Vertx subsystem in WildFly

There is a Vertx extension for WildFly which can solve the problem in the Configure Vertx
Option discussion.

Capabilities in the extension

In general, the extension tries to introduce the capabilities from Vert.x to WildFly following the
WildFly way.

Configure VertxOptions following WildFly way

The extension provides a Vert.x subsystem to configure the VertxOptions following the WildFly
way, like:

Java

[standalone@localhost:9990 /]
/subsystem=vertx/vertx-option=vo:add(max-worker-execute-time=680,
max-worker-execute-time-unit=SECONDS)

{"outcome" => "success"}

[standalone@localhost:9990 /]
/subsystem=vertx/service=vertx:write-attribute(name=option-name, value=vo)

{
“outcome" => "success",
"response-headers" => {
"operation-requires-reload" => true,
"process-state" => "reload-required"

Each AttributeDefinition in the extension corresponds to an option item in VertxOptions, and is
maintained manually, which means there is no automatic way to convert the option item to
AttributeDefinition in WildFly.

There is only one Vertx currently in the extension as a Vertx instance is the entrance to utilize
the significant components from Vertx ecosystem. But having multiple Vertx instances is doable
too if necessary.

The Vertx management resource has an option-name attribute to refer to the defined
VertxOptions, once set, it needs reload as it affects the runtime.

https://github.com/gaol/wildfly-vertx-extension
https://github.com/smallrye/smallrye-reactive-messaging/discussions/2725
https://github.com/smallrye/smallrye-reactive-messaging/discussions/2725
https://github.com/eclipse-vertx/vert.x/blob/master/vertx-core/src/main/java/io/vertx/core/VertxOptions.java#L129

Configure clustered Vertx instance (experimental)

Vert.x has capability to compose a cluster using Infinispan, which looks great if the Vertx
instance inside WildFly can compose a cluster with external Vertx instances to benefit the
distributed event bus.

WildFly main branch uses Vertx 4.5.9, but Vertx 4.x branch is on JDK 8 and uses Infinispan
13.0.x branch, which does not align with the Infinispan version(14.0.30.Final) used in WildFly.

So | think this should be tossed out when integrating into WildFly before applicable solutions.

Deploy Vertx Verticle to WildFly (optional)

The extension also provides a way to deploy a Vertx Verticle to the Vertx instance inside
WildFly. The basic idea is a deployment descriptor called vertx. json together with the
deployment archive, which defines the deployment options, like:

Java

{

"deployments": [
{

"verticle-class":
"org.wildfly.extension.vertx.test.basic.deployment.TestVerticle",
"deploy-options": {}
}
]
}

The Verticle will be undeployed when the deployment gets undeployed.

This is optional to integrate to WildFly because it is out of the scope of the original issue above.

Get the Vertx instance from other WildFly subsystems

Once integrated into WildFly, tries to use the following way to get the Vertx instance:

Java

Supplier<VertxProxy> vertxProxySupplier =
sb.requires(VertxResourceDefinition.VERTX_RUNTIME_CAPABILITY.getCapabilityServi
ceName());

https://vertx.io/docs/vertx-infinispan/java/
https://vertx.io/docs/vertx-core/java/#_verticles

Vertx vertx = vertxProxySupplier.get().getVertx();

Options to integrate to WildFly

After we decide which capabilities will be integrated into WildFly and apply the associated
changes to the extension, it will be ready to get integrated.

| think there are 2 options to do the integration:

Option 1: Directly into WildFly main repository

As Vertx is a dependency of WildFly, it makes sense to have a Vertx subsystem directly in
WildFly.

The benefits of this option are:
e The reactive messaging subsystem won’t depend on an external artifact to get the Vertx
instance
e Only copying the necessary capabilities codes into WildFly, which makes code clean.
o Keep the Vertx version alignment in the WildFly code repository.

Option 2: As a standalone extension in wildfly-extras

Keep the extension as a standalone project and move it to wildfly-extras, integrate it as an extra
feature pack.

The benefits of this option are:
o Keep the development separated from WildFly.

Decisions

It would be great if we can decide on which feature should be integrated into WildFly, which
should not, and in which option we should take to get the integration done.

Feature Included Not included

Configure VertxOptions [J Yes [J No

Clustered Vertx instance [J Yes [J No

Deploy Vertx Verticle [J Yes [J No

Integration Options [J Option 1 [J Option 2

Votes from Kabir Khan are: +1 for Configure VertxOptions, -1 for others. +1 for Option 1

	Vertx subsystem in WildFly
	Capabilities in the extension
	Configure VertxOptions following WildFly way
	Configure clustered Vertx instance (experimental)

	Deploy Vertx Verticle to WildFly (optional)
	Get the Vertx instance from other WildFly subsystems

	Options to integrate to WildFly
	Option 1: Directly into WildFly main repository
	Option 2: As a standalone extension in wildfly-extras

	Decisions

