
Next steps for Template Haskell stability

See also: Plan-to-Stabilise-Template-Haskell
See also: https://gitlab.haskell.org/adamgundry/template-haskell-next/-/issues
See also: https://informal.codes/posts/stabilising-th/

The aim of this document is to raise awareness and gather feedback about a few short-term
initiatives to improve the stability of template-haskell.

The main cause for template-haskell’s instability is the set of AST types it exposes: Expr,
Type, Pat, etc. These types are fundamental to the core functions of the library such as:

-​ Splicing : $(foo :: Q Expr)
-​ Quoting: [|...|] :: Quote m => m Expr

We would like these types to be able to express the breadth of the Haskell language, but as the
language changes and grows, these AST types need to be updated to keep track. This leads to
breaking changes to the interface of template-haskell.

Example: A few releases ago, the ConP constructor, which represents constructor patterns, was
updated to add a new field. This broke many downstream users who were using it when
generating code.

When I wrote Plan-to-Stabilise-Template-Haskell, I was optimistic that many of the direct usages
of TH AST constructors could be replaced by uses of TH quotes. TH quotes are much more
stable. Yet, TH Quotes also have a variety of usability issues. I successfully migrated some of
the code in esqueleto to use quotes rather than hand crafted syntax trees (PR). I encountered
some issues I had to work around:

-​ non-top-level declaration splices are not allows (#25436), which makes it difficult to split
up instance definitions.

-​ GHC does not allow splicing in a name into a method definition with arguments (#25435)
-​ We can’t easily easily splice in do notation statements (#24953)

All of these things can be worked around, but some of the workarounds are non-trivial and
require refactoring the code a bit. It makes me less enthusiastic that we can rewrite large parts
of TH usages to use quotes, especially since a lot of this code hasn’t been touched for years
(other than to keep it compiling). In the long-term, I think it would definitely be worthwhile to
improve them and have them used more widely, but for now I think we should focus our energy
elsewhere.

While improving the situation around the AST types is the most impactful change (this impacts
type (D) users, who are most exposed to breaking changes, and corresponds to the first step in
the roadmap from Plan-to-Stabilise-Template-Haskell), it is also a difficult problem with some
open design questions. I have recently been focussing on smaller issues since I have had

https://gitlab.haskell.org/ghc/ghc/-/wikis/template-haskell/Plan-to-Stabilise-Template-Haskell
https://gitlab.haskell.org/adamgundry/template-haskell-next/-/issues
https://informal.codes/posts/stabilising-th/
https://gitlab.haskell.org/ghc/ghc/-/wikis/template-haskell/Plan-to-Stabilise-Template-Haskell
https://github.com/bitemyapp/esqueleto/pull/394
https://gitlab.haskell.org/ghc/ghc/-/issues/25436
https://gitlab.haskell.org/ghc/ghc/-/issues/25435
https://gitlab.haskell.org/ghc/ghc/-/issues/24953
https://gitlab.haskell.org/ghc/ghc/-/wikis/template-haskell/Plan-to-Stabilise-Template-Haskell

limited capacity in the last year (although I’m finally able to find more time to work on these
things).

Step 1: Decoupling template-haskell from the TH AST
The TH AST types that live in ghc-internal are fixed by our version of GHC. If we want to be
compatible with multiple versions of GHC, then template-haskell needs to have some sort
of compatibility shim on top of them.

Going into ZuriHac 2024, I thought the best way to implement this was through exposing pattern
synonyms. During ZuriHac, Adam Gundry investigated this and found that pattern synonyms
didn’t work well. If I remember correctly, there were issues with Haddocks along with others.

The new line of investigation since then has been to expose views over the internal AST types
and to keep these types themselves abstract. One of these views could be an older version of
the AST or versions of the AST linked to language editions. This is tracked here:
template-haskell-next#2. Users would use smart constructors to generate ASTs and these views
to consume them.

A downside of the views approach is that end-users will probably have to change their code to
accommodate it, whereas the pattern synonyms idea could be invisible to users.

We should investigate introducing a stable smart constructor layer. Most users could depend on
this package and it should cover most type (B) usages. See: #20828

Step 2: Split out the `Lift` and `QuasiQuoter` interface from
`template-haskell` (#25262) (implemented at !13569) (also
tracked as template-haskell-next#6)
(Does not depend on Step 1)

Even with a stage-1 compiler you should be able to:

●​ Quotes (with no splices)
●​ Write an instance for Lift (using quotes)
●​ Hence, derive Lift
●​ Build code with smart constructors, or even the underlying constructors.

Moreover, some libraries on which GHC depends do these things (e.g. filepath). This forces
us to vendor these libraries, because...

●​ filepath depends on template-haskell because it does derive(Lift) and exposes
nice quasiquoters

●​ but template-haskell depends on filepath.

https://gitlab.haskell.org/adamgundry/template-haskell-next/-/issues/2
https://gitlab.haskell.org/ghc/ghc/-/issues/20828
https://gitlab.haskell.org/ghc/ghc/-/issues/25262
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/13569
https://gitlab.haskell.org/adamgundry/template-haskell-next/-/issues/6

Solution:
●​ template-haskell-quasiquoter depends on ghc-internal (but not filepath!)
●​ filepath depends on template-haskell-quasiquoter
●​ template-haskell depends on filepath.
●​ Moreover, PVP version of template-haskell-quasiquoter is super-stable (unlike

template-haskell which is very unstable. Hence version bounds on filepath
don't need to be updated. Hooray.

●​ Moreover: th-quasiquoter can also contain stable shims to unstable th functions. For
example

○​ th-lift: liftAddrCompat

Main goal: avoid version bumps!

Criteria:

●​ Does not need to run splices
●​ Largest stable TH-related API. But why two libraries? Not one, or three, or seven?
●​ Avoid the need to import the (unstable) template-haskell

And release shim'd versions of A and B, for the previous N versions of GHC.

What is `template-haskell`?

●​ The `Lift` class
●​ QuasiQuoters
●​ Syntax tree
●​ Q monad and operations

○​ Code generation operations (e.g. mkName, addTopDecls, reportError)
○​ Impure operations (e.g. addForeignFile, addModFinalizer)

●​ The reification interface (a long way off)
○​ Operations (e.g. reifyType, lookupTypeName)
○​ Reified information about Ids, TyCons, etc. (currently the TH AST but this should

change in the future)

A possible alternative proposal:

●​ Identify a stable API for Template Haskell,
●​ ... in one package; call it th-stable
●​ Release shims for th-stable (best efforts, anyway)
●​ Grow the API of th-stable over time to support more use-cases.
●​ Downside: non-shimmable changes are more likely in a big library than in multiple small

ones

Both the Lift typeclass and the interface for QuasiQuoters are relatively stable, widely used,
and don’t depend on the implementation of the TH AST types. This makes them great

candidates for being split out into their own libraries: template-haskell-lift and
template-haskell-quasiquoter . I have a draft implementation at !13569 .

Both of these packages expose the minimum interfaces necessary for users along with all
relevant types. Template-haskell-lift also includes some backwards compatibility
utilities, which are helpful for the custom instances required by bytestring and text.

Most boot libraries depend on template-haskell but they only do so in order to generate
instances of Lift or to expose a Quasiquoter. They could easily just depend on these new
libraries instead, and that would mean that template-haskell could be eliminated from the
dependency footprint of ghc the library (ghc only depends on template-haskell transitively
through depending on boot libraries such as containers, which exposes a Lift instance).
This would mean that users who want to use the ghc library bundled with the compiler, wouldn't
be forced to also use the bundled version of template-haskell.

I’m hoping that this will greatly reduce the amount of bounds bumping needed in the ecosystem
since many libraries depend on template-haskell just for the Lift identifier, so they can
derive an instance.

Once these packages no longer depend on template-haskell, we can then add a
dependency in the opposite direction. For instance template-haskell currently has to
vendor parts of containers and filepath since otherwise we would run into a dependency
loop. This also expands the types of things we can put into template-haskell. Something
simple like an efficient variable substitution utility (that uses Map) becomes possible. This would
reduce the amount of internals that consumers of the library need to interact with.

I still need to tidy up the MR and add some documentation, but feedback on the design would
be really helpful.

Abstract Quasi typeclass

As it stands the Quasi typeclass plays two roles. It is both the internal interface between GHC
and template-haskell and it is an external interface users can use. These need to be
disentangled. If we add a new reifyFoo method to Quasi in ghc-internal it shouldn’t
immediately be visible in template-haskell. It is not enough to hide the method because
then it becomes impossible for users to derive their own instances of Quasi, which is something
users do.

https://gitlab.haskell.org/ghc/ghc/-/merge_requests/13569

I’m planning to write up a GHC proposal to improve this situation. My plan is to have another
interface distinct from Quasi that acts as the internal interface, and Quasi can then exist purely
in template-haskell rather than ghc-internal and become the external interface.

Once we have something like this, it becomes much easier to add new methods or otherwise
have breaking changes in the Quasi class since we are much more decoupled from GHC.

Reinstalling template-haskell with cabal-install
As of GHC-9.12 it is possible to reinstall template-haskell with cabal-install. All you need
to do is:

-​ Pass --allow-boot-library-installs
-​ Ensure that the installed version of template-haskell is excluded by a constraint
-​ Ensure that we don’t depend on ghc (which has template-haskell as a transitive

dependency).
All of these could be improved and I have a tracking ticket on the cabal tracker that links to
issues: cabal#10440

cabal#10087 concerns the list of non-reinstallable packages in cabal-install. Initially I thought we
could just make this a list exposed by GHC but Matthew Pickering convinced me that this is bad
idea here: !13297. See also Matt’s reply on the GHC devs mailing list.

So, as Matt says, we can unit-id for ghc the library, and cabal-install can use that in the solver to
force users who use plugins to use that unit. Similarly we can expose the unit-id of
ghc-internal and cabal-install can add a constraint to force usage of that unit. Matt has
made a draft commit for the cabal side of this. And I’ve updated my GHC PR to use this
approach instead.

cabal#9669 on the other hand should be easy to make progress with. There is broad support for
adding a --prefer-newest flag that doesn’t force the solver to pick packages from the global
database (changing the default is understandably more controversial). The PR for adding
--prefer-oldest is a helpful starting point: cabal#8261

https://github.com/haskell/cabal/issues/10440
https://github.com/haskell/cabal/issues/10087
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/13297
https://mail.haskell.org/pipermail/ghc-devs/2025-April/021994.html
https://github.com/haskell/cabal/issues/9669
https://github.com/haskell/cabal/pull/8261

	Step 1: Decoupling template-haskell from the TH AST
	Step 2: Split out the `Lift` and `QuasiQuoter` interface from `template-haskell` (#25262) (implemented at !13569) (also tracked as template-haskell-next#6)
	Abstract Quasi typeclass
	Reinstalling template-haskell with cabal-install

