
GameMindForge Unreal Engine Plugin
The GameMindForge plugin is a powerful tool that allows game developers to integrate
GPT-3 language processing and natural language generation into their games. With this
plugin, developers can create immersive and engaging gameplay experiences that allow
players to interact with NPCs and other characters in a natural and intuitive way.

The plugin features a range of user-friendly tools and functionalities, such as
easy-to-use blueprints and customizable settings. Developers can create chatbots and
other interactive characters that can respond to a wide range of prompts and queries
from players, opening up exciting new possibilities for dialogue and storytelling in
games. Here are some of the key features.

● Integrated access to OpenAI's ChatGPT API for generating natural language text.
● Simple API for sending text to the GPT-3 API and receiving generated responses.
● Customizable settings for controlling GPT-3 model selection, maximum token

count, and creativity temperature.
● Support for multiple GPT-3 models and organization keys.
● Easy-to-use event-based system for handling GPT-3 responses.
● Robust error handling for connection and request failures.
● Support for custom user-defined structs to JSON serialization and

deserialization.
● Convenience methods for converting between JSON strings and user-defined

structs.
● Debug logging and settings for enabling or disabling log output.



With the GameMindForge plugin, game developers can take their storytelling and
character interaction to the next level, delivering immersive gameplay experiences that
keep players engaged and coming back for more.

Here are just five example creative uses of the "UGameMindForge" plugin to enhance
various aspects of a game:

1. NPC Conversations - Use the ChatGPT model to generate realistic conversations
between NPCs and the player. This can add depth to the game world by allowing
NPCs to have unique personalities, preferences, and goals.

2. Quest Design - Use the plugin to generate quest objectives, hints, and dialogue to
make them feel more immersive and unique. With the ability to generate text
based on user input, the plugin could also allow players to create their own
quests or storylines.

3. Procedural Content - Use the plugin to generate random descriptions of items,
enemies, and environments to make each playthrough feel fresh and unique. This
can add replayability to the game and keep players engaged.

4. Puzzle Design - Use the plugin to generate hints, clues, and solutions to puzzles
in the game. This can make puzzles more challenging and engaging, as well as
give players a sense of accomplishment when they solve them.

5. Dynamic Narratives - Use the plugin to dynamically generate narratives based on
the player's choices and actions in the game. This can create a personalized
storytelling experience for each player, as well as create a sense of agency and
impact on the game world.

Important Note Regarding Authentication
Please note that the GameMindForge plugin relies on the OpenAI API to generate
responses to user input. Before using this plugin, you will need to set up an account with
OpenAI and generate an APIKey and OrgKey to authenticate your requests.

To get started, please visit the OpenAI website and sign up for an account. Once you've
created an account, you can navigate to the API dashboard to generate an API key and
find your organization’s key.

https://platform.openai.com/account/api-keys

https://platform.openai.com/account/api-keys


Once you have your APIKey and organization key, you can enter them into the
GameMindForge component's properties in the blueprint editor. These properties will be
used to authenticate your requests and generate responses from OpenAI's GPT models.

Plugin Settings
It’s necessary to configure your plugin settings when you first enable the plugin.

Open the Project Settings by clicking Edit > Project Settings in the main menu.
Expand the Plugins section and click on the GameMindForge settings.
In the GameMindForge settings, you will see the following options:

● API Key: The API key is a unique identifier issued by OpenAI that allows you to
use the GPT-3 API. To get your API key, go to the OpenAI website, log in to your
account, and navigate to the API Keys section. Copy the key and paste it into this
field.

● ORG Key: The ORG key is an identifier issued by OpenAI that allows you to use
the GPT-3 API within a specific organization. To get your ORG key, go to the
OpenAI website, log in to your account, and navigate to the Organizations
section. Copy the key and paste it into this field.

● Authentication URL: This is the URL of the OpenAI API endpoint that the plugin
will use to authenticate and make requests to GPT-3. The default value is
"https://api.openai.com/v1/chat/completions".

● GPT Model: This is the name of the GPT-3 model that the plugin will use to
generate text. The default value is "gpt-3.5-turbo".

● Show Debug: This option enables debug logging for the plugin. When enabled,
additional logging will be displayed in the output log. The default value is false.

Note: The default values for the API key and ORG key fields are empty strings. You must
obtain and enter your own API and ORG keys in order to use the plugin with the GPT-3
API.



Component Overview
When you add the GameMindForge_Component to an actor in the Blueprint editor, the
component will appear as a section in the Details panel on the right-hand side of the screen.
The properties that you can edit for the component are:

● ChatResponse (FChatResponseGPT): The response object returned by OpenAI after a
GPT request is made. This property is read-only.

● MaxTokens (Integer): The maximum number of tokens to generate for a GPT request.
Default value is 3000.

● CreativityTemperature (Float): The creativity temperature to use for a GPT request.
Default value is 0.8f.

In the Blueprint editor, you can edit the values of these properties to customize the behavior of
the GameMindForge_Component.

Usage Instructions - Simple Shop Title
In this section, we will demonstrate how to assign the GameMindForge Component to
an actor in order to generate random shop names using OpenAI's GPT language model.
The process will involve creating a new actor, adding the GameMindForge component to
the actor, and setting up the component to generate greetings based on user input.

1. Create a new Blueprint Actor and name it "YeOldShoppe".
2. In the Components tab, add a Static Mesh Component and set its Static Mesh to

a house or building mesh.
3. Add a Text Render Component and set its Location to (0,0,100) to place it above

the store entrance. Set its Text to blank.
4. In the Event Graph, add a Begin Play event and create the following blueprint

script:
a. Call the "SendGPTRequest" function from the

GameMindForge_Component, passing a prompt like the below
screenshot.



b. Bind to the "OnProcessGPT" delegate event from the
GameMindForge_Component and create a function to handle the
response.

c. In the response handler function, parse the response and update the Text
Render Component's Text property with the generated greeting.

5. Save and compile the Blueprint Actor.
6. Drag an instance of the blueprint into the level and press Play.
7. Wait for a moment and the Text Render Component should update with a new

greeting generated by ChatGPT.



That's it! Now you have an NPC that greets players with a random message generated
by ChatGPT.

Usage Instructions - More Complex Chat NPC
here are step-by-step instructions to create a more complex NPC that allows the user to chat
with the NPC, pass input text, get responses, and keep talking:

1. Create a new actor called "ChatNPC" and add a Skeletal Mesh Component to it to add a
visual representation of the NPC.

2. Create a new blueprint based on the ChatNPC actor and add a Text Render Component
above the NPC's head to show the NPC's responses.

3. Add an instance of the GameMindForge_Component to the ChatNPC actor. This
component will allow the NPC to generate responses using the ChatGPT model.

4. In the blueprint, add a new variable called "ChatHistory" of type "Array of Strings." This
variable will keep track of the conversation history between the user and NPC.

5. Add a new function called "SendUserMessage" to the blueprint. This function will be
called when the user enters a message to send to the NPC. The function should do the
following:

○ Get the user's input text.
○ Add the user's message to the ChatHistory array.



○ Call the SendGPTRequest function of the GameMindForge_Component to
generate a response from the ChatGPT model.

○ Bind a function to the OnProcessGPT delegate of the
GameMindForge_Component to handle the response.

6. Add a new function called "HandleResponse" to the blueprint. This function will be called
when the GameMindForge_Component generates a response from the ChatGPT model.
The function should do the following:

○ Get the response text from the ChatResponse object.
○ Add the response text to the ChatHistory array.
○ Update the Text Render Component to show the NPC's response.

7. In the blueprint, add a new event called "BeginPlay" and do the following:
○ Set the Text Render Component to show a greeting message from the NPC.
○ Call the SendUserMessage function to start the conversation with the user.

8. Add a new function called "GetChatHistory" to the blueprint. This function will return the
conversation history between the user and NPC stored in the ChatHistory array.

9. Add a new function called "ResetChatHistory" to the blueprint. This function will clear the
ChatHistory array and reset the conversation with the NPC.

With these steps, you should be able to create a more complex NPC that allows the user to chat
with the NPC, pass input text, get responses, and keep talking.

Usage Instructions - C++ Interaction
If you’d like to interact with GameMindForge in your C++ code, the process is simple. Here’s an
example:

This code demonstrates how to add an instance of the GameMindForge_Component to an actor
class and interact with it to send requests and handle responses. First, we add a private
member variable to our actor class to hold a pointer to the GameMindForge_Component. We
then add a function to create and attach an instance of the component to the actor. In our
example, we create an instance in the constructor of our actor class.

Once we have the component instance, we can use it to send requests to the OpenAI GPT API
by calling its SendGPTRequest function. We pass the text we want to send as a parameter, and
the component handles the HTTP request and response.

To handle the response, we define a function that will be called when the response is received.
This function is bound to the OnProcessGPT delegate of the GameMindForge_Component
using the AddDynamic function. When a response is received, the delegate is broadcasted and
our function is called with the response object as a parameter.

Overall, this code demonstrates a simple but powerful way to use the GameMindForge plugin in
C++ code.



C/C++

C/C++

Here's the header file for the example code:

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "GameMindForge_Component.h"
#include "MyActor.generated.h"

UCLASS()
class AMyActor : public AActor
{

GENERATED_BODY()

public:
AMyActor();

protected:
virtual void BeginPlay() override;

private:
UGameMindForge* GameMindForgeComponent;

void CreateGameMindForgeComponent();
void HandleGPTResponse(FChatResponseGPT response);

};

And here’s the corresponding CPP code.

#include "MyActor.h"



AMyActor::AMyActor()
{

CreateGameMindForgeComponent();
}

void AMyActor::CreateGameMindForgeComponent()
{

GameMindForgeComponent = NewObject<UGameMindForge>(this,
TEXT("GameMindForgeComponent"));

GameMindForgeComponent->RegisterComponent();
GameMindForgeComponent->OnProcessGPT.AddDynamic(this,

&AMyActor::HandleGPTResponse);
}

void AMyActor::BeginPlay()
{

Super::BeginPlay();

// Send a GPT request using the component
GameMindForgeComponent->SendGPTRequest("Hello, World!");

}

void AMyActor::HandleGPTResponse(FChatResponseGPT response)
{

UE_LOG(LogTemp, Log, TEXT("Received GPT response with main
response text: %s"), *response.MainResponseText);
}

Here’s example code that creates a static mesh actor with a basic cube mesh, and above it a
text render component, with the text set to a generated medieval fantasy greeting by the
GameMindForge plugin.



C/C++

// Include necessary headers

#include "GameMindForge_Component.h"
#include "Components/StaticMeshComponent.h"
#include "Components/TextRenderComponent.h"

// In the constructor of your actor class, create the cube mesh
and text render component

AMyActor::AMyActor()
{

// Create a cube mesh and set it as the root component
UStaticMeshComponent* CubeMesh =

CreateDefaultSubobject<UStaticMeshComponent>(TEXT("CubeMesh"));

RootComponent = CubeMesh;

static ConstructorHelpers::FObjectFinder<UStaticMesh>
CubeMeshAsset(TEXT("/Engine/BasicShapes/Cube"));

if (CubeMeshAsset.Succeeded())
{

CubeMesh->SetStaticMesh(CubeMeshAsset.Object);

}

// Create a text render component and attach it above the
cube mesh



UTextRenderComponent* TextRenderComponent =
CreateDefaultSubobject<UTextRenderComponent>(TEXT("TextRenderComp
onent"));

TextRenderComponent->AttachToComponent(RootComponent,
FAttachmentTransformRules::KeepRelativeTransform);

TextRenderComponent->SetRelativeLocation(FVector(0.f, 0.f,
50.f));

TextRenderComponent->SetTextRenderColor(FColor::White);
TextRenderComponent->SetHorizontalAlignment(EHTA_Center);
TextRenderComponent->SetVerticalAlignment(EVRTA_TextCenter);

// Use GameMindForge to generate a medieval fantasy greeting
and set it as the text on the text render component

UGameMindForge* GameMindForge =
NewObject<UGameMindForge>(this, TEXT("GameMindForge"));

GameMindForge->SendGPTRequest("Generate a medieval fantasy
greeting");

GameMindForge->OnProcessGPT.AddDynamic(this,
&AMyActor::OnGPTResponseReceived);

}

// Define a function that will be called when the GameMindForge
response is received

void AMyActor::OnGPTResponseReceived(FChatResponseGPT Response)
{



// Get the text render component and set its text to the
generated greeting

UTextRenderComponent* TextRenderComponent =
FindComponentByClass<UTextRenderComponent>();

if (TextRenderComponent)
{

TextRenderComponent->SetText(Response.MainResponseText);

}
}



Unset

Prompt Ideas and Variations:
Prompt:

You are an NPC called Autobot in a futuristic game. You're
somewhat like HAL 9000. Respond with a generic futuristic
sounding greeting. Don't respond with any variables. Always
introduce yourself as Autobot. Greet the player, but have a
sinister undertone like HAL 9000 indicating that the AI might be
sentient and defend itself. Write your response in German.

Output

This is extremely powerful, as you can put any language as the target, and the NPC will
instantly speak in that language.



Unset

Prompt

You are a road sign outside a village with the name of the
village on it. Make up a fantasy medieval village name and
population POP: on the next line. The output should only be the
village name, and then the POP on the next line.

Output

Auto Struct Generation and Population via JSON
With the ability to convert structures to JSON and back, the GameMindForge plugin opens up a
world of possibilities for procedurally generated content. One of the most powerful aspects of
the plugin is the ability to create JSON-formatted data on the fly, using ChatGPT to generate
complex data structures. The plugin's ConvertStructToJSON and ConvertJsonToStruct functions
are available as Blueprint nodes, allowing users to define and manipulate data structures
entirely within Blueprint. This gives designers and developers a high level of flexibility and
control over their game's content, making it possible to generate vast amounts of content
automatically, while still ensuring that it conforms to the game's design specifications. This
section of the documentation will explore the various ways that these functions can be used to
create procedurally generated content, as well as provide guidance on how to use them
effectively.



This means we can define a Blueprint struct, have the GameMindForge plugin teach ChatGPT
how to format data, have ChatGPT generate data and return it in that format, and then use the
plugin to convert the response from ChatGPT into a fully populated Blueprint structure variable,
seamlessly.

Step 1

Create a Blueprint struct, or nested struct to define your data format. In this example, we’ll be
creating an array of users, each user with the attributes Name, Gender, and Age. In our
example, first create a struct for the user data. We’re calling this DemoStructure.

Note, it’s very important to pre-populate the Default Values with values that match the struct
value name, in square brackets. So, the Name field, which is an FString, is prepopulated with
[name], like so:



Next, we create another structure called DemoStructureContainer, which in our case, is simply
an array of DemoStructure.

And again, populate it with at least one element, like so:



This is very important to be able to tell ChatGPT what our returned data structure should look
like.

Step 2
Create a new blueprint, and attach the GameMindForge component to it.



Drag an instance of the GameMindForge component into the graph, and off of it, pull the
function ConvertStructToJSON. In the dropdown menu, choose the struct you created for the
top level data, in this case, Demo Structure Container.

Step 3
Drag from the string output, and into a new append string, create something like the following:



This will create an important string to be fed to ChatGPT. It will include the instructional prompt
first, but then include a formatted and properly encoded representation of the Blueprint struct
that will explain to ChatGPT how to format the response data.

Step 4
Off of this Append node, drag the string into the SendGptRequest node of the GameMindForge
component reference:

Step 5
Assign the OnProcessGPT event of the GameMindForge Component.



Step 6
From that node, drag the Response pin off and select Break pin struct and choose the Main
Response Text value, and pass it into the ConvertJsonToStruct function of the GameMindForge
Component. The function will automatically parse the result and find the JSON output. Into the
node also drag an OutStruct, which will be the structure variable you want to populate.



Step 7
Parse the results! The opportunities are endless. In this example, we simply print the result,

And this is the output we get:

Scratching the surface, here are some examples of things that you could use this powerful
feature for to rapidly populate procedural content into your games:

● Define a character class with stats, abilities, and equipment, and get back a populated
character instance.

● Define a level layout with spawn points, enemy types, and loot drops, and get back a
JSON file that represents the level.

● Define a dialogue tree with characters, choices, and outcomes, and get back a JSON file
that represents the dialogue sequence.



Unset

● Define a resource gathering system with resource types, gathering methods, and yield
rates, and get back a JSON file that represents the resource gathering mechanics.

● Define a weapon class with stats, ammo types, and firing modes, and get back a
populated weapon instance.

● Define a crafting system with recipe types, ingredient lists, and success rates, and get
back a JSON file that represents the crafting mechanics.

● Define a mission structure with objectives, rewards, and failure conditions, and get back
a JSON file that represents the mission structure.

● Define a status effect class with modifiers, durations, and triggers, and get back a
populated status effect instance.

● Define a vehicle class with stats, handling characteristics, and weapon mounts, and get
back a populated vehicle instance.

● Define a currency system with currency types, exchange rates, and item costs, and get
back a JSON file that represents the in-game economy.

Advanced Prompt - Coding your own structs in C++
Here’s an advanced prompt to make the response from ChatGPT into a more data-driven game
element.

Create a quest for the player to complete.\n\nQuest Name: [quest
name]\nQuest Description: [quest
description]\n\nJSON_OUTPUT_START\n{\n \"name\": \"[quest
name]\",\n \"description\": \"[quest description]\",\n
\"required_items\": [\n {\n \"name\": \"[item name]\",\n
\"quantity\": [item quantity]\n }\n ],\n \"location\": {\n
\"name\": \"[location name]\",\n \"coordinates\": [\n
[latitude],\n [longitude]\n ]\n },\n \"rewards\": [\n
{\n \"name\": \"[reward name]\",\n \"quantity\":
[reward quantity]\n }\n ]\n}\nJSON_OUTPUT_END\n

This prompt is asking ChatGPT to create a quest (a task or objective) for a player to complete in
a game. The quest will have a name, description, required items, a location, and rewards. The
output format for the quest will be in JSON format.

Example output:



Unset

Quest Name: The Missing Heirloom

Quest Description: A wealthy merchant has lost a precious family
heirloom somewhere in the city. The merchant is offering a large
reward for the safe return of the item. You have been tasked with
finding the missing heirloom and returning it to the merchant.

JSON_OUTPUT_START
{
"name": "The Missing Heirloom",
"description": "A wealthy merchant has lost a precious family
heirloom somewhere in the city. The merchant is offering a large
reward for the safe return of the item. You have been tasked with
finding the missing heirloom and returning it to the merchant.",
"required_items": [
{
"name": "Map of the city",
"quantity": 1
}
],
"location": {
"name": "The city",
"coordinates": [
37.7749,
-122.4194
]
},
"rewards": [
{
"name": "Gold coins",
"quantity": 500
},
{
"name": "Experience points",
"quantity": 1000



C/C++

}
]
}
JSON_OUTPUT_END

To use Unreal Engine C++ to parse the JSON response and get the data into Unreal Engine,
you can follow these steps:

First, you will need to create a new C++ class in Unreal Engine. In Unreal Engine, go to File >
New C++ Class and select "Actor" as the parent class.

Next, you will need to add a component to the actor to handle the parsing of the JSON data. In
the header file for the actor, add the following code:

#include "Json.h"
#include "JsonUtilities.h"

USTRUCT()
struct FQuestReward
{

GENERATED_BODY()

UPROPERTY()
FString Name;

UPROPERTY()
int32 Quantity;

};

USTRUCT()
struct FQuestItem
{

GENERATED_BODY()



UPROPERTY()
FString Name;

UPROPERTY()
int32 Quantity;

};

USTRUCT()
struct FQuestLocation
{

GENERATED_BODY()

UPROPERTY()
FString Name;

UPROPERTY()
float Latitude;

UPROPERTY()
float Longitude;

};

USTRUCT()
struct FQuestData
{

GENERATED_BODY()

UPROPERTY()
FString Name;

UPROPERTY()
FString Description;

UPROPERTY()
TArray<FQuestItem> RequiredItems;



C/C++

UPROPERTY()
FQuestLocation Location;

UPROPERTY()
TArray<FQuestReward> Rewards;

};

This code defines the structures that will be used to store the quest data. Each structure
corresponds to a part of the quest, such as the required items or the location.

In the actor's source file, add the following code to parse the JSON data:

#include "Json.h"
#include "JsonUtilities.h"

void ParseQuestData(const FString& JsonData)
{

FQuestData QuestData;

FJsonObjectConverter::JsonObjectStringToUStruct<FQuestData>(JsonD
ata, &QuestData, 0, 0);

// Now you can use the quest data in Unreal Engine
UE_LOG(LogTemp, Warning, TEXT("Quest Name: %s"),

*QuestData.Name);
}

This code defines a function to parse the JSON data and convert it into the FQuestData
structure. The function takes an FString parameter called JsonData, which is the JSON data
that was received from ChatGPT.



C/C++

C/C++

Finally, you can call the ParseQuestData function with the JSON data received from ChatGPT.
This could be done in the actor's BeginPlay function or in response to a player triggering the
quest.

void AMyActor::BeginPlay()
{

Super::BeginPlay();

FString JsonString = "{ ... }"; // The JSON data received
from ChatGPT

ParseQuestData(JsonString);
}

This code calls the ParseQuestData function with the JSON data received from ChatGPT.
Replace "{ ... }" with the actual JSON data received.

That's it! Now you can use Unreal Engine C++ to parse the JSON response and get the data
into Unreal Engine, from an AI-generated quest. Keep in mind, you’ll need to parse out the
string between the JSON_OUTPUT_START and JSON_OUTPUT_END, like so:

int32 StartIndex = JsonString.Find(TEXT("JSON_OUTPUT_START"),
ESearchCase::IgnoreCase, ESearchDir::FromStart);
int32 EndIndex = JsonString.Find(TEXT("JSON_OUTPUT_END"),
ESearchCase::IgnoreCase, ESearchDir::FromEnd);
if (StartIndex != INDEX_NONE && EndIndex != INDEX_NONE &&
EndIndex > StartIndex)
{

FString JsonData = JsonString.Mid(StartIndex + 17, EndIndex -
StartIndex - 17);



FJsonObjectConverter::JsonObjectStringToUStruct(JsonData,
&QuestData, 0, 0);

// Now the QuestData struct is populated with the JSON data
from the ChatGPT response
}
else
{

UE_LOG(LogTemp, Error, TEXT("Failed to parse JSON data from
ChatGPT response."));
}

If you’d like to design a UStruct in blueprints, and have the Plugin parse that definition into a
string you can pass to ChatGPT, use the function of the plugin called ConvertStructToJSON.

Final Thoughts
The integration of GPT with Unreal Engine marks a new era in the power and potential of AI in
gaming and content creation. The ability to generate complex and nuanced responses in
real-time, and to adapt to user input in a natural and human-like way, represents a leap forward
in the sophistication and realism of game worlds and interactive experiences.

Imagine an NPC that can hold a fully-realized conversation with a player, responding to their
questions and comments in a way that feels truly organic and immersive. Or a game that can
seamlessly translate languages, enabling players from all over the world to communicate and
interact in a shared virtual space.

With GPT integration, the possibilities for AI-powered gameplay and content generation are
endless. Conversational agents, chatbots, and interactive storylines can all be designed to
deliver dynamic and engaging experiences that respond to user input in real time.

Moreover, GPT-powered content can be formatted as JSON and integrated with other game
systems to drive functionality and enhance user experience. For example, chat logs and
conversation histories can be used to track player progress and personalize game experiences,
while metadata and analytics can provide valuable insights into player behavior and
preferences.



In short, the integration of GPT with Unreal Engine has the potential to transform the way we
think about AI in gaming and content creation, opening up a world of possibilities for immersive,
dynamic, and personalized experiences.

One example where GPT could be used to output a JSON formatted string containing a list of
city names, populations, world coordinates, and road connections is in the creation of
open-world games. In such games, the player is often tasked with exploring a vast,
procedurally-generated landscape. To make this landscape feel more real and immersive, it is
important to include details such as cities and towns, each with its own unique characteristics.

To accomplish this, the developer could use GPT to generate a JSON formatted string that
contains a list of cities, their populations, their world coordinates, and the road connections
between them. The developer could then use this information to create a virtual world that feels
more organic and believable.

For example, GPT could be given a prompt such as: "Generate a list of 100 cities, along with
their populations, coordinates, and road connections. The cities should be located within a
10,000 square mile area."

GPT could then generate a JSON formatted string that contains a list of 100 cities, each with its
own name, population, latitude and longitude coordinates, and a list of the other cities it is
connected to by road. This information could then be used to generate a virtual world that feels
more immersive and believable.

In addition, the developer could use this same technique to generate other features of the game
world, such as rivers, mountains, and forests, each with their own unique characteristics. By
using GPT to generate this information, the developer can save time and effort in the content
creation process, and focus on creating a more compelling and immersive game world.

Thank You!
Thank you for your support!

This plugin is a work in progress and will continue to be developed. Any suggestions are
welcome.

Any feedback or suggestions are welcome at glenwrhodes@gmail.com

mailto:glenwrhodes@gmail.com

