
A new mechanism for nova-scheduler :
Policy-based Scheduling

(Draft)
Khanh-Toan Tran (khanh-toan.tran@cloudwatt.com)

Jérôme Gallard (gallard.jerome@gmail.com)

Blueprint: https://blueprints.launchpad.net/nova/+spec/policy-based-scheduler

1.​ Introduction

Nova-scheduler default driver, Filter_Scheduler, uses Filters and Weighers to help choose the
host best suited for any requested VM. However, Filter_Scheduler has several limits that make it
unable to make the best use of its Filter and Weigher catalog and provide business-level
services to clients. Among others:

●​ Static policy: admin cannot change the placement policy in runtime without restarting
nova-scheduler. Most of Filters and Weighers use parameters from configuration and
thus also require restarting nova-scheduler.

●​ Lack of client context: the same filters and weighers are applied with the same
parameters regardless of clients. In this situation, it is difficult to provide different
qualities of services to clients who sign different contracts.

●​ Lack of local policy: the same filters and weighers are applied to all hosts. Even though
Openstack defines aggregates for regrouping a set of hosts with similar characteristics, it
still does not allow admin to define different policies for these aggregates (even with
some efforts done to customize Ram/Core OverProvisioning per aggregates).

Consider the following usecases:

1.​ Pre-selected availability zone: For regulatory and security reasons, a company wants all
their VMs to be hosted in a particular availability zone. No user from the company can
create a VM outside the availability zone that the company selected.

2.​ Enforced service class: A company signs a contract with gold service class. With this
contract its VMs will be hosted in the aggregate where all high-quality hosts are
regrouped, regardless of flavors its users choose.

3.​ Runtime modification: Admin can select any set of filters and weighers from the catalog
available in Openstack to execute without restarting nova-scheduler.

4.​ Local policy vs global policy: Admin wants to define a Consolidation policy in each
aggregate to minimize the number of active hosts, and a global Load Balancing policy to
share the workload among aggregates.

At its current state, Filter_Scheduler cannot realize these scenarios due to lack of client context
(Usecase 1 & 2), dynamic policy (Usecase 3) and local policy (Usecase 4).

mailto:khanh-toan.tran@cloudwatt.com
mailto:gallard.jerome@gmail.com
https://blueprints.launchpad.net/nova/+spec/policy-based-scheduler

Therefore, there are needs for overcoming the shortcoming of Filter_Scheduler. Our objective is
to provide a scheduling driver that is capable of providing:

●​ Dynamic scheduling: Admin could dynamically change the policy at any moment without
service disruption.

●​ Client context consideration: The new driver would take into account the context of each
and every client, so that their contracts are enforced.

●​ Fine granularity: Admin could define one policy per group of resources to make the best
use of the latter.

●​ Extensible architecture: The new driver would be flexible; it could incorporate different
policies determined by admin. In addition, the new driver would be generic in order to
allow admin to integrate other solutions in it.

2.​ General design

a.​ Policy and Rule Concept

The scheduling decision is determined according to rules defined by the administrator. Rules
allow admin to dynamically define and change objectives of the system and enforce customers’
contracts. The administrator’s policy can be realized by defining a set of rules.

Each rule defines an action to certain objects. A general form of a rule is composed of three
parts: Target – Effect – Condition.

●​ Target: defines the perimeter in which the rule would be applied. It can be requests from
a particular tenant, or a group of resources (e.g. an aggregate).

●​ Effect: defines the action that the administrator wants to apply inside the perimeter
determined by Target.

●​ Condition: precises the condition in which the rule is applied. It can be certain time
during a day, exceptional situation (e.g. maintenance), etc.

Following the type of target, the rules can be defined as “tenant rules” whose perimeter contains
a particular client, or “admin rules” whose perimeter contains a group of resources.

For instance, the following rule:
 {
 “target”: “client_1”,
 “effect”: {“class_service”: “gold”},
 “condition”: “all”
 }
ensures that client “client_1” always has his VM hosted in gold area (e.g. “aggregate-gold”),
while
 {
 “target”: “aggregate-gold”,
 “effect”: “LoadBalancing”,

 “condition”: “all”
 }
enforces the policy LoadBalancing for all hosts in the aggregate “aggregate-gold”, i.e. the
requested VM will be hosted in the less-loaded host in “aggregate-gold”.

b.​ Architecture

Figure 1: Policy-based Scheduling Module architecture

The Policy-based Scheduling Module architecture is composed of 3 components:
●​ Policy Repository: contains the rules that control the scheduling decisions. Rules can

be created and updated at runtime.
●​ Policy-based Scheduling Module (PbSM): is responsible for selecting the compute

nodes to host the requested VMs. It reads rules from Policy Repository and applies rules
using Plugins. Each plugin is capable of realizing the effect of a rule. The Plugins are
capable of using the existing Filters and Weighers to fulfil the rules’ effects. A Plugin can
be as simple as running a Filter to select a group of suitable hosts, or executing a
combination of Filters and Weighers, or as complex as applying optimization algorithms
to make the best use of the infrastructure resources. Admin can implement new
provisioning solutions in form of Plugins and easily integrate them into the Policy-based
Scheduling Module, making it extensible and flexible to use.

●​ Policy-based Scheduler (PbS): is a driver in Nova-scheduler that plays the role of
interface between Nova-scheduler and Policy-based Scheduling Module.

Upon receiving a user’s request, Nova-scheduler calls PbSM (through PbS) to process the
request. PbSM consults Policy Repository for the rules and uses the associated Plugins to
schedule the requested VMs. Existing Filters and Weighers can be used in the Plugins to make
the scheduling decision. The scheduling result will be eventually returned to Nova-scheduler.

3.​ Usecases

This section presents 4 usecases. Each of them describes a specific configuration for both
users and administrators.

3.1.Availability zone according to time

In this scenario, we consider a cloud provider with two datacenters: one is placed in western
hemisphere, the other is placed in eastern hemisphere (12 hours of time difference between the
two datacenters). This cloud provider offers discount according to the time of the day: instance
prices during the night are lower than during the day (when the workload is higher). In this
scenario the datacenters are set up as availability zones.

Let’s consider a company who wants to take advantage of the discount offered by the cloud
provider. The company wants that their users always create instances in the western datacenter
during nighttime (western time) and in the eastern datacenter during daytime to benefit from the
discount.

When a company employee creates an instance, the instance has to be created in the correct
availability_zone. If the employee manually specifies an availability_zone not authorized
because of the time of the day, the PbSM will return a “permission denied” error.

The following table summarizes the context:

Targets Rules Time (western time)

company_A availability_zone = Western 20:00 → 08:00

company_A availability_zone = Eastern 08:00 → 20:00

Following is the development of the scenario:
The administrator defines a rule for that tenant (target = company_A):
[

​ { “target”: “company_A”,

 “effect”: {“availability_zone” : “eastern”},

 ​ “condition” : {“time”: “08:00-20:00”}

​ },

​ { “target”: “company_A”,

 “effect”: {“availability_zone” : “western”},

​ “condition” : {“time”: “20:00-08:00”}

​ }

]

For each instance creation requested by a user of company_A, PbSM will decide as follow:
- if no availability_zone was requested by the user, PbSM will automatically choose the correct
availability_zone to deploy in, according to the “time condition”.
- if an availability_zone is specified, the PbSM will deploy the instance in the specified
availability_zone if the condition is met, or return an error otherwise.

3.2.Service_class

We consider a cloud provider providing two classes of services to its customers: silver class and
gold class. In this example, both classes are represented by aggregates (“aggregate-silver” and
“aggregate-gold”) inside the datacenter.

We consider a client (client_B) contracting for a gold service class only: in this usecase, all VMs
requested by cilent_B have to be deployed in “aggregate-gold”.

Following is the development of the scenario:

1.​ The administrator creates an aggregate with a metadata “gold”:
nova aggregate-create aggregate-gold

nova aggregate-add-host aggregate-gold <some hosts>

nova aggregate-set-metadata aggregate-gold service_class=gold

2.​ The administrator defines a rule for client_B:

{

 “target”: “client_B”,

 “effect” : {“service_class”: “gold”},

 ​ “condition” : “all”

}

For each instance creation requested by client_B, PbSM will deploy the instance only in the
aggregate “gold”.

3.3.Runtime modification

This scenario demonstrates the use of OpenStack filters and weighers with PbSM: it allows an
administrator to call filters and/or weighers directly as they would be called by filter_scheduler.
With this method, filters and weighers can be added or removed dynamically without the need to
restart nova-scheduler.

We consider a scenario where the admin wants to call the availability_zone_filter, the disk_filter

and the ram_weigher. In that case, the admin specifies in the list of rules (target = the whole
infrastructure):
{

“target”: “all”,

“effect” : {“generic_plugin”: [[“AvailabilityZoneFilter”,

“DiskFilter”], [“RAMWeigher”]],

 ​ “condition” : “all”

}

In this scenario, all compute hosts will be processed through the availability_zone_filter,
disk_filter and ram weigher before being selected to hosts the VMs. Filters and weighers are
called with default parameters.

3.4. Local policy vs Global policy

Let’s consider a cloud provider who has in its infrastructure two aggregates (aggregate-1 and
aggregate-2). Admin wants to apply two types of policies to his infrastructure:

●​ Local policy: Consolidation.
Admin wants that inside each aggregate, resources have to be RAM-consolidated
(based on the RAM, the minimum of computes have to be used inside an
aggregate).

●​ Global policy: LoadBalancing.
In addition, admin wants to balance the load between the two aggregates (the load
balancing will be based on the available RAM of the compute hosts).

The admin defines the following rules:
[{

 “target”: “aggregate-1”,

 “effect” : {“Consolidation”: “Ram”},

 “condition” : “all”

 },

 {

 “target”: “aggregate-2”,

 “effect” : {“Consolidation”: “Ram”},

 ​ “condition” : “all”

 },

 {

 “target”: “all”,

 “effect” : {“LoadBalancing”: “Ram”},

 ​ “condition” : “all”

 }

]

In this scenario, the 3 rules are interpreted by PbSM: inside the aggregates, the consolidation
policies are applied and between the two aggregates, the load balancing policy is applied.

4.​ Related Blueprints

4.1. Schedulers

●​ Unified Resource Placement Module for OpenStack
�​ https://blueprints.launchpad.net/nova/+spec/unified-rpm

This blueprint proposes a high level scheduling module that sits on top of nova,cinder
and neutron to provide scheduling service for different types of resources (volume,
compute and network) at the same time.

●​ Add resource optimization service to OpenStack

​ https://blueprints.launchpad.net/nova/+spec/resource-optimization-service
This blueprint proposes to add a resource optimization service to monitor and balance
resource. It can first create a service framework then add optimization service one by
one, such as load balance policy, high availability policy, power management policy etc.
Each specified policy can be a plug-in driver.

●​ SolverScheduler - Complex constraint based resource placement

https://blueprints.launchpad.net/nova/+spec/solver-scheduler
This blueprint proposes to add a new pluggable scheduler that leverages existing solver
(e.g. PULP, CVXOPT, COIN_OR) to solve the placement problem with linear constraints.

●​ Support for multiple active scheduler drivers
https://blueprints.launchpad.net/nova/+spec/multiple-scheduler-drivers
This blueprints proposes to apply different scheduling policies in different host
aggregates. This could be different drivers, or even a same driver with different
configurations (e.g., FilterScheduler with different sets of filters/weights and/or different
parameters of particular filters/weights).

4.2. Filters and Weighers

●​ Normalize Scheduler Weights
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
This blueprint aims to introduce weight normalization so that one can apply multiple
weighers easily. All the weights will be normalized between 0.0 and 1.0.

●​ Support scheduler filter per host aggregate
https://blueprints.launchpad.net/nova/+spec/aggregate-scheduler-filter
This blueprint’s objective is to enable different scheduler filters in different aggregates.

https://blueprints.launchpad.net/nova/+spec/unified-rpm
https://blueprints.launchpad.net/nova/+spec/resource-optimization-service
https://blueprints.launchpad.net/nova/+spec/solver-scheduler
https://blueprints.launchpad.net/nova/+spec/multiple-scheduler-drivers
https://blueprints.launchpad.net/nova/+spec/normalize-scheduler-weights
https://blueprints.launchpad.net/nova/+spec/aggregate-scheduler-filter

	1.​Introduction
	2.​General design
	a.​Policy and Rule Concept
	b.​Architecture

	3.​Usecases
	3.1.Availability zone according to time
	3.2.Service_class
	3.3.Runtime modification
	3.4. Local policy vs Global policy

	4.​Related Blueprints
	4.1. Schedulers
	4.2. Filters and Weighers

