
Design: clang-format 
This document contains a design proposal for a clang-format tool, which allows C++ developers 
to automatically format their code independently of their development environment. 

Context 
While many other languages have auto-formatters available, C++ is still lacking a tool that fits 
the needs of the majority of C++ programmers. Note that when we talk about formatting as part 
of this document, we mean both the problem of indentation (which has been largely solved 
independently by regexp-based implementations in editors / IDEs) and line breaking, which 
proves to be a harder problem. 
 
There are multiple challenges to formatting C++ code: 

●​ a vast number of different coding styles has evolved over time 
●​ many projects value consistency over conformance and dislike style-only changes, thus 

making it important to be able to work with code that is not written according to the most 
current style guide 

●​ macros need to be handled properly 
●​ it should be possible to format code that is not yet syntactically correct 

Goals 
●​ Format a whole file according to a configuration 
●​ Format a part of a file according to a configuration 
●​ Format a part of a file while being consistent as best as possible with the rest of the file, 

while falling back to a configuration for options that cannot be deduced from the current 
file 

●​ Integrating with editors so that you can just type away until you’re far past the column 
limit, and then hit a key and have the editor layout the code for you, including placing the 
right line breaks 

●​ Being usable from C++ tools to fix up formatting of code that has been changed due to a 
refactoring step 

●​ Develop as a library and Integrate into libclang 

Non-goals 
●​ Identifying / fixing a full style guide and static analysis; we want a different tool for 

changes that potentially change semantics; clang-format will be a precondition for such a 
tool, but has much narrower scope 

●​ Indenting code while you type; this is a much simpler problem, but has even stronger 
performance requirements - the current editors should be good enough, and we’ll allow 



new workflows that don’t ever require the user to break lines 
●​ The only lexical elements clang-format should touch are: whitespaces, string-literals and 

comments. Any other changes ranging from ordering includes to removing superfluous 
parentheses are not in the scope of this tool. 

●​ Per-file configuration: be able to annotate a file with a style which it adheres to (?) 

Code location 
Clang-format is a very basic tool, so it might warrant living in clang mainstream. On the other 
hand it would also fit nicely with other clang refactoring tools. TODO: Where do we want 
clang-format to live? 

Parsing approach 
The key consideration is whether clang-format can be based purely on a lexer, or whether it 
needs type information, and we need the full AST. We considered how far we would get with a 
lexer based approach and found that even for basic indenting type information is sometimes 
necessary, and a lot of layout decisions depend on the type, too. Thus, we do not think it makes 
sense to have a lexer based approach - one could imagine a “clang-quick-indent” tool that is 
purely lexer based, but that would need to be a different tool. We might want to spawn such a 
tool out of clang-format, since we’ll need to handle cases that are not represented in the AST, 
but that is not a priority. 
 
Examples: 
 
AST-dependent indentation: 
callFunction(foo<something, 
                 ^ line up here, if foo is a template name 
             ^ line up here otherwise 
 
AST-dependent line breaking: 
Detecting that ‘*’ is an binary operator in this case requires parsing; if it is a binary operator, we 
want to line-break after it, if it is a unary operator, we want to prevent line breaking 
 
result = variable1 * variable2; 
 
AST-dependent whitespace inside lines: 
a * b; 
   ^ Binary operator or pointer declaration? 
a & f(); 
   ^ Binary operator or function declaration? 
 
Challenge: Preprocessor 



Not every line in a program is covered by the AST - for example, there are unused macro 
definitions, various preprocessor directives, #ifdef’ed out code, etc. 
 
We will at least need some form of lexing approach for the parts of a source file that cannot be 
correctly indented / line broken by looking at the AST. 

Algorithm 
Visit all nodes on the AST; for each node that is part of a macro expansion, consider all 
locations taking part in that macro expansion. If the location is within the range that need to be 
indented, look at the code at the location, the rules around the node, and adjust whitespace as 
necessary. If the node starts a line, adjust the indent; if a node overflows the line, break the line. 
TODO: figure out what to do with the lines that are not visited that way. 

Configuration 
To support a majority of developers, being able to configure the desired style is key. We propose 
using a YAML configuration file, as there’s already a YAML parser readily available in LLVM. 
Proposals for more specific ideas welcome. 

Style deduction 
When changing the format of code that does not conform to a given style configuration, we will 
optionally try to deduce style options from the file first, and fall back to the configured layout 
when there was no clear style deducible from the context. 
TODO: Detailed design ideas. 

Interface 
This is a strawman. Please shoot down. 
 
Command line interface: 
Command line interfaces allow easy integration with existing tools and editors. 
 
USAGE: clang-format <build-path> <source> [<range0> [<range1> ...]] [-- list of command line 
arguments to the parser] 
 
<rangeN>: Specifies a code range to be reformatted; if no code range is given, assume the 
whole file. The format of the range is “<start_line>:<start_column>-<end_line>:<end_column>”. 
 
Code level interface: 
Reformatting source code is also a prerequisite for automated refactoring tools. We want to be 
able to integrate the reformatting as a post-processing step on top of other code transformations 
to make sure as little human intervention is needed as possible. 



 
How this is designed will highly depend on the level of parsing necessary. 
 

Competition 
TODO: List other formatting tools we’re aware of and how well they work 

●​ GNU indent - C only; 
●​ BCPP (http://invisible-island.net/bcpp/bcpp.html) - “it does (by design) not attempt to 

wrap long statements”; written in about 1995, since then had very few changes; 
●​ Artistic Style (http://astyle.sourceforge.net/) - one of the most frequently used, but “not 

perfect”; 
●​ Uncrustify (http://uncrustify.sourceforge.net/) - has lots of configuration options; 
●​ GreatCode (http://sourceforge.net/projects/gcgreatcode/) - not supported since 2005; 
●​ Style Revisor (http://style-revisor.com) - commercial; claims to understand C++, but it 

isn’t released yet, so no way to try; uses code snippets to specify rules. 
 
All of them except Style Revisitor seem to have simplistic regexp-based c++ parsing. 

http://invisible-island.net/bcpp/bcpp.html
http://astyle.sourceforge.net/
http://uncrustify.sourceforge.net/
http://sourceforge.net/projects/gcgreatcode/
http://style-revisor.com/

	Design: clang-format 
	Context 
	Goals 
	Non-goals 
	Code location 
	Parsing approach 
	Algorithm 
	Configuration 
	Style deduction 
	Interface 
	Competition 


