity-date type="end-planned">2009-12-31Z</activity-date>

Could lead to the additional elements being added to an activity:

​
<start-date type="start-actual">2007-01-01Z</start-date>​
<end-date type="end-planned">2009-12-31Z</end-date>

Some APIs may also wish to add additional date parameters, particular to support aggregate
operations. These include:

●​ start-year / end-year
●​ start-quarter / end-quarter - Note, should use calendar year quarters
●​ start-month / end-month
●​ start-day / end-day

Hierachical codelists
For code lists like the DAC which have an implied hierarchy, APIs may choose to add the higher
level sector category to their data store using a distinct vocabulary. As a convention, this
vocabulary should be named {VOCAB}-PARENT. For example, DAC-PARENT​
​
E.g. a file containing:​
<sector vocab=’DAC’ code=’60061’>Debt for development swap</sector> ​
could have the additional line added:​
<sector vocab=’DAC-PARENT’ code=’600’>Activity relating to debt</sector>​
​
It then becomes possible to query using:​
?sector=600§or.vocabulary=DAC-PARENT

Other additions?
Please suggest approaches and logic for other commonly required additions on the IATI
Technical mailing list.

Aggregation
The aggregation endpoint exists to support aggregation across activities or organisations
according to some set of query parameters.

Each aggregation query will include the following parameters:

16

●​ group-by - one or more elements or attributes that will be used as dimensions in the
return aggregation

●​ aggregate-function - count|sum|max|min|mean etc. APIs can choose which functions to
implement, but should generally implement count and sum.

●​ aggregate-element - the element to be the target of aggregation for sum, max, min,
mean etc. queries.

○​ Defaults may be set for different end-points. For example, default to
/transaction/value/text() for the /aggregate/transactions/ endpoint.

Aggregation queries can also be subject to all the same filter parameters as other queries. They
may choose to implement the sorting and paging parameters of other queries. An additional
keyword for sort-by in aggregate queries will be ‘aggregate-element’. E.g. get a list of countries
in order of the one with most projects.

Values are returned in rows each with a number of dimensions and a measure.

A simple example:

/aggregate/activities/?group-by=recipient-country&aggregate-function=count&sort-by=ag
gregate-element&sort-order=DESC

would generate:​

<row>
​ <recipient-country>UG</recipient-country>
​ <count>10</count>

​ </row>
​ <row>
​ ​ <recipient-country>KE</recipient-country>
​ ​ <count>6</count>
​ </row>

Where the element to be aggregated has multiple types (this primarily/solely applies to
transactions) then the return should include these, unless otherwise specified by a filter. For
example:

/aggregate/transactions/?group-by=recipient-country&aggregate-function=sum&aggrega
te-element=transaction_value&transaction_transaction-type=C|E

would return:

<row>
​ <recipient-country>UG</recipient-country>
​ <total-commitment>10634</total-commitment>
​ <total-expenditure>10234</total-expenditure>

17

​ </row>
​ <row>
​ ​ <recipient-country>KE</recipient-country>

​ <total-commitment>631234</total-commitment>
​ <total-expenditure>212334</total-expenditure>

​ </row>

Note, that in the case of sum transactions we are applying the naming rules for common
additions from above. This assists in intuitive naming of results for end users.

This handling of multiple types is a special rule, and further testing is required to identify if this
pattern meets the guiding principles for our API design.

Where multiple group-by elements are provided, then these should all be evaluated as
dimensions. For example, the query:

/aggregate/transaction/?groupby=receiver-org,start-year,start-quarter&aggregate-functio
n=sum&transaction_transaction-type=C

would return:

<row>
<receiver-org>GB-COH-1213512</receiver-org>
<start-year>2010</start-year>
<start-quarter>2</start-quarter>
<total-commitment>500</total-commitment>

</row>
<row>

<receiver-org>GB-COH-1213512</receiver-org>
<start-year>2010</start-year>
<start-quarter>3</start-quarter>
<total-commitment>7000</total-commitment>

</row>
...
<row>

<receiver-org>US-DEL-12356</receiver-org>
<start-year>2010</start-year>
<start-quarter>2</start-quarter>
<total-commitment>50000</total-commitment>

</row>
etc.

Aggregation notes of caution:

18

●​ A budget/@type=’revised’ should always replace a budget/@type=’original’ for the same
period to avoid double-counting. ​

●​ Care should be taken to avoid double-counting the same information reporting by
multiple donors​

●​ Care should be taken to avoid double counting for activities classified against multiple
recipient countries or sectors. It may be appropriate to apportion transactions according
to country and sector percentages.​

●​ Care should be taken to avoid mixing transactions, budgets and other elements which
have different currency values.

Special considerations

Code lists
The codelists should be readable.

Rolling information up to the activity level:
In the case of hierarchical data, it may be appropriate to add total-commitment elements etc.
from hierarchy=2 activities to their parent activities.

Apportioning country allocations
Aggregation applications computing data cubes may wish to apportion transactions to countries
or sectors on the basis of the percentages given against recipient-country and recipient-sector.

Double counting

Managing different standard versions

Handling languages

Pre vs post processing

RESTful URLs
Some APIs may wish to provide additional RESTful URLs

19

Processing
Transaction Reference
Transaction elements MAY have a @ref attribute used to “describe reference to this transaction
in another system”.

Recommendations on steps that should be taken during importing to handle bad data or to tidy
up data.

●​ Codelist expansion / trust official code lists
●​ Currency conversion
●​ Location expansion (e.g. regional containment?)
●​ Date expansion

Recommend that API platforms using non-XML data storage to record the relationship between
any XML entity and given database fields. This would support the specification of CSV
serialisations in terms of the xpath expression for a given field.

Additional data in responses
Processes - can we develop a peer-review process. Submit anything to peer-review from the
community.

Other considerations
http://www.apievangelist.com/buildingblocks/

20

http://iatistandard.org/activities-standard/financial-transaction/transaction
http://www.apievangelist.com/buildingblocks/

Background information
Workshop Plan
27th November 2012 - DFID, 1 Palace Street, London, SW1E 5HE

Goals:

●​ To identify common patterns and principles for API access onto IATI data;​

●​ To draft an ‘API Contract’ that specifies what consuming applications can expect from an
IATI API. Identifying ‘required’, ‘recommended’ and ‘optional’ aspects of an API;​

●​ Agreeing draft timetables for API harmonisation;

Participants
●​ John Adams - DFID
●​ Tim Davies - AidInfo
●​ David Carpenter - IATI / AidInfo / AidView Database
●​ James Hughes - Kainos
●​ Alex Jackson - GDS Innovation team (Morning only)
●​ Paul Downey — GDS Technical Architect (Morning only)
●​ Mark Brough - Publish What You Fund (Morning only)
●​ Online: Siem Vaessen - Zimmerman & Zimmerman/Akvo - OIPA (Unable to join)
●​ Online: Dev Gateway - IATI Explorer - Dan Mihala (Unable to join)

Modality
Roundtable workshop, with small group discussions and direct work into an online document.

Resources
Post-its and flip-charts

Agenda

09.30-10.00 Arrival and coffee
●​ Groundrules: lightweight; agile; independent.

10.00-11.00 Existing APIs and Use Cases (Phone in active)
●​ What APIs exist?

21

http://whatfettle.com/

●​ Who is using it?

See below

11.00-13.00 Reviewing current drafts; specific issue discussions.
●​ Endpoints
●​ Parameters & query formats
●​ Response formats and options
●​ JSON & CSV serialisations

13.00-14.00 Lunch

14.00-16.00 Break-out groups to focus on specific elements

16.00-17.00 Agreeing next steps
●​ RFC to IATI TAG?
●​

17.00 Pub?

Existing/emerging APIs

X = Status from 0 = idea; 10 = full production tool.

API name Data store Output Notes N

IATI Explorer eXist XML XPath access; Also Restful API declared. 6

OpenSpending
(IATI dataset)

PostgreSQL JSON, CSV Flattens all activities down to transactions,
and then breaks transactions down, creating
one row per transaction per sector.
Provides aggregations API and search API
(using SOLR or ElasticSearch I think?)

Aggregation:
http://openspending.org/api/2/aggregate?dat
aset=iati&cut=time.year:2012|transaction_typ
e.name:d&drilldown=from

Transaction-level:
http://openspending.org/api/2/search?datase
t=iati

22

http://iatiexplorer.org/
http://openspending.org/help/api.html
http://openspending.org/iati
http://openspending.org/api/2/aggregate?dataset=iati&cut=time.year:2012%7Ctransaction_type.name:d&drilldown=from
http://openspending.org/api/2/aggregate?dataset=iati&cut=time.year:2012%7Ctransaction_type.name:d&drilldown=from
http://openspending.org/api/2/aggregate?dataset=iati&cut=time.year:2012%7Ctransaction_type.name:d&drilldown=from
http://openspending.org/api/2/search?dataset=iati
http://openspending.org/api/2/search?dataset=iati

Background / briefing:
http://openspending.org/resources/iati/index.
html

DFID Aid
Information
Platform

Graph Neo4J JSON Parsing into Neo4J; Running processes on
import to roll up budgets; DFID specific at the
moment;

Activity JSON
https://gist.github.com/5a6d4c54f4ee55c9ddad

5

OIPA
(Github:
https://github.c
om/openaid-IA
TI/OIPA)

MySQL JSON/XML Maps IATI xml to MySQL table for each
namespace and subfields. Filtering enabled
on some namespaces. Split by /activities/
and /organisation/

JSON - all activities
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=json

XML - all activities
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=xml

JSON - single activity
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=json&iati_identifier=GB-1-202637

JSON - single organisation
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=json&reporting_organisation__in=NL-1

JSON - sectors
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=json§ors__in=410,12220

JSON - Joint call
http://oipa.openaidsearch.org/api/v3/activities/?for
mat=json&reporting_organisation__in=NL-1&cou
ntries=BD§ors_in=15160

7

AidView eXist http://datadev.aidinfolabs.org/data/

XML - single activity
http://datadev.aidinfolabs.org/xquery/woapi.xq?ID
=GB-1-202637&search=&start-date=&end-date=
&start=1&pagesize=1000&result=full&format=xml
&callback=&corpus=test&test=yes

7

23

http://openspending.org/resources/iati/index.html
http://openspending.org/resources/iati/index.html
https://gist.github.com/5a6d4c54f4ee55c9ddad
http://oipa.openaidsearch.org/api/v3/docs/
https://github.com/openaid-IATI/OIPA
https://github.com/openaid-IATI/OIPA
https://github.com/openaid-IATI/OIPA
http://oipa.openaidsearch.org/api/v3/activities/?format=json
http://oipa.openaidsearch.org/api/v3/activities/?format=json
http://oipa.openaidsearch.org/api/v3/activities/?format=xml
http://oipa.openaidsearch.org/api/v3/activities/?format=xml
http://oipa.openaidsearch.org/api/v3/activities/?format=json&iati_identifier=GB-1-202637
http://oipa.openaidsearch.org/api/v3/activities/?format=json&iati_identifier=GB-1-202637
http://oipa.openaidsearch.org/api/v3/activities/?format=json&reporting_organisation__in=NL-1
http://oipa.openaidsearch.org/api/v3/activities/?format=json&reporting_organisation__in=NL-1
http://oipa.openaidsearch.org/api/v3/activities/?format=json§ors__in=410,12220
http://oipa.openaidsearch.org/api/v3/activities/?format=json§ors__in=410,12220
http://oipa.openaidsearch.org/api/v3/activities/?format=json&reporting_organisation__in=NL-1&countries=BD§ors_in=15160
http://oipa.openaidsearch.org/api/v3/activities/?format=json&reporting_organisation__in=NL-1&countries=BD§ors_in=15160
http://oipa.openaidsearch.org/api/v3/activities/?format=json&reporting_organisation__in=NL-1&countries=BD§ors_in=15160
http://datadev.aidinfolabs.org/
http://datadev.aidinfolabs.org/data/

JSON - single activity
http://datadev.aidinfolabs.org/xquery/woapi.xq?ID
=GB-1-202637&search=&start-date=&end-date=
&start=1&pagesize=1000&result=full&format=jso
n&callback=&corpus=test&test=yes

Query API
http://datadev.aidinfolabs.org/xquery/woapi.xq?re
sult=help

Spend by country for given organisation
 - JSON
http://datadev.aidinfolabs.org/xquery/woapi.xq?Fu
nder=GB-CHC-1075920&ID=&search=&start-dat
e=&end-date=&transaction=&groupby=Country&
orderby=value&start=1&pagesize=1000&result=v
alues&format=json&callback=&corpus=test&test=
yes

 - XML
http://datadev.aidinfolabs.org/xquery/woapi.xq?Fu
nder=GB-CHC-1075920&ID=&search=&start-dat
e=&end-date=&transaction=&groupby=Country&
orderby=value&start=1&pagesize=1000&result=v
alues&format=xml&callback=&corpus=test&test=
yes

LinkedData SPARQL Access 5

CartoDB

OKF - Registry
Data Extra and
Reporting
Layer

PostgreSQL ? ?

IATI Registry CKAN XML Basic source for all IATI activities (grouped
into country, region, non-regional files). Links
to IATI activity and country files.

IATI Preview CSV Challenges are around the different ways to
flatten XML to CSV. Needs to be driven by
how the data is used.

User stories for APIs

24

http://datadev.aidinfolabs.org/xquery/woapi.xq?ID=GB-1-202637&search=&start-date=&end-date=&start=1&pagesize=1000&result=full&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?ID=GB-1-202637&search=&start-date=&end-date=&start=1&pagesize=1000&result=full&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?ID=GB-1-202637&search=&start-date=&end-date=&start=1&pagesize=1000&result=full&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?ID=GB-1-202637&search=&start-date=&end-date=&start=1&pagesize=1000&result=full&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?result=help
http://datadev.aidinfolabs.org/xquery/woapi.xq?result=help
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=json&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://datadev.aidinfolabs.org/xquery/woapi.xq?Funder=GB-CHC-1075920&ID=&search=&start-date=&end-date=&transaction=&groupby=Country&orderby=value&start=1&pagesize=1000&result=values&format=xml&callback=&corpus=test&test=yes
http://iatiregistry.org
http://tools.aidinfolabs.org/showmydata/index.php

From workshop held at GDS in July 2012
https://docs.google.com/spreadsheet/ccc?key=0ApHg07pak9cGdElPeGE4QmRXbHlNVGg0dG
xLVzJ0MWc

Resource document
http://wiki.iatistandard.org/wg/api/start

Some typical aggregations:

●​ Count of activities per country
○​ Query parameters:

■​ groupby=recipient-country
■​ function=count
■​ element=iati-activity

○​ Returns:
■​ <aggregate>​

 <recipient-country=’AF’/>​
 <count>123</count>​
</aggregate>

○​ Simple method = countActivitesByCountry(country)
●​ Budget per country

○​ Query parameters
■​ groupby=recipient-country
■​ function=sum
■​ element=budget

○​ Business logic: A revised budget for the same period as an original budget
should replace it.

○​ Returns
■​ <aggregate> ​

 <recipient-country=’AF’/>​
 <values>100,000</values>​
</aggregate>

○​ Simple method = budgetByCountry(country,year)
●​ Country budget by quarter/year from org file
●​ Sum of project budgets for country x by quarter/year
●​ Sector groups per country
●​ Sum of results indicators by country
●​ Total spend for contractor Y during period X

○​ Query parameters

25

https://docs.google.com/spreadsheet/ccc?key=0ApHg07pak9cGdElPeGE4QmRXbHlNVGg0dGxLVzJ0MWc
https://docs.google.com/spreadsheet/ccc?key=0ApHg07pak9cGdElPeGE4QmRXbHlNVGg0dGxLVzJ0MWc
http://wiki.iatistandard.org/wg/api/start

■​ groupby=receiver-org, period (year/qtr/month)
■​ function=sum
■​ element=transaction (D or E)
■​ ?receiver-org={org name}
■​ ?transaction_transaction-type=D|E

○​ Business logic: Provide response for each available transaction type, unless a
filter is given.

○​ Business logic: Aggregation services may provide by month, qtr, year of
transaction etc. Need to define what we mean by 201202, 2012Q1 and 2012.

○​ Returns
■​ <aggregate>

​ ​ ​ <receiver-org>PWC</receiver-org>
​ ​ ​ <spend @type=’D’>20000</spend>
​ ​ ​ <spend @type=’E’>20000</spend>

​ ​ ​ <period>
 ​ ​ ​ ​ ​ <value>QTR1</value>
​ ​ ​ ​ ​ <spend @type=’D’>10000</spend>

​ ​ ​ ​ <spend @type=’E’>10000</spend>
 ​ ​ ​ </period>

 <period>
 ​ ​ ​ ​ ​ <value>QTR2</value>
​ ​ ​ ​ ​ <spend @type=’D’>10000</spend>

​ ​ ​ ​ <spend @type=’E’>10000</spend>
 ​ ​ ​ </period>

​ ​ ​ </aggregates>​

■​ Alternative XML:
●​ <row>​

 <dimension name=’period’>2012Q1</dimension>​
 <dimension name=’type’>D</dimension>​
 <dimension name=’reciever-org’>PWC</dimension>​
 <value>10000</value>​
</row>​
<row>​
 <dimension name=’period’>2012Q1</dimension>​
 <dimension name=’type’>E</dimension>​
 <dimension name=’reciever-org’>PWC</dimension>​
 <value>10000</value>​
</row>

○​ CSV representation

receiver-org period type spend

26

PWC 2012Q1 D 10000

PWC 2012Q1 E 10000

PWC 2012Q2 D 10000

PWC 2012Q2 E 10000

○​ Simple method = spendByReceiver(receiver-org,period,transaction_type)

Typical pattern: sum of something BY geography/org FOR period

/aggregate/activity

/aggregate/transactions

/aggregate/results

●​

Common serialisations

Aggregate query responses
asd

27

	IATI API Conventions / Standards
	RFC Draft: International Aid Transparency Initiative APIs
	What is an IATI API?
	Why do we need an API standard?
	Balancing standardisation and flexibility
	Importing and transforming data
	Endpoints
	Versioning

	Query parameters
	Parameter naming
	Logic
	Query types
	Additional parameters

	Return formats
	Response headers
	XML serialisation
	CSV Serialisation
	JSON serialisation

	Common additions
	For transactions:
	For budgets
	Start and end-dates
	Hierachical codelists
	Other additions?

	Aggregation
	RESTful URLs
	Processing

	Other considerations

	Background information
	Workshop Plan
	Participants
	Modality
	Resources
	Agenda

	Existing/emerging APIs
	User stories for APIs
	Resource document

