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(not yet updated: Boot ROM)

Design Status

Date Progress
2018_04_25 Verilog design files sent to On Semi for Rev A silicon
(8 cogs, 512KB hub, 64 smart pins)
2018_05_29 Final ROM data sent to On Semi
2018_07_09 Final Sign-off with On Semi, reticles being made
2018 09 11 Wafers done! Only took 9 weeks, instead of 14.
2018_09_27 Received 10 glob-top prototype chips from On Semi.
Chips are functional, but sign-extension problems in Verilog source files caused the following problems:
1) Cogs' IQ modulators' outputs are nonsensical.
2) Smart pin measurement modes which are supposed to count by +1/-1 are counting by +1/+3.
3) ALTx instructions aren't sign-extending S[17:09] before adding into D.
These sign-extension problems have already been fixed in the Verilog source files and tested on the
FPGA.
There is also a low-glitch-on-high-to-float problem on some 1/O pins due to a race condition between DIR
and OUT signals. This will be fixed by timing constraints in the next silicon.
A respin of the silicon is planned after more testing.
2018_11_13 Received 135 Amkor-packaged prototype chips from On Semi. These chips will have better heat
dissipation than the glob-top prototypes.
2019_04_1 Rev B respin entered the fab and is due out July 15.

Ten glob-top prototypes should arrive on August 1, with 2,400 production chips to follow in a few weeks.

The following improvements were made to the chip:

> All known prior bugs fixed.

> Clock-gating implemented, reduces power by ~40%.

> PLL filter modified to reduce jitter and improve lock.

> System counter extended to 64 bits. GETCT WC retrieves upper 32-bits.

> Streamer has many new modes with SINC1/SINC2 ADC conversions for Goertzel mode.

> HDMI mode added to streamer with ascending and descending pinouts for easy PCB layout.

> SINC2/SINCS filters added to smart pins for improving ENOB in ADC conversions.

> Each cog has four 8-bit sample-per-clock ADC channels that feed from new smart pin 'SCOPE'
modes.

> BITL/BITH/BITC/BITNC/BITZ/BITNZ/BITRND/BITNOT can now work on a span of bits (+S[9:5]
bits). Prior SETQ overrides S[9:5].

> DIRx/OUTx/FLTx/DRVx can now work on a span of pins (+D[10:6] pins). Prior SETQ overrides
D[10:6].

> WRPIN/WXPIN/WYPIN/AKPIN can now work on a span of pins (+S[10:6] pins). Prior SETQ
overrides S[10:6].

> BIT_DAC output now has two 4-bit settings for low and high states, instead of one 8-bit high-state
setting.

> RDxxxx/WRxxxx+PTRx expressions now index -16..+16 with updating and -32..+31 without
updating.

> Sensible PTRx behavior implemented for 'SETQ(2) + RDLONG/WRLONG/WMLONG' operations.

> RDLUT/WRLUT can now handle PTRx expressions.

> Cog LUT sharing is now glitch-free.

> POP now returns Z=1 if result=0, used to return result[30].

> XORO32 improved.




> Main PRNG upgraded to "Xoroshiro128**".

The core logic increased by a net 15%, even with significant logic reductions resulting from clock-gating.
Fortunately, ON Semi was able to make it all fit within the original die area.

2019_07_13

Wafers out of fab. Packaging underway.

2019_08_01

Received 10 glob-top prototype chips from ON Semi.

All bugs from prior silicon are fixed.

All new features work as expected.

PLL jitter is <2ns @100us at all divide/multiply settings.
Power is reduced by ~50%.

The new silicon works much better than expected with the improved PLL filter and new clock gating. At
room temperature, the silicon runs at 390MHz and is barely warm to the touch, with the PLL now being the
speed limiter, instead of the logic.

2019_08_19

One of the six new wafers exhibits frequent VIO-to-GND shorts in the 5-20 ohm range. ON Semi is looking
into the cause.

We know that the design is good, so we are anxious to see ON Semi resume yield testing on the other
wafers, in order to get as many Amkor-packaged parts as soon as possible. The new P2 Eval board is
ready to be built.

2019_08_29

ON Semi has done failure analysis on the new chips which were exhibiting VIO shorts and it's been
determined that there are latch-up problems originating from differently-biased N-wells that lie adjacent to
each other. The relatively low resistivity of the new wafers caused this latent design defect to emerge.

We will need to modify the full-custom pad ring to fix these N-well problems. We will soon discuss with ON
Semi how many reticles this is going to involve. We will need another fab run, as well, to realize the
changes.

2019_09_13

ON Semi recently discovered that a voltage-stress test had been applied to the new silicon which was
driving the VDD and VIO pins to +40% nominal voltages. The 4.62V on VIO was triggering the latch-up
problem. The first two wafers which had been probed with this new test had developed many bad dies, as
a result.

ON Semi probed six remaining virgin wafers without the voltage-stress test and yielded over 1,000 good
dies. These have been sent off to Amkor for packaging. From these chips, we will be able to build new P2
Eval boards and supply low volumes of chips.

As for the latch-up problem, it was determined by ON Semi that latch-up was occurring as early as 4.3V on
VIO. Rather than do a respin, we could lower the voltage-stress test from +40% to +25%, which would
result in a peak VIO test voltage of 4.125V.

Depending on what we see in the field with these new chips, we may do a respin to accommodate ON
Semi's standard +40% voltage-stress test, or just lower the voltage-stress test to +25%. ON Semi's
standard of +40% is quite exceptional and some other vendors only guarantee +20%. So, +25% may be
just fine.

We need to get the new silicon out to customers and see if anyone experiences any trouble with
VIO-triggered latch-up. ON Semi is also going to run a standard latch-up test on the new silicon to ensure
there is no other latent problem. The silicon has already passed ESD tests with 4kV human body model
and 2kV machine model.

2019_10_16

We will be receiving about 1,000 Rev B P2 chips on 10/22.

Our plan is to build 191 more P2 Eval boards and supply small quantities of P2 chips to interested
customers.

2019_10_23

We received 1,000 Rev B chips. Aside from building 191 more P2 Eval boards, we will offer 125 packs of
four P2 chips for $100 to interested customers. If anyone needs more than four chips, please contact Ken
Gracey (kgracey@parallax.com).

2020_02_24

Received 10 Rev C chips which fix the adjacent-pin ADC crosstalk problem on prior revisions. Smart pin




mode %100010_OHHHLLL no longer connects the ADC to the adjacent pin, but floats the ADC input. This
mode is now useful for determining the floating bias point of the ADC.

Several thousand Rev C chips will be arriving from ON Semi over the next two months.

2020 _06_01 Received 7,000 Rev C chips from ON Semi.

KNOWN SILICON BUGS

Intervening ALTx/AUGS/AUGD instructions between SETQ/SETQ2 and RDLONG/WRLONG/WMLONG-PTRXx instructions will cancel
the special-case block-size PTRx deltas. The expected number of longs will transfer, but PTRx will only be modified according to
normal PTRXx expression behavior:

SETQ #16-1 'ready to load 16 longs
ALTD start_reg 'alter start register (ALTD cancels block-size PTRx deltas)
RDLONG O,ptra++ 'ptra will only be incremented by 4 (1 long), not 16*4 as anticipated!!!

Intervening ALTx instructions with an immediate #S operand, between AUGS and the AUGS' intended target instruction (which would
have an immediate #S operand), will use the AUGS value, but not cancel it. So, the intended AUGS target instruction will use and
cancel the AUGS value, as expected, but the intervening ALTx instruction will also use the AUGS value (if it has an immediate #S
operand). To avoid problems in these circumstances, use a register for the S operand of the ALTx instruction, and not an immediate #S
operand.

AUGS #SFFFFF123 'This AUGS is intended for the ADD instruction.
ALTD index, #base 'Look out! AUGS will affect #base, too. Use a register, instead.
ADD 0-0,#$123 '#$123 will be augmented by the AUGS and cancel the AUGS.

OVERVIEW

The Propeller 2 is a microcontroller architecture consisting of 1, 2, 4, 8, or 16 identical 32-bit processors (called cogs), each with their
own RAM, which connect to a common hub. The hub provides up to 1 MB of shared RAM, a CORDIC math solver, and housekeeping
facilities. The architecture supports up to 64 smart I/0 pins, each capable of many autonomous analog and digital functions.

The P2X8C4M64P silicon contains 8 cogs, 512 KB of hub RAM, and 64 smart I/O pins in an exposed-pad TQFP-100 package.

Design Status
KNOWN BUGS

OVERVIEW

PIN DESCRIPTIONS

MEMORIES

COGS

INSTRUCTION MODES
REGISTER EXECUTION
LOOKUP EXECUTION
HUB EXECUTION

STARTING AND STOPPING COGS

COG RAM
DIRECT ACCESS
DUAL-PURPOSE REGISTER




SPECIAL-PURPOSE REGISTERS
LOOKUP RAM
LOAD/STORE ACCESS
STREAMER ACCESS
BYTECODE EXECUTION LOOKUP TABLE
SMART PIN DATA SOURCE
RAM SHARING BETWEEN PAIRED COGS
REGISTER INDIRECTION
BRANCH ADDRESSING
INSTRUCTION REPEATING
INSTRUCTION SKIPPIN
Special SKIPF Branching Rules
BYTECODE EXECUTION
SETQ CONSIDERATIONS
PIXEL OPERATIONS
DACs
STREAMER
Immediate > LUT - Pins/DACs
Immediate > Pins/DACs
RDFAST - LUT - Pins/DACs
RDFAST - Pins/DACs
RDFAST > RGB > Pins/DACs
Pins > DACs/WRFAST
ADCs/Pins > DACs/WRFAST
DDS/Goertzel
Digital Video Output (DVI/HDMI)
COLORSPACE CONVERTER
1/0 PIN TIMING
COG ATTENTION
EVENTS
Selectable Events
INTERRUPTS
DEBUG INTERRUPT

uB

Configuration
Configuring the Clock Generator
PLL Example
Write-Protecting the Last 16KB of Hub RAM and Enabling Debug Interrupts
Configuring the Digital Filters for Smart Pins
Seeding the Xoroshiro128** PRNG
Rebooting the Chip
HUB RAM
THE "EGG BEATER" INTERFACE
FAST SEQUENTIAL FIFO INTERFACE
RANDOM ACCESS INTERFACE
FAST BLOCK MOVE
CORDIC Solver
MULTIPLY
DIVIDE
SQUARE ROOT
(X.Y) ROTATION
(X.Y) VECTORING



LOGARITHM

EXPONENT
LOCKS

Allocating Locks

Using Locks

SMART PINS
SMART PIN MODES

%00001..%00011 and not DAC_MODE = long repository
%00001 and DAC_MODE = DAC noise

%00010 and DAC_MODE = DAC 16-bit with pseudo-random dither
%00011 and DAC_MODE = DAC 16-bit with PWM dither

%00100 = pulse/cycle output

%00101 = transition output

%00110 = NCO frequency
%00111 = NCO duty

%01000 = PWM triangle
%01001 = PWM sawtooth
%01010 = PWM switch-mode power supply with voltage and current feedback
%01011 = A/B-input quadrature encoder
%01100 = Count A-input positive edges when B-input is high
%01101 = Accumulate A-input positive edges with B-input supplying increment (B=1) or decrement (B=0)
%01110 AND 'Y[0] = Count A-input positive edges
%01110 AND YT0] = Increment on A-input positive edge and decrement on B-input positive edge
%01111 AND !Y[0] = Count A-input highs
%01111 AND Y[0O] = Increment on A-input high and decrement on B-input high
%10000 = Time A-input states
%10001 = Time A-input high states
%10010 AND !Y[2] = Time X A-input highs/rises/edges
%10010 AND YJ2] = Timeout on X clocks of missing A-input high/rise/edge
%10011 = For X periods. count time
%10100 = For X periods, count states
%10101 = For periods in X+ clock cycles, count time
%10110 = For periods in X+ clock cycles, count states
%10111 = For periods in X+ clock cycles. count periods
%11000 = ADC sampleffilter/capture, internally clocked
%11001 = ADC sample/filter/capture, externally clocked
About SINC2 and SINCS3 filtering
SINC2 Sampling Mode (%00)
SINCS3 Filtering Mode (%10)

Bitstream Capturing Mode (%11
%11010 = ADC Scope with Trigger

SCOPE Data Pipe
%11011 = USB host/device

%11100 = synchronous serial transmit

%11101 = synchronous serial receive

%11110 = asynchronous serial transmit
%11111 = asynchronous serial receive

BOOT PROCESS (needs more editing)
SERIAL LOADING PROTOCOL
Prop Chk
Prop_Clk
PLL Example




Reset to Boot Clock Configuration

Prop Hex
Prop_Txt
SUMMARY

Assembly Language

Boot ROM / Debug ROM

Packaging

P2X

8C 4M 64P ES

Propeller 2 8 cogs (processors) 4 Mb hub RAM (512 KB) 64 smart 1/O pins Engineering Sample

Each cog has:

Access to all I/0 pins, plus four fast DAC output channels and four fast ADC input channels
512 longs of dual-port register RAM for code and fast variables

512 longs of dual-port lookup RAM for code, streamer lookup, and variables

Ability to execute code directly from register RAM, lookup RAM, and hub RAM

~350 unique instructions for math, logic, timing, and control operations

2-clock execution for all math and logic instructions, including 16 x 16 multiply

6-clock custom-bytecode executor for interpreted languages

Ability to stream hub RAM and/or lookup RAM to DACs and pins or HDMI modulator
Ability to stream pins and/or ADCs to hub RAM

Live colorspace conversion using a 3 x 3 matrix with 8-bit signed/unsigned coefficients
Pixel blending instructions for 8:8:8:8 data

16 unique event trackers that can be polled and waited upon

3 prioritized interrupts that trigger on selectable events

Hidden debug interrupt for single-stepping, breakpoint, and polling

8-level hardware stack for fastest subroutine calls/returns and push/pop operations
Carry and Zero flag

The hub provides the cogs with:

Up to 1 MB of contiguous RAM in a 20-bit address space (P2X8C4M64P contains 512 KB)
- 32-bits-per-clock sequential read/write for all cogs, simultaneously
- readable and writable as bytes, words, or longs in little-endian format
- last 16KB of RAM also appears at the end of the 1TMB map and is write-protectable
32-bit, pipelined CORDIC solver with scale-factor correction
- 32-bit x 32-bit unsigned multiply with 64-bit result
- 64-bit / 32-bit unsigned divide with 32-bit quotient and 32-bit remainder
- 64-bit — 32-bit square root
- Rotate (X32,Y32) by Theta32 — (X32,Y32)
- (Rho32,Theta32) — (X32,Y32) polar-to-cartesian
- (X32,Y32) — (Rho32,Theta32) cartesian-to-polar
- 32 — 5.27 unsigned-to-logarithm
- 5.27 — 32 logarithm-to-unsigned
- Cogs can start CORDIC operations every 1/2/4/8/16 (#cogs) clocks and get results 55 clocks later
16 semaphore bits with atomic read-modify-write operations
64-bit free-running counter which increments every clock, cleared on reset
High-quality pseudo-random number generator (Xoroshiro128**), true-random seeded at start-up, updates every clock,



provides unique data to each cog and pin
- Mechanisms for starting, polling, and stopping cogs
- 16KB boot ROM
- Loads into last 16 KB of hub RAM on boot-up
- SPl loader for automatic startup from 8-pin flash or SD card
- Serial loader for startup from host
- Hex and Base64 download protocols
- Terminal monitor invocable via "> " (greater than followed by a space) and then CTRL+D
- TAQOZ Forth invocable via "> " (greater than followed by a space) and then ESC

Each smart I/O pin has the following functions:

- 8-bit, 120-ohm (3ns) and 1k-ohm DACs with 16-bit oversampling, noise, and high/low digital modes
- Delta-sigma ADC with 5 ranges, 2 sources, and VIO/GIO calibration

- Several ADC sampling modes: automatic 2" SINC2, adjustable SINC2/SINC3, oscilloscope

- Logic, Schmitt, pin-to-pin-comparator, and 8-bit-level-comparator input modes

- 2/3/5/8-bit-unanimous input filtering with selectable sample rate

- Incorporation of inputs from relative pins, -3 to +3

- Negative or positive local feedback, with or without clocking

- Separate drive modes for high and low output: logic/ 1.5k / 15k /150 k/1 mA /100 yA /10 pA / float
- Programmable 32-bit clock output, transition output, NCO/duty output

- Triangle/sawtooth/SMPS PWM output, 16-bit frame with 16-bit prescaler

- Quadrature decoding with 32-bit counter, both position and velocity modes

- 16 different 32-bit measurements involving one or two signals

- USB full-speed and low-speed (via odd/even pin pairs)

- Synchronous serial transmit and receive, 1 to 32 bits, up to clock/2 baud rate

- Asynchronous serial transmit and receive, 1 to 32 bits, up to clock/3 baud rate

Six different clock modes, all under software control with glitch-free switching between sources:

- Internal 20+ MHz RC oscillator, nominally 24 MHz, used as initial clock source

- Crystal oscillator with internal loading caps for 7.5 pF/15 pF crystals, can feed PLL

- Clock input, can feed PLL

- Fractional PLL with 1..64 crystal divider --> 1..1024 VCO multiplier --> optional (1..15)*2 VCO post-divider
- Internal ~20 kHz RC oscillator for low-power operation (130 yA)

- Clock can be stopped for lowest power until reset (100 YA, due to leakage)
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PIN DESCRIPTIONS

Pin Name Direction V(typ) | Description

TEST I 0 Tied to ground

VDD - 1.8 Core power

VSS - 0 Ground

VIO_{x}_{y} - 3.3 Power for smart pins {x} through {y}

GIO_{x} {y} - 0 Ground for smart pins {x} through {y} and other related circuits
P0-63 I/0 0to 3.3 | Smart pins

P58-P63 | Boot source(s). See BOOT PROCESS.

XI - Crystal Input. Can be connected to output of crystal/oscillator pack (with XO left
disconnected), or to one leg of crystal (with XO connected to other leg of
crystal or resonator) depending on CLK Register settings. No external resistors
or capacitors are required.

X0 o - Crystal Output. Provides feedback for an external crystal, or may be left
disconnected depending on CLK Register settings. No external resistors or
capacitors are required.

RESNn 0 Reset (active low). When low, resets the Propeller chip: all cogs disabled and
1/0 pins floating. Propeller restarts 3 ms after RESn transitions from low to
high.

MEMORIES

There are three memory regions: cog RAM, lookup RAM, and hub RAM. Each cog has its own cog RAM and lookup RAM, while the
hub RAM is shared by all cogs.

Memory Memory Memory Instruction D/S Program Counter
Region Width Depth Address Ranges Address Ranges

COG 32 bits 512 $000. .$1FF $00000. .$001FF
LOOKUP 32 bits 512 $000. .$1FF $00200. .$003FF
HUB 8 bits 1,048,576 (*) $00000. . SFFFFF $00400. .SFFFFF

(*) 1,048,576 bytes is the maximum size supported. However, some variants may have less available. See the Hub Memory section
below for more details.

COGS

The Propeller contains multiple processors, called "cogs". Each cog has its own RAM and can start, stop, and execute instructions
independently of one another. All active cogs share the same system clock, Hub RAM, and /O pins.

Cogs employ a five-stage pipelined execution architecture. When the execution pipeline is full, each instruction effectively takes as little
as two clock cycles to execute. If an instruction stalls for additional clock cycles, all following instructions in the pipeline are also stalled.
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Any instruction that is conditionally canceled will still move through the pipeline without stalling or executing, but taking two clock cycles.
Branch instructions cause the pipeline to be flushed, so the first instruction following the branch will take at least five clock cycles.

The available instruction set can be found at Parallax Propeller 2 Instruction Sef. When reading the "Encoding" column, the following
table may help:

Key Description
EEEE Conditional test (see "Instruction Prefix" list at bottom of the instruction set spreadsheet)

c 0: Do not update the "C" register
1: Update the "C" register. In the instruction syntax, this is denoted by "WC" or "WCZ".

Z 0: Do not update the "Z" register
1: Update the "Z" register. In the instruction syntax, this is denoted by "WZ" or "WCZ".

I 0: Source field is a register address
1: Source field is a literal value. In the instruction syntax, this is denoted by the "#" character.

L 0: Destination field is a register address
1: Destination field is a literal value. In the instruction syntax, this is denoted by the "#" character.

R 0: 20-bit Address field is relative to current PC.
1: 20-bit Address field is absolute.

WW Index of special register (PA, PB, PTRA, or PTRB) to write.

DDDDDDDDD Destination field

SSSSSSsSsSsS Source field

AAAAAAA. .. | 20-bit Address field
nnnnnn. .. 23-bit augment number field
N, NN, NNN Index number. This is only used for instructions with a third operand to specify word, byte, or nibble.
ccce conditional test used to update C (%0000=clear, %1111=set, all others per EEEE)
222z conditional test used to update Z (%0000=clear, %1111=set, all others per EEEE)

INSTRUCTION MODES

Cogs use 20-bit addresses for program counters (PC). This affords an execution space of up to 1MB. Depending on the value of a
cog's PC, an instruction will be fetched from either its register RAM, its lookup RAM, or the hub RAM.

PC Address Instruction Source Memory Width | PC Increment
$00000. .$001FF cog register RAM 32 bits 1
$00200. .$003FF cog lookup RAM 32 bits 1
$00400. . SFFFFF hub RAM 8 bits 4

REGISTER EXECUTION

When the PC is in the range of $00000 and $001FF, the cog is fetching instructions from cog register RAM. This is commonly referred
to as "cog execution mode." There is no special consideration when taking branches to a cog register address.



https://docs.google.com/spreadsheets/d/1_vJk-Ad569UMwgXTKTdfJkHYHpc1rZwxB-DcIiAZNdk

LOOKUP EXECUTION

When the PC is in the range of $00200 and $003FF, the cog is fetching instructions from cog lookup RAM. This is commonly referred
to as "LUT execution mode." There is no special consideration when taking branches to a cog lookup address,

HUB EXECUTION

When the PC is in the range of $00400 and $FFFFF, the cog is fetching instructions from hub RAM. This is commonly referred to as
"hub execution mode." When executing from hub RAM, the cog employs the FIFO hardware to spool up instructions so that a stream
of instructions will be available for continuous execution. Branching to a hub address takes a minimum of 13 clock cycles. If the
instruction being branched to is not long-aligned, one additional clock cycle is required. A branch must occur to get from cog to hub,
since rolling from $3FF to $400 will not initiate hub execution.

While in hub execution mode, the FIFO cannot be used for anything else. So, during hub execution these instructions cannot be used:
RDFAST / WRFAST / FBLOCK
RFBYTE / RFWORD / RFLONG / RFVAR / RFVARS
WFBYTE / WFWORD / WFLONG
XINIT / XZERO / XCONT - when the streamer mode engages the FIFO

It is not possible to execute code from hub addresses $00000 through $003FF, as the cog will instead read instructions from the cog
register or lookup RAM as indicated above.

STARTING AND STOPPING COGS

Any cog can start or stop any other cog, or restart or stop itself. Each of the eight cogs has a unique three-bit ID which can be used to
start or stop it. It's also possible to start free (stopped or never started) cogs, without needing to know their ID's. This way, entire
applications can be written which simply start free cogs, as needed, and as those cogs retire by stopping themselves or getting stopped
by others, they return to the pool of free cogs and become available, again, for restarting.

The COGINIT instruction is used to start cogs:
COGINIT D/#,S/# {WC}

D/# = %0_x xxxx The target cog loads its own registers $000..$1F7 from the hub,
starting at address S/#, then begins execution at register address $000.

$1_ X XXXX The target cog begins execution at register/LUT/hub address S/#.
%$x_0_cccc The target cog's ID is %CCCC.
$x_1 xxx0 If a cog is free (stopped), then start it.

To know if this succeeded, D must be a register and WC must be
used. If successful, C will be cleared and D will be over-
written with the target cog's ID. Otherwise, C will be set and D will be

overwritten with SF.

$x_1 xxx1 If an even/odd cog pair is free (stopped), then start them.
To know if this succeeded, D must be a register and WC must be
used. If successful, C will be cleared and D will be over-
written with the even/lower target cog's ID. Otherwise, C will be set
and D will be overwritten with S$F.

S/# = address This value is either the hub address from which the target cog will
load from, or it is the cog/hub address from which the target cog
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will begin executing at, depending on D[5]. This 32-bit wvalue will be
written into the target cog's PTRB register.

If COGINIT is preceded by SETQ, the SETQ value will be written into the target cog's PTRA register. This is intended as a convenient
means of pointing the target cog's program to some runtime data structure or passing it a 32-bit parameter. If no SETQ is used, the
target cog's PTRA register will be cleared to zero.

COGINIT #1,#$100 'load and start cog 1 from $100

COGINIT #%1_0_0101,PTRA 'start cog 5 at PTRA

SETQ ptra_val 'ptra_val will go into target cog's PTRA register

COGINIT #%0_1 0000, addr 'load and start a free cog at addr

COGINIT #%1_1 0001,addr 'start a pair of free cogs at addr (lookup RAM sharing)
COGINIT id,addr WC ' (1d=$30) start a free cog at addr, C=0 and id=cog if okay
COGID myID 'reload and restart me at PTRB

COGINIT myID,PTRB

The COGSTOP instruction is used to stop cogs. The 4 LSB's of the D/# operand supply the target cog ID.
COGSTOP #0 'stop cog 0

COGID myID 'stop me
COGSTOP myID

A cog can discover its own ID by doing a COGID instruction, which will return its ID into D[3:0], with upper bits cleared. This is useful, in
case the cog wants to restart or stop itself, as shown above.

If COGID is used with WC, it will not overwrite D, but will return the status of cog D/# into C, where C=0 indicates the cog is free
(stopped or never started) and C=1 indicates the cog is busy (started).

COGID ThatCog WC 'C=1 if ThatCog is busy

COG RAM

Each cog has a primary 512 x 32-bit dual-port RAM, which can be used in multiple ways:
e Direct/Register access

e As a source of program instructions (see COGS > INSTRUCTION MODES > REGISTER EXECUTION)
GENERAL PURPOSE REGISTERS

RAM registers $000 through $1EF are general-purpose registers for code and data usage.

DUAL-PURPOSE REGISTERS

RAM registers $1F0 through $1F7 may either be used as general-purpose registers, or may be used as special-purpose registers if
their associated functions are enabled.

$1F0 RAM / IJMP3 interrupt call address for INT3
$1F1 RAM / IRET3 interrupt return address for INT3
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$1F2 RAM / IJMP2 interrupt call address for INT2

$1F3 RAM / IRET2 interrupt return address for INT2

$1F4 RAM / IJMP1 interrupt call address for INT1

$1F5 RAM / IRET1 interrupt return address for INT1

$1F6 RAM / PA CALLD-imm return, CALLPA parameter, or LOC address

$1F7 RAM / PB CALLD-imm return, CALLPB parameter, or LOC address
P

SPECIAL-PURPOSE REGISTERS

Each cog contains 8 special-purpose registers that are mapped into the RAM register address space from $1F8 to $1FF. In general,
when specifying an address between $1F8 and $1FF, the instruction is accessing a special-purpose register, not just the underlying
RAM.

$1F8 PTRA pointer A to hub RAM

$1F9 PTRB pointer B to hub RAM

S1FA DIRA output enables for P31..P0
$1FB DIRB output enables for P63..P32
$1FC OUTA output states for P31l..PO
$1FD OUTB output states for P63..P32
$1FE INA * input states for P31..PO
S1FF INB ** input states for P63..P32

* also debug interrupt call address
** also debug interrupt return address

LOOKUP RAM

Each cog has a secondary 512 x 32-bit dual-port RAM, which can be used in multiple ways:

Load/Store access

As a source or destination for the streamer hardware

As a lookup table for bytecode execution

As a data source for smart pins

As a "RAM sharing" mechanism between paired cogs

As a source of program instructions (see COGS > INSTRUCTION MODES > LOOKUP EXECUTION)

NOTE: The term "lookup" (and "LUT", which is short for "look-up table") is due to historical usage in the original Propeller
microcontroller. This RAM can still be used in a "lookup" context, but can also be used for many other purposes, as indicated
above.

LOAD/STORE ACCESS

Unlike cog RAM, the cog cannot directly use the lookup RAM in the majority of its instructions. Instead, lookup RAM must be read into
cog RAM using the RDLUT instruction and cog RAM must be written into the lookup RAM using the WRLUT instruction. In other
hardware architectures, these instructions would be synonymous with "LOAD" and "STORE" instructions, respectively. When using the
RDLUT and WRLUT instructions, the 32-bit words are addressible from $000 to $1FF.

STREAMER ACCESS

(to be completed.)

BYTECODE EXECUTION LOOKUP TABLE

(to be completed.)

RAM SHARING BETWEEN PAIRED COGS

Adjacent cogs whose ID numbers differ by only the LSB (cogs 0 and 1, 2 and 3, 4 and 5, etc.) can each allow their lookup RAMs to be
written by the other cog via its local lookup RAM writes. This allows adjacent cogs to share data very quickly through their lookup
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RAMs.
The 'SETLUTS D/# instruction is used to enable the lookup RAM to receive writes from the adjacent cog:

SETLUTS #0 'disallow writes from other cog (default)
SETLUTS #1 'allow writes from other cog

Lookup-RAM writes from the adjacent cog are implemented on the 2nd port of the lookup RAM. The 2nd port is also shared by the
streamer in DDS/LUT modes. If an external write occurs on the same clock as a streamer read, the external write gets priority. It is not
intended that external writes would be enabled at the same time the streamer is in DDS/LUT mode.

In order to find and start two adjacent cogs with which this write-sharing scheme can be used, the COGINIT instruction has a
mechanism for finding an even/odd pair and then starting them both with the same parameters. It will be necessary for the program to
differentiate between even and odd cogs and possibly restart one, or both, with the final, intended program. To have COGINIT find and
start two adjacent cogs, use %x_1_xxx1 for the D/# operand.

To facilitate handshaking between cogs sharing lookup RAM, the SETSE1...4 instructions can be used to set up lookup RAM read and
write events.

REGISTER INDIRECTION

Cog registers can be accessed indirectly most easily by using the ALTS/ALTD/ALTR instructions. These instructions sum their D[8:0]
and S/#[8:0] values to compute an address that is directly substituted into the next instruction's S field, D field, or result register address
(normally, this is the same as the D field). This all happens within the pipeline and does not affect the actual program code. The idea is
that S/# can serve as a register base address and D can be used as an index.

Additionally, S[17:9] is always sign-extended and added to the D register for index updating. Normally, a nine-bit #address will be used
for S, causing S[17:9] to be zero, so that D is unaffected:

ALTS index, #table 'set next S field to table+index

MOV OUTA, 0 'output register[table+index] to OUTA
ALTD index, #table 'set next D field to table+index

MOV 0,INA 'write INA to register[table+index]
ALTR index, #table 'set next write to table+index

XOR INA,INB 'write INA”“INB to register[table+index]

For cases where base+index is not required, and a register holds the desired address, the S/# field can be omitted and it will be set to
'#0' by the assembiler:

ALTS pointer 'set next S field to pointer

MOV ouTA, 0 'output register[pointer] to OUTA
ALTD pointer 'set next D field to pointer

MOV 0,INA 'write INA to register[pointer]
ALTR pointer 'set next write to pointer

XOR INA,INB 'write INA”INB to register[pointer]

For accessing bit fields that span multiple registers, there is the ALTB instruction which sums D[13:5] and S/#[8:0] values to compute an
address which is substituted into the next instruction's D field. It can be used with and without S/#:

ALTB bitindex, #base 'set next D field to base+bitindex[13:5]
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BITC 0,bitindex 'write C to bit[bitindex[4:0]]

ALTB bitindex 'set next D field to bitindex[13:5]
TESTB 0,bitindex WC 'read bit[bitindex[4:0]] into C

There are also ALTxx instructions for facilitating nibble (4-bit), byte (8-bit), and word (16-bit) sub-addressing of registers. They modify
either the S or D field, as well as the N field of their associated and subsequent nibble, byte, or word instruction. Like the other ALTx
instructions, they can be used with or without S/#. Note that the associated nibble, byte, or word instruction can be a shortened-syntax
alias of the full instruction, since two of its three fields will be filled in by the ALTxx instruction.

Nibble addressing:

ALTSN index, #base 'set next D field to base+index[11:3], next N to index[2:0]
SETNIB value 'set nibble to value ('SETNIB S/#' = 'SETNIB 0,S/#,#0")
ALTGN index, #base 'set next S field to base+index[11:3], next N to index[2:0]
GETNIB value 'get nibble into value ('GETNIB D' = 'GETNIB D,0,#0')
ALTGN index, #base 'set next S field to base+index[11:3], next N to index[2:0]
ROLNIB value 'ROL nibble into value ('ROLNIB D' = 'ROLNIB D,0,#0')
Byte addressing:

ALTSB index, #base 'set next D field to base+index[10:2], next N to index[1:0]
SETBYTE value 'set byte to value ('SETBYTE S/#' = 'SETBYTE O0,S/#,#0'")
ALTGB index, #base 'set next S field to base+index[10:2], next N to index[1:0]
GETBYTE value 'get byte into value ('GETBYTE D' = 'GETBYTE D,0,#0')
ALTGB index, #base 'set next S field to base+index[10:2], next N to index[1:0]
ROLBYTE value 'ROL byte into value ('ROLBYTE D' = 'ROLBYTE D,0,#0')

Word addressing:

ALTSW index, #base 'set next D field to base+index[9:1], next N to index[0]
SETWORD value 'set word to value ('SETWORD S/#' = 'SETWORD O0,S/#,#0")
ALTGW index, #base 'set next S field to base+index[9:1], next N to index[O0]
GETWORD value 'get word into value ('GETWORD D' = 'GETWORD D,0,#0')
ALTGW index, #base 'set next S field to base+index[9:1], next N to index[0]
ROLWORD value 'ROL word into value ('ROLWORD D' = 'ROLWORD D,0,#0')

For more complex S field, D field, and result register substitutions, there is the ALTI instruction. ALTI actually does a few different
things. First, ALTI can be used to individually increment or decrement three different nine-bit fields within a register. Second, ALTI can
substitute each of those fields (before incrementing or decrementing) into the next instruction's S field, D field, or result register
address, in the same way ALTS, ALTD, and ALTR do. Lastly, ALTI can substitute D[31..18] into the next instruction's upper bits [31..18]
to enable full instruction substitution with a register's contents.

ALTI D,S/# 'modify D and/or next instruction's fields according to S/#
S/# = %rrr_ddd _sss_RRR DDD_SSS

srrr Result register field D[27..19] increment/decrement masking

16



$ddd
$sss

%$RRR

%$DDD

%SSS

D register field D[17..9] increment/decrement masking

S register field D[8..0] increment/decrement masking

9 bits increment/decrement (default, full span)

increment/decrement (256-register looped buffer)

increment/decrement (128-register looped buffer)

increment/decrement (64-register looped buffer)

increment/decrement (32-register looped buffer)

increment/decrement (l6-register looped buffer)

increment/decrement (8-register looped buffer)

$rrr/%$ddd/%sss:
000 =

001 = 8 LSBs
010 = 7 LSBs
011 = 6 LSBs
100 = 5 LSBs
101 = 4 LSBs
110 = 3 LSBs
111 = 2 LSBs

increment/decrement (4-register looped buffer)

result register

000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

D[27.
D[27.
D[27.
D[27.
D[27.
D[31.
D[27.
D[27.

.19]
.19]
.19]
.19]
.19]
.18]
.19]
.19]

/ instruction modification:

stays same, no result register substitution

stays same, but result register writing is canceled
decrements per %rrr, no result register substitution
increments per %rrr, no result register substitution

sets next instruction's result register, stays same
substitutes into next instruction's [31..18] (execute D)
sets next instruction's result register, decrements per %rrr

sets next instruction's result register, increments per %rrr

D field modification:

x0x =
x10 =
x11 =
Oxx =

1xx =

D[17..9] stays same
D[17..9] decrements per %ddd
D[17..9] increments per %ddd

no D field substitution

D[17..9] substitutes into next instruction's D field [17..9]

S field modification:

x0x =
x10 =
x11 =
Oxx =

1xx =

D[8..0] stays same

D[8..0] decrements per %sss

D[8..0] increments per $%sss
no S field substitution

D[8..0] substitutes into next instruction's S field [8..0]

Here are some examples of ALT| usage:

ALTI
ADD

ALTI
NOP

The SETS/SETD/SETR instructions allow you to write the S field, D field and instruction field of a register without affecting other bits.

ptrs,#%111_111

0,0

'set next D and S fields, increment ptrs[17:9] and ptrs[8:0]
'add registers

inst,#%101_100_100 'execute inst (same as 'ALTI inst')

'NOP becomes inst

They copy the lower 9 bits of S/# into their respective 9-bit field within D. These instructions are useful for establishing the fields that will

be used by ALTI:
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SETS D,S/# 'set D[8:0] to S/#[8:0]
SETD D,S/# 'set D[17:9] to S/#[8:0]
SETR D,S/# 'set D[27:19] to S/#[8:0]

SETS/SETD/SETR can also be used in self-modifying cog-register code. After modifying a cog register, It is necessary to elapse two
instructions before executing the modified register, due to pipelining:

SETR inst,op 'set register[27:19] to op[8:0]
NOP 'first spacer instruction, could be anything
NOP 'second spacer instruction, could be anything
inst MOV X,y 'operate on x using y, MOV can become AND/OR/XOR/etc.

BRANCH ADDRESSING

The following are branch instructions which use D[19:0] as an absolute address:

EEEE 1101011 Cz0 DDDDDDDDD 000101100 JMP D
EEEE 1101011 CZ0O DDDDDDDDD 000101101 CALL D
EEEE 1101011 CZ0O DDDDDDDDD 000101110 CALLA D
EEEE 1101011 CZ0O DDDDDDDDD 000101111 CALLB D

The JMPREL instruction uses D as a relative address that steps whole instructions. In cog mode, D[19:0] is added to the program
counter and in hub mode, D[17:0] << 2 is added to the program counter. This instruction is unique in its ability to make a relative jump
(as opposed to an absolute jump) based on a register value. If #D is used, the relative address will be a positive 9-bit value:

EEEE 1101011 OOL DDDDDDDDD 000110000 JMPREL {#}D
These next branch instructions use S[19:0] as an absolute address, or, if S is immediate, they sign-extend the 9-bit S field and use that

value as a relative address that steps whole instructions (in hub mode, the value gets shifted left two bits before being added to the
program counter). This means that their immediate range is -256 to +255 instructions, relative to the instruction following the branch:

EEEE 1011010 OLI DDDDDDDDD SSSSSSSSS CALLPA {#}D, {#}S
EEEE 1011010 1LI DDDDDDDDD SSSSSSSSS CALLPB {#}D, {#}S
EEEE 1011001 CzZI DDDDDDDDD SSSSSSSSS CALLD D, {#}s
EEEE 1011011 00I DDDDDDDDD SSSSSSSSS DJZ D, {#}s
EEEE 1011011 01I DDDDDDDDD SSSSSSSSS DJNZ D, {#}s
EEEE 1011011 10I DDDDDDDDD SSSSSSSSS DJF D, {#}s
EEEE 1011011 11I DDDDDDDDD SSSSSSSSS DJNF D, {#}s
EEEE 1011100 00I DDDDDDDDD SSSSSSSSS 1J2 D, {#}s
EEEE 1011100 01I DDDDDDDDD SSSSSSSSS IJNZ D,{#}s
EEEE 1011100 10I DDDDDDDDD SSSSSSSSS TJZ D,{#}s
EEEE 1011100 11I DDDDDDDDD SSSSSSSSS TJINZ D, {#}s
EEEE 1011101 00I DDDDDDDDD SSSSSSSSS TJF D, {#}s
EEEE 1011101 01I DDDDDDDDD SSSSSSSSS TJINF D, {#}s
EEEE 1011101 10I DDDDDDDDD SSSSSSSSS TJS D, {#}s
EEEE 1011101 11I DDDDDDDDD SSSSSSSSS TJINS D, {#}s
EEEE 1011110 00I DDDDDDDDD SSSSSSSSS TJV D, {#}s
EEEE 1011110 01I 00000VVVV SSSSSSSSS Jevent {#}S

EEEE 1011110 01I 00001VVVV SSSSSSSSS JNevent {#}S

There are five branch instructions and one 'locate' instruction which involve 20-bit immediate addresses. Their addresses can be either
relative to the program counter (R=1) or absolute (R=0):
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EEEE 1101100 RAA AAAAAAAAA AAAAAAAAA JMP #{\1a

EEEE 1101101 RAA AAAAAAAAA AAAAAAAAA CALL #{\1a
EEEE 1101110 RAA AAAAAAAAA AAAAAAAAA CALLA  #{\}A
EEEE 1101111 RAA AAAAAAAAA AAAAAAAAA CALLB #{\}A
EEEE 11100WW RAA AAAAAAAAA AAAAAAAAA CALLD PA/PB/PTRA/PTRB,#{\}A
EEEE 11101WW RAA AAAAAAAAA AAAAAAAAA LoC PA/PB/PTRA/PTRB, #{\}A

Relative addressing is convenient for relocatable code, or code which can run from either cog RAM or hub RAM. Relative addressing is
the default when cog code references cog labels or hub code references hub labels. On the other hand, absolute addressing is highly
recommended, and forced by the assembler, when crossing between cog and hub domains.

Absolute addressing can be forced by the use of "\" after the "#".

The "@" operator can be used before an address label to return the hub address of that label, in case it was defined under an ORG
directive to generate cog code, and the label would normally return the cog address..

The cases below illustrate use of the 20-bit immediate-address instructions and "\" and "@":

ORGH $01000

ORG 0 'cog code
cog JMP #cog ' SFD9FFFFC cog to cog, relative

JMP #\cog '$FD800000 cog to cog, force absolute
JMP #@cog '$FD801000 cog to hub, always absolute
JMP #\Qcog 'S$FD801000 cog to hub, always absolute
JMP #hub '$FD802000 cog to hub, always absolute
JMP #\hub '$FD802000 cog to hub, always absolute
JMP #@hub '$FD802000 cog to hub, always absolute
JMP #\@hub 'S$FD802000 cog to hub, always absolute

ORGH $02000 'hub code

hub JMP f#cog '$FD800000 hub to cog, always absolute
JMP #\cog '$FD800000 hub to cog, always absolute
JMP #@cog 'SFDOFEFF4 hub to hub, relative
JMP #\@cog '$FD801000 hub to hub, force absolute
JMP #hub ' $FD9FFFEC hub to hub, relative
JMP #\hub '$FD802000 hub to hub, force absolute
JMP #Qhub ' SFDY9FFFE4 hub to hub, relative
JMP #\@hub '$FD802000 hub to hub, force absolute

INSTRUCTION REPEATING

Single or multiple instructions can be repeated without branching delays in cog/LUT memory using the REP instruction:
REP {#}D, {#}S 'execute {#}D[8:0] instructions {#}S[31:0] times
If D[8:0] = 0, nothing will be repeated. If D[8:0] > 0 and S[31:0] = 0 then D[8:0] instructions will be repeated indefinitely.

By changing the #1000 to #0, the DRVNOT instruction would be repeated indefinitely:
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REP #1,##1000 'toggle pin 0 1000 times (1 instruction x 1000)
DRVNOT #0 'output and toggle pin 0 (2 clocks per toggle)

In cases where you'd rather have the assembler keep track of the number of instructions, @label can be used:

REP @.end, reps 'repeat instruction block 'reps' times
WFBYTE x 'write x to next byte in hub
ADD x,#1 'increment x

.end
REP works in hub memory, as well, but executes a hidden jump to get back to the top of the repeated instructions.

Any branch within the repeating instruction block will cancel REP activity. Interrupts will be ignored during REP looping.

INSTRUCTION SKIPPING

Cogs can initiate skipping sequences to selectively skip any of the next 32 instructions encountered. Skipping is accomplished by either
canceling instructions as they come through the pipeline from hub or cog/LUT memory (effectively turning them into 2-clock NOP
instructions) or by leaping over them in cog/LUT memory (no clock penalty). Skipping only works outside of interrupt service routines;
i.e. in main code.

There are three instructions that initiate skipping:

SKIP {#}D 'skip by cancelling instructions sequentially per D[0]..D[31]
SKIPF {#}D 'like SKIP, but fast due to PC steps of 1..8 - cog/LUT only!
EXECF {#}D '"jump to D[9:0] in cog/LUT and initiate SKIPF using D[31:10]

In each case, D provides a bit pattern which is used LSB-first to determine whether the next instruction is cancelled/skipped (bit=1) or
executed (bit=0). The D bit pattern is initially captured and subsequently shifted right by one bit for each instruction encountered.

Within a skipping sequence, a CALL/CALLPA/CALLPB that is not skipped will execute all its nested subroutines normally, with the
skipping sequence resuming after the returning RET/_RET_. This allows subroutines to be skipped or entirely executed without
affecting the top-level skip sequence. As well, an interrupt service routine will execute normally during a skipping sequence, with the
skipping sequence resuming upon its completion.

While SKIP-initiated skipping can take place in both hub and cog/LUT memory, SKIPF-initiated and EXECF-initiated skipping can only
take place in cog/LUT memory. This is because the PC can be randomly stepped in cog/LUT memory, whereas the hub memory FIFO

can only provide the next instruction, unless a full branch takes place, triggering a FIFO reload.

Here is a simplistic example of SKIP:

SKIP #%010110 'initiate skip sequence (skip 2nd, 3rd, 5th instruction)
DRVN #0 'drive and invert pin 0 (executes)

DRVN #1 'drive and invert pin 1 (NOP)

DRVN #2 'drive and invert pin 2 (NOP)

DRVN #3 'drive and invert pin 3 (executes)

DRVN #4 'drive and invert pin 4 (NOP)

DRVN #5 'drive and invert pin 5 (executes)

Skipping is very useful for getting increased functionality out of an otherwise-static sequence of instructions. Consider this sequence,
which contains all the instructions needed to realize 36 different address calculations:
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addr RFBYTE m
RFWORD m
RFLONG m

ADD m,pbase
ADD m,vbase
ADD m,dbase

SHL i, #1
SHL i, #2
ADD m,i

'offset - one of these three (3 possibilities)

'base - one of these three (3 possibilities)

'index - zero to two of these three (4 possibilities)

In the above sequence, the intention is to compute an address using an offset, a base, and an optional index. There are 3 x 3 x 4, or
36, useful permutations. If you wanted to use a byte offset, pbase, and a long index, you would want to execute only these four

instructions from the 'addr' sequence:

RFBYTE m

ADD m,pbase
SHL i, #2
ADD m,i

'offset
'base
'index

The skip pattern for just those four instructions would be %001_110_110. Assuming 'pat' holds that pattern, here is what the execution
would look like using SKIP. Note that the 'addr' instruction sequence, shown above, follows the SKIP instruction and skipped
instructions in the 'addr' sequence are now shown as NOPs:

SKIP pat
addr RFBYTE m

NOP

NOP

ADD m,pbase

NOP

NOP

NOP

SHL i, #2
ADD m,i

'initiate skip sequence (%001_110_110 in this case)

'offset

'base

'index

If this code were located in cog/LUT memory, SKIPF could be used to speed things up by stepping over skipped instructions, instead of
canceling them in the pipeline. Here is what the execution would look like using SKIPF:

SKIPF pat

addr RFBYTE m

ADD
SHL
ADD

m,pbase
i, #2

m,i

'initiate skip sequence (%001_110_110 in this case)

'offset
'base
'index

Now things are very efficient, with no cycles being wasted on NOPs. If SKIPF is used in hub exec, it will revert to SKIP behavior,
canceling instructions in the pipeline, instead of stepping over them.
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Both SKIP and SKIPF can be preceded by _RET_ for an automatic branch before skipping commences:
PUSH #addr 'point to the addr routine

_RET_ SKIPF pat 'jump to addr and begin skipping fast using pat

The EXECF instruction performs a JMP and a SKIPF at the same time, getting a 10-bit branch address from D[9:0] and a 22-bit skip
pattern from D[31:10]. Here is the heart of a simple bytecode interpreter which uses EXECF:

REP #1,4#8 'pre-stuff 8-level hardware stack with 'loop' address
PUSH #loop 'all RETs without CALLs will branch to 'loop'
loop RFBYTE i 'get a bytecode
RDLUT e,i 'lookup long in LUT
EXECF e 'jump to e[9:0] and SKIPF e[31:10], RETs branch to 'loop'

That bytecode interpreter takes only 2+3+4, or 9, clocks to get the next bytecode, look it up, then execute that bytecode's routine in
cog/LUT memory with a custom 22-bit SKIPF pattern. If that bytecode's routine is just a 2-clock instruction preceded by a _RET_, it will
take 4 clocks, due to the _RET _, for a total of 13 clocks, looping. Those 13 clocks can be reduced to only 8 clocks by using XBYTE,
which is explained in the next section.

While SKIPF and EXECF normally step over skipped instructions in cog/LUT memory, there are some circumstances where they must
cancel an instruction, instead, since it is already in the pipeline:

1) The first instruction is being skipped after the SKIPF/EXECEF instruction (the LSB of the skip pattern is '1')
2) The 8th instruction in a row is being skipped (only 7 instructions can be stepped over at once)

Each of these cancellations results in a 2-clock NOP instruction.
SKIP is fully compatible with REP, since SKIP only cancels instructions, allowing REP to maintain accurate instruction counts.

SKIPF would only work with REP if all SKIPF patterns resulted in the same instruction counts, which REP would have to be initiated
with, as opposed to just length-of-code.

Special SKIPF Branching Rules

Within SKIPF sequences where CALL/CALLPA/CALLPB are used to execute subroutines in which skipping will be suspended until after
RET, all CALL/CALLPA/CALLPB immediate (#) branch addresses must be absolute in cases where the instruction after the
CALL/CALLPA/CALLPB might be skipped. This is not possible for CALLPA/CALLPB but CALL can use '#\address' syntax to achieve
absolute immediate addressing. CALL/CALLPA/CALLPB can all use registers as branch addresses, since they are absolute.

For non-CALL\CALLPA\CALLPB branches within SKIPF sequences, SKIPF will work through all immediate-relative branches, which
are the default for immediate branches within cog/LUT memory. If an absolute-address branch is being used (#\label, register, or RET,
for example), you must not skip the first instruction after the branch. This is not a problem with immediate-relative branches, however,
since the variable PC stepping works to advantage, by landing the PC at the first instruction of interest at, or beyond, the branch
address.

BYTECODE EXECUTION (XBYTE)

Cogs can execute custom bytecodes from hub RAM using XBYTE. XBYTE is like a phantom instruction and it executes on a hardware
stack return (RET/_RET_) to $1FF. Such a return does not pop the stack, so that each additional RET/_RET_ causes another bytecode
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to be fetched and executed. This process has a total overhead of only 6 clocks, excluding the bytecode routine. The bytecode routine

could be as short as a single 2-clock instruction with a _RET _ prefix, making the total XBYTE loop take only 8 clocks.

XBYTE performs the following steps to make a complete bytecode executor:

Clock | Phase | XBYTE Activity Description
1 go RFBYTE bytecode Last clock of the RET/_RET_ to $1FF
SKIPF #0 Fetch bytecode from FIFO (initialized via prior RDFAST).
Cancel any SKIPF pattern in progress (from prior bytecode).
2 get MOV PA ,bytecode 1st clock of 1st canceled instruction
RDLUT (per bytecode) Write bytecode to PA ($1F6).
Read lookup-table RAM according to bytecode and mode.
3 go RDLUT (data — D) 2nd clock of 1st canceled instruction
Get lookup RAM long into D for EXECF.
4 get EXECF D (begin) 1st clock of 2nd canceled instruction
Execute EXECF.
5 go MOV PB,(GETPTR) 2nd clock of 2nd canceled instruction
MODCZ bit1,bit0 {WCZ} Write FIFO pointer to PB ($1F7).
EXECF D (branch) Write C,Z with bit1,bit0 of RDLUT address, if enabled.
Do EXECF branch.
6 get flush pipeline 1st clock of 3rd canceled instruction
7 go reload pipeline 2nd clock of 3rd canceled instruction
8 get <none> 1st clock of 1st instruction of bytecode routine
Loop to clock 1 if _RET_ or RET

The bytecode translation table in LUT memory must consist of long data which EXECF would use, where the 10 LSBs are an address
to jump to in cog/LUT RAM and the 22 MSBs are a SKIPF pattern to be applied.

Starting XBYTE and establishing its operating mode is done all at once by a '_RET_ SETQ {#}D’ instruction, with the top of the

hardware stack holding $1FF.

Additional '_RET_ SETQ {#}D' instructions can be executed to alter the XBYTE mode for subsequent bytecodes.

To alter the XBYTE mode for the next bytecode, only, a' RET_ SETQ2 {#}D' instruction can be executed. This is useful for engaging

singular bytecodes from alternate sets, without having to restore the original XBYTE mode afterwards

Bits SETQ/SETQ2 LUT base LUT index LUT EXECF
{#}D value address b = bytecode address
8 %$A000000xF %$A00000000 I =Db[7:0] AITIIIIII
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8 $ABBBBOOxF %$A00000000 | if b[7:4] < S%BBBB then I = b[7:0] SAIIIIIIII

%$BBBB > 0 if b[7:4] >= %BBBB then I = b[7:4] - %BBBB $ABBBBIIII
7 $AAxx0010F $AA0000000 I =Db[6:0] SAAIIIITIII
7 $AAxx0011F $AA0000000 I =Db[7:1] SAAIIIITIII
6 $AAAx1010F $AAA000000 I = Db[5:0] SAAAIIITII
6 $AAAx1011F $AAA000000 I =Db[7:2] SAAAIIITII
5 $AAAAX100F $AAAA00000 I =Db[4:0] $SAAAAIITIII
5 $AAAAX101F $AAAA00000 I =Db[7:3] $SAAAAIITIII
4 $AAAAAL11QOF $AAAAAQ0000 I = Db[3:0] $AAAAATIIII
4 $AAAAALLLF $AAAAAQ0000 I =Db[7:4] $AAAAATIIII

The %ABBBBO0O0xF setting allows sets of 16 bytecodes, which would use identical LUT values, to be represented by a single LUT value,
effectively compressing blocks of 16 LUT values into single LUT values. This is useful when the bytecode, which is always written to
PA, is used as an operand within the bytecode routine.

The %F bit of the SETQ/SETQ2 {#}D value enables C and Z to receive bits 1 and 0 of the index field of the bytecode. This is useful for
having the flags differentiate behavior within a bytecode routine, especially in cases of conditional looping, where a SKIPF pattern
would have been insufficient, on its own:

SETQ/SETQ2 Flag Writing
{#}D value
FXXXXXXXX0 Do not affect flags on XBYTE
FXXXXXXXX1 Write the bytecode's index LSBs to C and 2

To start executing bytecodes, use the following instruction sequence, but with the appropriate SETQ operand:

PUSH
_RET_ SETQ

#S1FF
#$100

'push #$1FF onto the hardware stack
'256-1long EXECF table at LUT $100, start XBYTE

con _clkfreq = 10_000_000

' *¥* XBYTE Demo **

' Automatically executes bytecodes via RET/_RET_ to $1FF.

' Overhead is 6 clocks, including _RET_ at the end of each bytecode routine.

dat org
asmclk ‘set clock up
setq2  #$FF 'load bytecode table into LUT $100..$1FF

rdlong $100,#bytetable

rdfast #0,#bytecodes 'init fifo read at start of bytecodes
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push #$1FF "push $1FF for xbyte
_ret_  setq #$100 "start xbyte with LUT base = $100, no stack pop

' Bytecode routines

ro _ret_ drvnot #0 'toggle pin ©
ril _ret_ drvnot #1 'toggle pin 1
r2 _ret_ drvnot #2 'toggle pin 2
r3 _ret_ drvnot #3 "toggle pin 3
r4 rfvars pa 'get offset
add pb,pa 'add offset
_ret_ rdfast #0,pb 'init fifo read at new address

Bytecodes that form the XBYTE program in hub

orgh
bytecodes byte 0 'toggle pin ©
byte 1 "toggle pin 1
byte 2 'toggle pin 2
byte 3 "toggle pin 3
byte 4, (bytecodes-$) & $7F 'relative branch, loop to bytecodes

' Bytecode EXECF data, moved into lut $100..$1FF (no SKIPF patterns are used in this example)

bytetable long ro '#0 toggle pin ©
long ri "#1 toggle pin 1
long r2 "#2 toggle pin 2
long r3 "#3 toggle pin 3
long r4 "#4 relative branch
{
clock phase hidden description
1 go RFBYTE byte last clock of instruction which is executing a

RET/_RET_ to $1FF

2 get RDLUT @byte, write byte to PA  1st clock of 1st canceled instruction
3 go LUT long --> next D 2nd clock of 1st canceled instruction
4 get EXECF D, 1st clock of 2nd canceled instruction
5 go EXECF D, write GETPTR to PB 2nd clock of 2nd canceled instruction
6 get flush pipe 1st clock of 3rd canceled instruction
7 go flush pipe 2nd clock of 3rd canceled instruction
8 get 1st clock of 1st instruction of bytecode routine,

loop to (clock) 1 if _RET_

While developing XBYTE code, you may want to single-step the bytecode execution, in order to inspect what is happening. To do this,
you must simulate normal XBYTE operation using a small program. Below is an example of how to do this for the simplest case of the
full-8-bit mode which doesn't write the LSBs of the LUT address to C and Z.

Normal XBYTE or single-step bytecode executor (must run from registers or LUT)
rdfast #0,bytecodes 'start FIFO read at bytecodes

push #$1FF 'start xbyte UNCOMMENT FOR NORMAL XBYTE
' _ret_ setq #$000 "(full 8-bit lookup at LUT $000) UNCOMMENT FOR NORMAL XBYTE
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rep @.r,#8 'prepare to single-step by stuffing stack with byteloop address
push #i#tbyteloop '(bottom stack value gets copied each _RET_ / RET)
.r
byteloop nop '21-NOP landing strip for any trailing skip pattern

nop 'that XBYTE would have canceled on _RET_ / RET

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

rfbyte pa 'get next bytecode into pa

getptr pb 'get next bytecode address into pb
debug(uhex_byte(pa),uhex_long(pb)) 'show bytecode and next bytecode address
rdlut temp,pa 'lookup EXECF long from LUT

execf temp 'do EXECF to execute bytecode, returns to byteloop

SETQ CONSIDERATIONS

The SETQ and SETQ2 instructions write to the Q register and are intended to precede a companion instruction. The value written to the
Q register by SETQ/SETQ2 will persist until any of these events occur:

XORO32 executes - Q is set to the XORO32 result.

RDLUT executes - Q is set to the data read from the lookup RAM.

GETXACC executes - Q is set to the Goertzel sine accumulator value.

CRCNIB executes - Q gets shifted left by four bits.

COGINIT/QDIV/QFRAC/QROTATE executes without a preceding SETQ instruction - Q is set to zero.

CRCNIB is the only instruction which both inputs Q and outputs Q, requiring it to not be disrupted between the initial SETQ and
subsequent CRCNIB(s). For that reason, CRCNIB sequences should be protected from interrupts by STALLI/ALLOWI instructions or by
being placed within a REP block, which is automatically shielded from interrupts, including non-stallable debug interrupts.

It is possible to retrieve the current Q value by the following sequence:

MOV qval, #0 'reset gqval
MUXQ qval, ##S$FFFFFFFF 'for each 'l' bit in Q, set the same bit in gval

SETQ/SETQ2 shields the next instruction from interruption to prevent an interrupt service routine from inadvertently altering Q before
the intended instruction can utilize its value.

PIXEL OPERATIONS

Each cog has a pixel mixer which can combine one pixel with another pixel in many different ways. A pixel consists of four byte fields
within a 32-bit cog register. Pixel operations occur between each pair of D and S bytes, and they take seven clock cycles to complete:
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'alpha-blend bytes according to SETPIV value

ADDPIX D,S/# 'add bytes with saturation
MULPIX D,S/# 'multiply bytes ($FF = 1.0)
BLNPIX D,S/#
MIXPIX D,S/#

There are two pixel

SETPIV
SETPIX

When a pixel mixer instruction executes, a sum-of-products-with-saturation computation is performed on each D and S byte pair:

D[31:24]
D[23:16]
D[15:08]
D[07:00]

mixer setup instructions:

D/#
D/#

'mix bytes according to SETPIX/SETPIV value

'set blend factor V[7:0] to D/#[7:0]
'set MIXPIX mode M[5:0] to D/#[5:0]

((D[31:24] * DMIX + S[31:24] * SMIX + $FF) >> 8) max S$FF
((D[23:16] * DMIX + S[23:16] * SMIX + $FF) >> 8) max S$FF
((D[15:08] * DMIX + S[15:08] * SMIX + $FF) >> 8) max S$FF
((D[07:00] * DMIX + S[07:00] * SMIX + $FF) >> 8) max S$FF

Here are the DMIX and SMIX terms, according to each instruction:

DMIX SMIX

ADDPIX SFF SFF

MULPIX S[byte] $00

BLNPIX \Y) Vv

MIXPIX M[5:3] = %000 — $00 M[2:0] = %000 — $00
M[5:3] = %001 — $FF M[2:0] = %001 — $FF
M[5:3] = %010 — V M[2:0] = %010 — V
M[5:3] = %011 — IV M[2:0] = %011 — IV
M[5:3] = %100 — S[byte] M[2:0] = %100 — S[byte]
M[5:3] = %101 — S[byte] M[2:0] = %101 — IS[byte]
M[5:3] = %110 — D[byte] M[2:0] = %110 — D[byte]
M[5:3] = %111 — ID[byte] M[2:0] = %111 — ID[byte]

DACs

Each cog outputs four 8-bit DAC channels that can directly drive the DACs within the pins. For this to work, the pins of interest will need

to be configured for

DAC-channel output.

DACO can drive the DAC's of all pins numbered %XXXX00.
DAC1 can drive the DAC's of all pins numbered %XXXX01.
DAC2 can drive the DAC's of all pins numbered %XXXX10.
DACS3 can drive the DAC's of all pins numbered %XXXX11.

The background state of these four 8-bit channels can be established by SETDACS:

The DAC values established by SETDACS will be constantly output, except at times when the streamer and/or colorspace converter

SETDACS D/#

- Write bytes 3/2/1/0 of D/# to DAC3/DAC2/DAC1/DACO
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override them.

STREAMER

Each cog has a streamer which can automatically output timed state sequences to pins and DACs. It can also capture pin and ADC
readings to hub RAM and perform Goertzel computations from smart pins configured as ADC's.

There are five instructions directly associated with the streamer:

SETXFRQ D/# - Set NCO frequency

XINIT D/#,S/# - Issue command immediately, zeroing phase

XZERO D/#,S/# - Issue command on final NCO rollover (waits), zeroing phase
XCONT D/#,S/# - Issue command on final NCO rollover (waits), continuing phase
GETXACC D - Get Goertzel X into D and Y into next S, clear X and Y

The streamer uses a numerically-controlled oscillator (NCO) to time its operation. On every clock while the streamer is active, it adds a
32-bit frequency value into a 32-bit phase accumulator, while masking the MSB of the original phase. The NCO can be understood as
such:

phase = (phase & $7FFF_FFFF) + frequency

The MSB of the resultant phase value indicates NCO rollover and is used as a trigger to advance the state of the streamer. This is true
for every mode except DDS/Goertzel, in which case the streamer runs continuously.

The frequency of the streamer's NCO rollover is set by the 'SETXFRQ D/# instruction, where D/# expresses a fractional 0-to-1
multiplier for the system clock, which value must be multiplied by $8000_0000. Here are some system clock multipliers and the D/#
values that realize them:

$8000_0000 (default value on cog start)
$4000_0000

$2AAA AAAA+L *

$2000_0000

$1999 9999+1 *
$1555_5555+1
$1249 2492+1
$1000_0000

*

H R R B R B R R
*

NN NN NN N
0o JdJ o L dWN

* For fractions with remainders, the computed D/# value should be incremented, in order to produce proper initial rollover
behavior.

The NCO frequency may also be set/changed via a 'SETQ D/# instruction immediately preceding an XINIT/XZERO/XCONT instruction.
When the streamer command executes, the new frequency will be set during the first clock of the command. If no SETQ is used before
the instruction, the frequency will remain the same when the command executes.

The streamer may be activated by a command from an XINIT/XZERO/XCONT instruction. For these instructions, D/# expresses the
streamer mode and duration, while S/# supplies various data, or is ignored, depending upon the mode expressed in D/#.

There is a single-level command buffer in the streamer, enabling you to give it two initial commands before it makes you wait for the first
command to finish before accepting another. This command buffer enables you to coordinate streamer activity with smart pin activity.
By executing an XINIT and then an XCONT, you get time during the XINIT command to instantiate a smart pin to perform some
operation which will then correlate with the queued XCONT command. Think of tossing a ball up gently, so that you can then hit it with a
bat.
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For the XINIT/XZERO/XCONT instructions, D/#[31:16] conveys the command, while D/#[15:0] conveys the number of NCO rollovers

that the command will be active for. S/# is used to select sub-modes for some commands:

D/#[31:16]
Mode DACs

0000 dddd
0001 dddd
0010 dddd
0011 dddd

0100 dddd
0101 dddd
0101 dddd
0110 dddd
0110 dddd
0110 dddd
0110 dddd
0110 dddd
0110 dddd
0110 dddd
0111 dddd
0111 dddd

0111 dddd
0111 dddd
0111 dddd
0111 dddd

1000 dddd
1001 dddd
1001 dddd
1010 dddd
1010 dddd
1010 dddd
1010 dddd
1010 dddd
1010 dddd
1010 dddd
1011 dddd
1011 dddd

1011 dddd
1011 dddd
1011 dddd
1011 dddd
1011 dddd

1100 dddd
1101 dddd
1101 dddd
1110 dddd
1110 dddd
1110 dddd
1110 dddd
1110 dddd
1110 dddd
1110 dddd
1111 dddd
1111 dddd

1111 dddd
1111 dddd

Pins

€ppp
€pppP
€ppp
€pppP

€pppP
€ppp
€pppP
€ppp
€pppP
€ppp
€pppP
€ppp
€pppP
€ppp
€pppP
€ppp

€ppp
€ppPpP
€ppp
€ppPpP

€ppPpP
€ppp
€ppPpP
€ppp
€ppPpP
€ppp
€ppPpP
€ppp
€ppPpP
€ppp
€ppPpP
€ppp

€ppp
€ppPpP
€ppp
€ppPpP
€ppp

WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP
WPPP

[ ¥ ——

WPPP

DAC Channels $X3 X2 X1 XO

Misc S/# Description Pins
Immediate > LUT > Pins/DACs
bbbb <long> imm -> 32 x 1-bit LUT 32 out
bbbb <long> imm -> 16 x 2-bit LUT 32 out
bbbb <long> imm -> 8 x 4-bit LUT 32 out
bbbb <long> imm -> 4 x 8-bit LUT 32 out
Immediate > Pins/DACs
Pppa <long> imm 32 x 1 -> 1-pin + 1-DACl 1 out
ppOa <long> imm 16 x 2 -> 2-pin + 2-DAC1l 2 out
ppla <long> imm 16 x 2 -> 2-pin + 1-DAC2 2 out
p00a <long> imm 8 x 4 -> 4-pin + 4-DAC1l 4 out
pOla <long> imm 8 x 4 -> 4-pin + 2-DAC2 4 out
plo0a <long> imm 8 x 4 -> 4-pin + 1-DAC4 4 out
0110 <long> imm 4 x 8 -> 8-pin + 4-DAC2 8 out
0111 <long> imm 4 x 8 -> 8-pin + 2-DAC4 8 out
1110 <long> imm 4 x 8 -> 8-pin + 1-DACS8 8 out
1111 <long> imm 2 x 16 -> 16-pin + 4-DAC4 16 out
0000 <long> imm 2 x 16 -> 16-pin + 2-DACS8 16 out
0001 <long> imm 1 x 32 -> 32-pin + 4-DACS8 32 out
RDFAST > LUT > Pins/DACs
00la bbbb RFLONG -> 32 x 1l-bit LUT 32 out
010a bbbb RFLONG -> 16 x 2-bit LUT 32 out
Olla bbbb RFLONG -> 8 x 4-bit LUT 32 out
1000 bbbb RFLONG -> 4 x 8-bit LUT 32 out
RDFAST > Pins/DACs
pppa - 1/8 RFBYTE -> 1-pin + 1-DAC1 1 out
ppOa - 1/4 RFBYTE -> 2-pin + 2-DAC1 2 out
ppla - 1/4 RFBYTE -> 2-pin + 1-DAC2 2 out
p00a - 1/2 RFBYTE -> 4-pin + 4-DAC1 4 out
pOla - 1/2 RFBYTE -> 4-pin + 2-DAC2 4 out
ploa - 1/2 RFBYTE -> 4-pin + 1-DAC4 4 out
0110 - RFBYTE -> 8-pin + 4-DAC2 8 out
0111 - RFBYTE -> 8-pin + 2-DAC4 8 out
1110 - RFBYTE -> 8-pin + 1-DACS8 8 out
1111 - RFWORD -> 16-pin + 4-DAC4 16 out
0000 - RFWORD -> 16-pin + 2-DAC8 16 out
0001 - RFLONG -> 32-pin + 4-DAC8 32 out
RDFAST > RGB » Pins/DACs
0010 rgb RFBYTE -> 24-pin + LUMAS8 32 out
0011 - RFBYTE -> 24-pin + RGBI8 32 out
0100 - RFBYTE -> 24-pin + RGB8 (3:3:2) 32 out
0101 - RFWORD -> 24-pin + RGB16 (5:6:5) 32 out
0110 - RFLONG -> 24-pin + RGB24 (8:8:8) 32 out
Pins > DACs/WRFAST
pppa - l1-pin -> 1-DAC1 + 1/8 WFBYTE 1l in
ppOa - 2-pin -> 2-DAC1 + 1/4 WFBYTE 2 in
ppla - 2-pin -> 1-DAC2 + 1/4 WFBYTE 2 in
p00a - 4-pin -> 4-DAC1 + 1/2 WFBYTE 4 in
pOla - 4-pin -> 2-DAC2 + 1/2 WFBYTE 4 in
ploa - 4-pin -> 1-DAC4 + 1/2 WFBYTE 4 in
0110 - 8-pin -> 4-DAC2 + WFBYTE 8 in
0111 - 8-pin -> 2-DAC4 + WFBYTE 8 in
1110 - 8-pin -> 1-DAC8 + WFBYTE 8 in
1111 - 16-pin -> 4-DAC4 + WFWORD 16 in
0000 - 16-pin -> 2-DAC8 + WFWORD 16 in
0001 - 32-pin -> 4-DAC8 + WFLONG 32 in
ADCs/Pins > DACs/WRFAST
0010 ss 1-ADC8 -> 1-DAC8 + WFBYTE 8 in
0011 ss 1-ADC8 + 8-pin -> 2-DAC8 + WFWORD 16 in

%$PONMLKJI_HGFEDCBA_ponmlkji_ hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_ hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba

%00000000_00000000_00000000_aaaaaaaa
%$00000000_00000000_bbbbbbbb_aaaaaaaa
%$00000000_00000000_00000000_babababa
%dddddddd_cccccccc_bbbbbbbb_aaaaaaaa
%00000000_00000000_dcdcdcdc_babababa
%$00000000_00000000_00000000_dcbadcba
%hghghghg fefefefe_ dcdcdcdc_babababa
%$00000000_00000000_hgfehgfe_dcbadcba
%$00000000_00000000_00000000_hgfedcba
$ponmponm_1lkjilkji_hgfehgfe_ dcbadcba
%$00000000_00000000_ponmlkji_hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_ hgfedcba

%$PONMLKJI_HGFEDCBA_ponmlkji_ hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_ hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba

%00000000_00000000_00000000_aaaaaaaa
%$00000000_00000000_bbbbbbbb_aaaaaaaa
%$00000000_00000000_00000000_babababa
%dddddddd_cccccccc_bbbbbbbb_aaaaaaaa
%00000000_00000000_dcdcdcdc_babababa
%$00000000_00000000_00000000_dcbadcba
%hghghghg fefefefe_ dcdcdcdc_babababa
%$00000000_00000000_hgfehgfe_dcbadcba
%$00000000_00000000_00000000_hgfedcba
$ponmponm_1lkjilkji_hgfehgfe_ dcbadcba
%00000000_00000000_ponmlkji_hgfedcba
%$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba

$rrrrrrrr_gggggggg_bbbbbbbb 00000000
%rrrrrrrr_gggggggg_bbbbbbbb 00000000
$rrrrrrrr_gggggggg_bbbbbbbb 00000000
%rrrrrrrr_gggggggg_bbbbbbbb 00000000
$rrrrrrrr_gggggggg_bbbbbbbb 00000000

%$00000000_00000000_00000000_aaaaaaaa
%00000000_00000000_bbbbbbbb_aaaaaaaa
%$00000000_00000000_00000000_babababa
%dddddddd_cccccccc_bbbbbbbb_aaaaaaaa
%$00000000_00000000_dcdcdcdc_babababa
%$00000000_00000000_00000000_dcbadcba
%¥hghghghg fefefefe_dcdcdcdc_babababa
%00000000_00000000_hgfehgfe dcbadcba
%$00000000_00000000_00000000_hgfedcba
%ponmponm_lkjilkji_hgfehgfe dcbadcba
%$00000000_00000000_ponmlkji_hgfedcba
%PONMLKJI_ HGFEDCBA ponmlkji_ hgfedcba

%00000000_00000000_00000000_hgfedcba
%00000000_00000000_ponmlkji_hgfedcba
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1111 dddd w--- 0100 s- 2-ADC8 -> 2-DAC8 + WFWORD 16 in %$00000000_00000000_ponmlkji_hgfedcba
1111 dddd wppp 0101 s- 2-ADC8 + 16-pin -> 4-DAC8 + WFLONG 32 in %$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba
1111 dddd w--- 0110 - 4-ADC8 -> 4-DAC8 + WFLONG 32 in %$PONMLKJI_ HGFEDCBA ponmlkji_hgfedcba

DDS/Goertzel

1111 dddd Oppp plll <config> DDS/Goertzel LUT SINC1 * 4 in ADC %$PONMLKJI_ HGFEDCBA ponmlkji_hgfedcba
1111 dddd 1ppp plll <config> DDS/Goertzel LUT SINC2 * 4 in ADC %$PONMLKJI_HGFEDCBA_ponmlkji_hgfedcba

Each of these modes requires explanation, but there are some overlapping matters that can be covered first.

The 16-bit D[15:0] field expresses an initial counter value which will be decremented on each subsequent NCO rollover, with each
rollover causing new streamer data to be output or input. When the counter equals 1 and the NCO is rolling over for the last time for the
current command, a new command may be seamlessly begun by a buffered XZERO/XCONT instruction. If no XZERO/XCONT
instruction is buffered, the counter goes to 0. When the counter reaches 0, or is set to 0, streamer operation stops and all streamer
DAC overrides and streamer pin outputs cease.

By setting the D[15:0] count to its maximal value of $FFFF, a streamer command will run perpetually.

XINIT (re)starts the streamer, no matter what state it is in. "XINIT #0,#0' will always stop the streamer immediately. XSTOP (no
operands) is an alias for 'XINIT #0,#0'.

XZERO and XCONT are used to maintain seamless streamer 1/O, from command to command. They wait for the prior command's last
clock cycle. If the streamer count has already run down to 0, there is no waiting. Also, if the prior command used $FFFF for its initial
count, in which case the streamer is running perpetually without decrementing its counter, a new XZERO/XCONT command will only
wait for the next NCO rollover, at which point the streamer will begin executing the new command.

XZERO clears out the phase accumulator when it executes. This clearing is desirable when, say, pixels are being output at 1/3 Fclk and
and you don't want a 1-clock delay (glitch) every ~30 seconds, due to imperfect fractions like %5555_5555 = ~1/3. In such a case, it
would be good to use XZERO to initiate the horizontal sync pulse, while using XCONT everywhere else. It may also be desirable to
increment such frequency values by 1, so that the initial NCO rollover occurs on the Nth clock, and not on the Nth+1 clock.

XCONT is like XZERO, but does not affect the phase accumulator. XCONT is useful in cases where NCO phase and frequency should

be strictly maintained and streamer activity should ride along with it.

The streamer has four DAC output channels, X0, X1, X2 and X3, which can selectively override the four SETDACS values on a
per-DAC basis. To bring out the data as a voltage on a pin, that pin must be set to DAC mode with the COGID embedded, via WRPIN,
and DIR must be set high.

The %dddd field in D[27:24] selects which streamer DAC channels will override which SETDACS values during active streamer
operation. In the table below, "--" indicates no-override and "!" indicates one's-complement:

DAC Channel

dddd 3 2 1 0 description

0000 - == == - no streamer DAC output

0001 X0 X0 X0 X0 output X0 on all four DAC channels

0010 -- -- X0 XO output X0 on DAC channels 1 and 0

0011 X0 X0 -- -- output X0 on DAC channels 3 and 2

0100 -- -- -- X0 output X0 on DAC channel 0

0101 -- -- X0 -- output X0 on DAC channel 1

0110 -- X0 -- -- output X0 on DAC channel 2

0111 X0 -- - -- output X0 on DAC channel 3

1000 'X0 X0 !'X0 X0 output X0 diff pairs on all four DAC channels
1001 -- --1X0 XO output X0 diff pairs on DAC channels 1 and 0
1010 X0 X0 -- -- output X0 diff pairs on DAC channels 3 and 2
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1011 X1 X0 X1 XO output X1, X0 pairs on all four DAC channels

1100 -- -- X1 XO output X1, X0 on DAC channels 1 and 0

1101 X1 X0 - -- output X1, X0 on DAC channels 3 and 2

1110 X1 X1 !'X0 X0 output X1, X0 diff pairs on all four DAC channels
1111 X3 X2 X1 X0 output X3, X2, X1, X0 on all four DAC channels

Modes which can output to pins OR the streamer pin-output bus with {OUTB, OUTA} to produce the final 64 pin output states on each
clock for the cog. For these modes, %e in D[23] must be "1' to enable pin output.

Modes which input from pins read {INB, INA} and can optionally write the pin data to hub RAM. For these modes, %w in D[23] must be
'1' to enable automatic WFBYTE/WFWORD/WFLONG operations.

In every mode, the three %ppp bits in D[22:20] select the pin group, in 8-pin increments, which will be used as outputs or inputs, for up
to 32-pin transfers. The selection wraps around:

%ppp : 000 = select pins 31..0
001 = select pins 39..8
010 = select pins 47..16
011 = select pins 55..24
100 = select pins 63..32
101 = select pins 7..0, 63..40
110 = select pins 15..0, 63..48
111 = select pins 23..0, 63..56

For modes which involve less than 8 pins, lower-order %p bit(s) in D[19:19..17] are used to further resolve the pin number(s).

Modes which shift data use bits bottom-first, by default. Some of these modes have the %a bit in D[16] to reorder the data sequence
within the individual bytes to top-first when %a = 1.

For RDFAST modes, it is necessary to do a RDFAST sometime beforehand, to ensure that the hub RAM FIFO is ready to deliver data.

For WRFAST modes, it is necessary to do a WRFAST sometime beforehand, to ensure that the hub RAM FIFO is ready to receive
data.

Immediate > LUT — Pins/DACs
S/# supplies 32 bits of data which form a set of 1/2/4/8-bit values that are shifted by 1/2/4/8 bits on each subsequent NCO rollover, with

the last value repeating. Each value gets used as an offset address into lookup RAM, with the %bbbb bits in D[19:16] furnishing the
base address of %bbbb00000. The resulting 32 bits of data read from lookup RAM (at %bbbb00000 + 1/2/4/8-bit value) are output.

Immediate > Pins/DACs

S/# supplies 32 bits of data which form a set of 1/2/4/8/16-bit values that are shifted by 1/2/4/8/16/32 bits on each subsequent NCO
rollover, with the last value repeating. Each value is output in sequence.

RDFAST - LUT - Pins/DACs

Automatic RFLONG operations are done to read 32 bits at a time from hub RAM. The data are treated as a set of 1/2/4/8-bit values that
are shifted by 1/2/4/8 bits on each subsequent NCO rollover, with the last value triggering a new RFLONG. Each value gets used as an
offset address into lookup RAM, with the %bbbb bits in S[3:0] furnishing the base address of %bbbb00000. The resultant 32 bits of data
read from lookup RAM (at %bbbb00000 + 1/2/4/8-bit value) are output.
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RDFAST - Pins/DACs

Automatic RFBYTE/RFWORD/RFLONG operations are done to read 8/16/32 bits at a time from hub RAM. The data are treated as a
set of 1/2/4/8/16/32-bit values that are shifted by 1/2/4/8/16/32 bits on each subsequent NCO rollover, with the last value triggering a

new RFBYTE/RFWORD/RFLONG. Each value is output in sequence.

RDFAST - RGB > Pins/DACs

RFBYTE/RFWORD/RFLONG operations, done initially and on each subsequent NCO rollover, read 8/16/32-bit pixel values from hub
RAM. The pixel values P[31/15/7:0] are translated into {R[7:0], G[7:0], B[7:0], 8'b0} values and output to X3, X2, X1, and X0.

LUMAS8 mode uses three bits in S[2:0] as colors and the 8-bit pixels as luminance values:

S[2:0] Color X3 X2 X1 X0
%000 Orange P[7:0] %0, P[7:1] $00 $00
%001 - $00 $00 P[7:0] $00
%010 Green $00 P[7:0] $00 $00
%011 Cyan $00 P[7:0] P[7:0] $00
%100 P[7:0] $00 $00 $00
%101 P[7:0] $00 P[7:0] $00
%110 Yellow P[7:0] P[7:0] $00 $00
%111 White P[7:0] P[7:0] P[7:0] $00

RGBI8 mode uses the top three bits of the 8-bit pixel values as colors and the bottom 5 bits as luminance values:

P[7:5] Color X3 X2 X1 X0
%000 Orange P[4,3,2,1,0,4,3,2] %0, P[4,3,2,1,0,4,3] $00 $00
%001 $00 $00 P[4,3,2,1,0,4,3,2] $00
%010 Green $00 P[4,3,2,1,0,4,3,2] $00 $00
%011 Cyan $00 P[4,3,2,1,0,4,3,2] P[4,3,2,1,0,4,3,2] $00
%100 P[4,3,2,1,0,4,3,2] $00 $00 $00
%101 P[4,3,2,1,0,4,3,2] $00 P[4,3,2,1,0,4,3,2] $00
%110 Yellow P[4,3,2,1,0,4,3,2] P[4,3,2,1,0,4,3,2] $00 $00
%111 White P[4,3,2,1,0,4,3,2] P[4,3,2,1,0,4,3,2] P[4,3,2,1,0,4,3,2] $00

RGB8 mode uses the top three bits of the 8-bit pixel values for red, the next three for green, and the last two for blue:

X3

X2

X1

X0
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P[7,6,5,7,6,5,7,6]

P[4,3,2,4,3,2,4,3]

P[1,0,1,0,1,0,1,0]

$00

RGB16 mode uses the top five bits of the 16-bit pixel values for red, the next six for green, and the last five for blue:

X3

X2

X1

X0

P[15:11], P[15:13]

P[10:5], P[10:9]

P[4:0], P[4:2]

$00

RGB24 mode uses the top three bytes of the 32-bit pixel values for red, green, and blue:

X3

X2

X1

X0

P[31:24]

P[23:16]

P[15:8]

$00

Pins -~ DACs/WRFAST

Initially, and on each subsequent NCO rollover, 1/2/4/8/16/32 pins are read from {INB, INA} and X3, X2, X1, and X0 are updated using
the read data. If the %w bit in D[23] is high, WFBYTE/WFWORD/WFLONG operations will be done automatically to record the pin data.
In the case of 1/2/4-pin modes, a WFBYTE will be done each time 8 bits of pin data accrue.

ADCs/Pins > DACs/WRFAST

This mode captures SCOPE channel data, along with optional pin data from {INB, INA}.

It will be necessary to use the SETSCP instruction beforehand to select the block of four pins which will feed the four 8-bit SCOPE
channels. Any pins, within that block of four, that will be used as the ADC8 input(s) for this mode, must be put into "ADC sample" or
"ADC scope" smart pin mode and enabled.

For the 1-ADC8 modes, where one of four SCOPE channels will be captured, the %ss bits in S[1:0] select the channel.

For the 2-ADC8 modes, where two of four SCOPE channels will be captured, the %s bit in S[1] selects the upper two or lower two
channels.

For the 4-ADC8 mode, all four SCOPE channels will be captured.

For modes which also capture pin data, the lower 8 or 16 pins of the 32 pins selected by the %ppp bits in D[22:20] will be captured and
placed into the lower half of the word/long, while the one or two SCOPE channels will be placed into the upper half.

Initially, and on each subsequent NCO rollover, SCOPE channel data and optional pin data are read and X3, X2, X1, and X0 are
updated. If the %w bit in D[23] is high, WFBYTE/WFWORD/WFLONG operations will be done automatically to record the ADC and
optional pin data.

DDS/Goertzel

This mode is unique, in that it outputs and inputs on every clock in which the command is active. Its purpose is to perform direct digital
synthesis (DDS) on up to four DAC channels and/or to perform simultaneous Goertzel analysis on up to four ADC bit streams summed
together.

On each clock, the upper bits of the NCO are used as an index to read a long containing four signed bytes from lookup RAM. The four

bytes are output to X3, X2, X1, and X0 with their MSBs inverted, so that they may drive the unsigned DACs. The top two bytes from
lookup RAM are also used as sine and cosine inputs to the Goertzel analyzer, where they are each multiplied by the sum of up to four
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ADC bitstreams and then separately accumulated.

Goertzel analysis can be thought of as a single slice of a Fourier transform, in which energy of a single frequency is measured amid
potential noise for some number of NCO cycles. Goertzel analysis returns sine and cosine accumulations which can be converted into
polar coordinates using the QVECTOR instruction, yielding power and phase information.

By incorporating DDS output with simultaneous Goertzel input, many interactive real-world measurements can be made to determine
things like time-of-flight and resonance.

The four-pin input block is selected by the %pppp bits in D/#[22:19], where %pppp*4 is the base pin. One to four of these pins should
be configured for ADC mode, so that their IN signals are raw delta-sigma bit streams, with no smart pin mode selected. For IN bitstream
summation, '0' values are treated as -1 and '1' values are treated as +1. For cases of two or four input channels summed together, the
sum is always even, so it is shifted right by one bit to conserve multiplication and accumulator resources.

S[19:0] supplies a 20-bit value which is used to configure the DDS/Goertzel mode. S[19:16] selects which of the four input pins are to
be inverted, allowing for both addition and subtraction of particular input channels, while S[15:12] selects which of the four pins are to
be included in the summation:

S[19:12] Effect

sxxxx_xxx0 Base pin +0 is ignored

sxxx0_xxx1 Base pin +0 is summed (0 » -1,

> 41,

1> +1)

sxxxl_ xxx1 Base pin +0 is inverted and summed (0 1~ -1)

sxxxx xx0x Base pin +1 is ignored
$xx0x_ xx1x Base pin +1 is summed
sxxlx xxlx Base pin +1 is inverted and summed
sxxxx_x0xx Base pin +2 is ignored
$x0xx_x1xx Base pin +2 is summed
Fx1xx xlxx Base pin +2 is inverted and summed
Sxxxx 0xxx Base pin +3 is ignored
$0xxx 1xxx Base pin +3 is summed

$lxxx_ lxxx Base pin +3 is inverted and summed

S[11:0] selects how much and what part of the lookup RAM will be used, along with an offset:

S[11:0] Loop Size NCO Bits LUT Range

%000_TTTTTTTTT 512 30..22 %$000000000..%111111111
$001_ATTTTTTTT 256 30..23 %$A00000000. .%A11111111
%$010_AATTTTTTT 128 30..24 %$AA0000000. .%AA1111111
%011 _AAATTTTTT 64 30..25 $AAA000000. .%AAA111111
%$100_AAAATTTTT 32 30..26 $AAAA00000. .%AAAA11111
%$101_AAAAATTTT 16 30..27 $AAAAAQ0000. .%AAAAAL111l
%$110_AAAAAATTT 8 30..28 $AAAAAAQ00. . $AAAAAALILL
%111 _AAAAAAATT 4 30..29 $SAAAAAAAQO. . SAAAAAAALL

On each clock, the lookup RAM is read at the 9-bit location bound by the %A bits, with the lower bits being the sum of the %T bits and
the topmost NCO bits. This allows you to set bounded areas within the LUT and to shift or modulate the phase of playback.

The 8-bit sine (byte 3) and cosine (byte 2) values from the lookup RAM will each be multiplied by the bitstream sum (an integer from -3
to +3) and then added into their respective 32-bit accumulators.
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After some number of complete NCO cycles, both accumulators can be simultaneously captured into holding registers and cleared
using the GETXACC instruction. GETXACC writes the captured cosine accumulation into D and places the captured sine accumulation
into the next instruction's S value. Subsequent GETXACC instructions will return the same values until a new streamer command
executes.

D[23] selects between SINC1 and SINC2 accumulation modes:
D[23] Mode Accumulations (SIN_ACC/COS_ACC are read and cleared by GETXACC)

%0 SINC1 SIN MUL = bitstream sum * lookup sin
COS_MUL = bitstream sum * lookup_ cos
SIN_ACC += SIN_MUL
COS_ACC += COS_MUL

%1 SINC2 SIN MUL += bitstream sum * lookup_sin
COS_MUL += bitstream sum * lookup_cos
SIN_ACC += SIN_MUL
COS_ACC += COS_MUL

The program below demonstrates both SINC1 and SINC2 modes in a looped Goertzel measurement of 100 cycles of 1MHz, taking
100us per measurement. The 4th line of the program must be changed to "sinc2 = 1" to select SINC2 mode:

' Goertzel input and display

con adcpin =0
dacpin =1
cycles = 100 'number of cycles to measure
sinc2 =0 '0 for SINC1, 1 for SINC2
ampl = sinc2 ? 10 : 127 'small sin/cos amplitude for SINC2
shifts = sinc2 ? 23 : 12 'more right-shifts for SINC2 acc's
_clkfreq = 256_000_000
' Setup
dat org
wrpin  adcmode, #adcpin 'init ADC pin
dirh #dacpin 'enable DAC pin
setxfrq freq 'set streamer NCO frequency

' Make sine and cosine tables in LUT bytes 3 and 2

mov z, #$1FF 'make 512-sample sin/cos table in LUT
sincos shl z,#32-9 'get angle into top 9 bits of z

qgrotate #ampl,z 'rotate (ampl,0) by z

shr z,#32-9 'restore z

getqy y 'get y

getgx b3 'get x

shl vy, #24 'y into byte3

setbyte y,x,#2 'x into byte2

wrlut Y,z 'write sin:cos:0:0 into LUT

djnf z,#sincos 'loop until 512 samples

' Input Goertzel measurements from adcpin and output power level to dacpin

loop xcont dds_d,dds_s 'issue Goertzel command
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getxacc x 'get prior Goertzel acc's, cos first
mov y,0 '..then sin
modc sinc2 * %1111 wc 'if SINC2, get differences
if ¢ sub x,xdiff
if ¢ add xdiff,x
if ¢ sub y,ydiff
if ¢ add ydiff,y
gvector x,y 'convert (x,y) to (rho,theta)
getgx x 'get rho (power measurement)
shr x,#shifts 'shift power down to byte
setbyte dacmode, x,#1 'insert into dacmode
wrpin dacmode, #dacpin 'update DAC pin
jmp #loop 'loop
'Data
adcmode long %$0000_0000_000_100011_0000000_00_00000_0 'ADC mode
dacmode long %$0000_0000_000_10110_00000000_00_00000_0 'DAC mode
freq long round(1_000_000.0/256_000_000.0 * 65536.0 * 32768.0) '1.000000 MHz
dds_d long %1111 _0000_0000_0111<<16 + sinc2<<23 + cycles 'Goertzel mode, pin 0..3 in
dds_s long %$0000_0001_000_000000000 'input on pin +0, 512 table
x res 1
y res 1
z res 1
xdiff res 1
ydiff res 1

In the pictures that follow, you can see the program's DAC output pin while a function generator drives a 0-3.3V frequency-swept sine
wave into the ADC input pin, going from 950-1050KHz over 12ms, while the program measures the energy level at 1MHz:

1500/ ¢ 2802 1,000 Stop £1 2847

+50KHz



140¢ 1.002/ Stop #1 2847

1 S0/ F

-.T =y

You can see that SINC2 mode has a higher Q than SINC1 mode. Due to rapid (X,Y) accumulator growth, SINC2 may require the
sine/cosine table to be reduced in amplitude to avoid (X,Y) accumulator overflow. This was done in the example program above, where
it was reduced from £127 for SINC1 to £10 for SINC2.

NOTE ABOUT GOERTZEL SINC2 MODE (2024.12.16)

It has just been discovered that the Goertzel SINC2 mode generates periodic problematic GETXACC readings when the number of
iterations in a Goertzel cycle varies, due to SETXFREQ's D being a non-power-of-two value. The example code above was modified so
that the clock frequency is now 256 MHz, instead of 250 MHz, so that the 1MHz being listened to will always take 256 clocks per
Goertzel cycle. This causes the double-integrating accumulators in SINC2 mode to always have the same number of iterations before a
GETXACC instruction executes and captures the double accumulations. Being off by a single clock cycle will corrupt the current and
next samples.

Digital Video Output (DVI/HDMI)

The streamer can serialize its internal 32 pin output data P[31:0] into 8-pin/10-bit digital video format, where the 32-pin output becomes
$000000xx with $xx being a reversible pattern of RED, GRN, BLU, and CLK differential pairs.

The SETCMOD instruction is used to write bits 8:7 of the CMOD register to set digital video mode:

CMOD[8:7] Mode Pin +31:8 | Pin+7 | Pin+6 | Pin+5 | Pin+4 | Pin+3 | Pin+2 | Pin+1 | Pin +0

%0x Normal P[31:8] PI7] P6] P[5] P[4] P[3] P[2] P[1] P[0]
%10 DVIfwd | $000000 | RED+ | RED- | GRN+ | GRN- | BLU+ | BLU- | CLk+ | CLK-
%11 DVirev | $000000 | CLK- | CLK+ | BLU- | BLU+ | GRN- | GRN+ | RED- | RED+

Eight-bit red, green, and blue pixel data are encoded into 10-bit TMDS patterns for transmission, while control data, such as horizontal
and vertical syncs, are transmitted literally. P[1] in the internal pin output data selects whether data will be TMDS-encoded or sent out
literally:

37



P[31:0]

RED+/- serial

GRN+/- serial

BLU+/- serial

$RRRRRRRR GGGGGGGG_BBBBBBBB_xxxxxx0x

$RRRRRRRR
gets encoded

$GGGGGGGG
gets encoded

%*BBBBBBBB
gets encoded

$rrrrrrrrrr _gggggggggg_bbbbbbbbbb 1x

$rrrrrrrrrr
is sent literally

$999999999g
is sent literally

$bbbbbbbbbb
is sent literally

Digital video output mode requires that the P2 clock frequency be 10x the pixel rate. For standard-compliant 640x480 digital video,

which has a pixel rate of 25MHz, the P2 chip should be clocked at 250MHz.

The NCO frequency must be set to 1/10 of the main clock using the value $0CCCCCCC+1, where the +1 forces initial NCO rollover on

the 10th clock.

The following program displays a 16bpp image in 640x480 HDMI mode:

CON

DAT

' Setup

' Field loop

fieldloop

line

' Subroutines

hdmi_base = 16

Thkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkkkhkkhkhkhkkkx

'* VGA 640 x 480 x 16bpp 5:6:5 RGB - HDMI *

Thhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhkkkhkkhkhkkkk

'must be a multiple of 8

'config PLL, 20MHz/2*25%1 = 250MHz
'allow crystal+PLL 5ms to stabilize
'switch to PLL

'set rdfast to wrap on bitmap

'set streamer freq to 1/10th clk

'enable HDMI mode

'enable HDMI pins

'set 1mA drive on HDMI pins

'set visible lines
'do horizontal sync
'do visible line

'vertical sync blanks

org
hubset ##%1_000001_0000011000_1111 10_00
waitx ##20_000_000 / 200

hubset ##%1_000001_0000011000_ 1111 10_11
rdfast ##640*350%2/64,##$1000

setxfrq ##$0cccccec+l

setcmod #$100

drvl #7<<6 + hdmi_base

wrpin ##%100100_00_00000_0,#7<<6 + hdmi_base
mov hsync0,sync_000 'vsync off
mov hsyncl, sync_001

callpa #90,#blank 'top blanks
mov x,#350

call #hsync

xcont m_rf, #0

dijnz x,#line 'another line?
callpa #83,#blank 'bottom blanks
mov hsync0, sync_222 'vsync on

mov hsyncl, sync_223

callpa #2,#blank

Jjmp #fieldloop 'loop
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blank call #hsync 'blank lines
xcont m_vi, hsyncO
ret djnz pa,#blank

hsync xcont m_bs, hsync0 'horizontal sync
Xzero m_sn, hsyncl
ret xcont m_bv,hsync0

' Initialized data

sync_000 long %$1101010100_1101010100_1101010100_10
sync_001 long %$1101010100_1101010100_0010101011_10 ! hsync
sync_222 long %$0101010100_0101010100_0101010100_10 'vsync
sync_223 long %$0101010100_0101010100_1010101011_10 'vsync + hsync
m_bs long $70810000 + hdmi_base<<17 + 16 'before sync
m_sn long $70810000 + hdmi base<<17 + 96 'sync
m_bv long $70810000 + hdmi_base<<17 + 48 'before visible
m_vi long $70810000 + hdmi_base<<17 + 640 'visible
m_rf long $B0850000 + hdmi_base<<17 + 640 'visible rfword rgblé (5:6:5)
' Uninitialized data
X res 1
hsyncO res 1
hsyncl res 1
' Bitmap

orgh $1000 - 70 'justify pixels at $1000

file "birds_ 16bpp.bmp" 'rayman's picture (640 x 350)

COLORSPACE CONVERTER

Each cog has a colorspace converter which can perform ongoing matrix transformations and modulation of the cog's 8-bit DAC
channels. The colorspace converter is intended primarily for baseband video modulation, but it can also be used as a general-purpose
RF modulator.

The colorspace converter is configured via the following instructions:

SETCY {#}D - Set colorspace converter CY parameter to D[31:0]
SETCI {#}D - Set colorspace converter CI parameter to D[31:0]
SETCQ {#1D - Set colorspace converter CQ parameter to D[31:0]
SETCFRQ {#)}D - Set colorspace converter CFRQ parameter to D[31:0]
SETCMOD ({#}D - Set colorspace converter CMOD parameter to D[8:0]

It is intended that DAC3/DAC2/DAC1 serve as R/G/B channels. On each clock, new matrix and modulation calculations are performed
through a pipeline. There is a group delay of five clocks from DAC-channel inputs to outputs when the colorspace converter is in use.

For the following signed multiply-accumulate computations, CMOD[4] determines whether the CY/CI/CQ terms will be sign-extended

(CMOD[4] = 1) or zero-extended (CMODI[4] = 0). If zero-extended, using 128 for a CY/CI/CQ term will result in no attenuation of the
related DAC term:
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Y[7:0]
I[7:0]
Q[7:0]

(DAC3 * CY[31:24] + DAC2 * CY[23:16] + DAC1 * CY[15:8]) / 128
(DAC3 * CI[31:24] + DAC2 * CI[23:16] + DAC1 * CI[15:8]) / 128
(DAC3 * CQ[31:24] + DAC2 * CQ[23:16] + DAC1 * CQ[15:8]) / 128

The modulator works by subtracting CFRQ from PHS on each clock cycle, in order to get a clockwise angle rotation in the upper bits of

PHS. PHS[31:24] is then used to rotate the coordinate pair (I, Q). The rotated Q coordinate becomes 1Q. Because a 5-stage CORDIC
rotator is used to perform the rotation, 1Q gets scaled by 1.646. When using the modulator, this scaling will need to be taken into

account when computing your CI/CQ terms, in order to avoid 1Q overflow:

PHS[31:0]
10[7:0]

The formula for computing CFRQ for a desired modulation frequency is: $1_0000_0000 * desired_frequency / clock_frequency. For
example, if you wanted 3.579545 MHz and your clock frequency was 80 MHz, you would compute: $1_0000_0000 * 3_579 545/

PHS[31:0] - CFRQ[31:0]
Q of (I,Q) after being rotated by PHS and multiplied by 1.646

80_000_000 = $0B74_5CFE, which you would set using the SETCFRQ instruction.

The preliminary output terms are computed as follows:

FY[7:0] = CY[7:0] + (DACO & {8{CMOD[3]}}) + Y[7:0]
FI[7:0] = CI[7:0] + (DACO & {8{CMOD[2]}}) + I[7:0]
FQ[7:0] = cQ[7:0] + (DACO & {8{CMOD[1]}}) + Q[7:0]
FS[7:0] = {8{DACO[0] ~ CMOD[0]}}
FIQ[7:0] = cQ[7:0] + IQ[7:0]
FYS[7:0] = DACO[1] ? 8'b0

: DACO[O0] ? CI[7:0]

FYC[7:0] = FYS[7:0] + IQ[7:0]

The final output terms are selected by CMOD[6:5]:

CY[7:0] + Y[7:0]

(VGA R / HDTV Y)
(VGA G / HDTV Pb)
(VGA B / HDTV Pr)

(VGA H-Sync)

(Chroma)

(1x
(01
(00

(Composite Luma+Chroma)

Luma Sync)
Luma Blank/Burst)

Luma Visible)

CMOD[6:5] | Mode DAC3 DAC2 DAC1 DACO
00 <off> DAC3 DAC2 DAC1 DACO
(bypass) (bypass) (bypass) (bypass)
01 VGA (R-G-B) / HDTV (Y-Pb-Pr) FY Fl FQ FS
(R/7Y) (G/Pb) (B/Pr) (H-Sync)
10 NTSC/PAL Composite + S-Video FYC FYyc FIQ FYS
(Composite) | (Composite) (Chroma) (Luma)
11 NTSC/PAL Composite FYC FYC FYC FYC
(Composite) | (Composite) | (Composite) | (Composite)

1/0 PIN TIMING
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I/O pins are controlled by cogs via the following cog registers:

DIRA - output enable bits for P0..P31 (active high)

DIRB - output enable bits for P32..P63 (active high)

OUTA - output state bits for P0..P31 (corresponding DIRA bit must be high to enable output)
OUTB - output state bits for P32..P63 (corresponding DIRB bit must be high to enable output)

1/0 pins are read by cogs via the following cog registers:

INA - input state bits for P0..P31
INB - input state bits for P32..P63

Aside from general-purpose instructions which may operate on DIRA/DIRB/OUTA/OUTB, there are special pin instructions which
operate on singular bits within these registers:

DIRL/DIRH/DIRC/DIRNC/DIRZ/DIRNZ/DIRRND/DIRNOT {#}D - affect pin D bit in DIRx
OUTL/OUTH/OUTC/OUTNC/OUTZ/OUTNZ/OUTRND/OUTNOT {#}D - affect pin D bit in OUTx
FLTL/FLTH/FLTC/FLTNC/FLTZ/FLTNZ/FLTRND/FLTNOT {#}D - affect pin D bit in OUTX, clear bit in DIRx

DRVL/DRVH/DRVC/DRVNC/DRVZ/DRVNZ/DRVRND/DRVNOT {#}D - affect pin D bit in OUTX, set bit in DIRx

As well, aside from general-purpose instructions which may read INA/INB, there are special pin instructions which can read singular bits

within these registers:

TESTP {#}D WC/WZ/ANDC/ANDZ/ORC/ORZ/XORC/XORZ - read pin D bit in INx and affect C or Z
TESTPN {#}D WC/WZ/ANDC/ANDZ/ORC/ORZ/XORC/XORZ - read pin D bit in INx and affect C or Z

When a DIRx/OUTXx bit is changed by any instruction, it takes THREE additional clocks after the instruction before the pin starts
transitioning to the new state. Here this delay is demonstrated using DRVH:

0 1 2 3 4 5
Clock: / \ / \ / \ / \ / \ / \ /
DIRA: | | DIRA-->| REG--> | REG--> | REG-->| PO DRIV |
OUTA: | | OUTA-->| REG—->| REG—->| REG-->| PO HIGH |
| \
Instruction: | DRVH #0 |

When an INx register is read by an instruction, it will reflect the state of the pins registered THREE clocks before the start of the
instruction. Here this delay is demonstrated using TESTB:

0 1 2 3 4 5
Clock: / \ / \ / \ / \ / \ / \ /
INA: | PO IN-->| REG-->| REG-->| REG-->| ALU-->| C/z-—>
\ \
Instruction: | TESTB INA, #0 |

When a TESTP/TESTPN instruction is used to read a pin, the value read will reflect the state of the pin registered TWO clocks before
the start of the instruction. So, TESTP/TESTPN get fresher INx data than is available via the INx registers:

0 1 2 3 4
Clock: / \ / \ / \ / \ / \ /
INA: | PO IN-->| REG-->| REG-->| REG-->| C/z-->
\ \
Instruction: | TESTP #0 |

COG ATTENTION

Each cog can request the attention of other cogs by using the COGATN instruction:
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COGATN D/# 'get attention of cog(s), 2 clocks

The D/# operand supplies a 16-bit value in which bits 0..15 represent cogs 0..15. For each set bit, the corresponding cog will be
strobed, causing an 'attention' event for POLLATN/WAITATN and interrupt use. The 16 attention strobe outputs from all cogs are OR'd
together to form a composite set of 16 strobes, from which each cog receives its particular strobe.

COGATN #%0000_0000_1111 0000 'request attention of cogs 4..7

POLLATN WC 'has attention been requested?

WAITATN 'wait for attention request

JATN S/# 'jump to S/# if attention requested
JNATN S/# 'jump to S/# if attention not requested

In cases where multiple cogs may be requesting the attention of a single cog, some messaging structure may need to be implemented
in hub RAM, in order to differentiate requests. In the main intended use case, the cog that is receiving an attention request knows which
other cog is strobing it and how it is to respond.

EVENTS

Cogs monitor and track 16 different background events, numbered 0..15:

Event 0 = An interrupt occurred

Event 1 = CT passed CT1 (CT is the lower 32-bits of the free-running 64-bit global counter)
Event 2 = CT passed CT2

Event 3 = CT passed CT3

Event 4 = Selectable event 1 occurred

Event 5 = Selectable event 2 occurred

Event 6 = Selectable event 3 occurred

Event 7 = Selectable event 4 occurred

Event 8 = A pattern match or mismatch occurred on either INA or INB

Event 9 = Hub FIFO block-wrap occurred - a new start address and block count were loaded
Event 10 = Streamer command buffer is empty - it's ready to accept a new command
Event 11 = Streamer finished - it ran out of commands, now idle

Event 12 = Streamer NCO rollover occurred

Event 13 = Streamer read lookup RAM location $1FF

Event 14 = Attention was requested by another cog or other cogs

Event 15 = GETQX/GETQY executed without any CORDIC results available

Events are tracked and can be polled, waited for, and used as interrupt sources.
Before explaining the details, consider the event-related instructions.

First are the POLLxxx instructions which simultaneously return their event-occurred flag into C and/or Z, and clear their event-occurred
flag (unless it's being set again by the event sensor):

Interrupt source (0=off):
POLLINT Poll the interrupt-occurred event flag -
POLLCT1 Poll the CT-passed-CT1 event flag 1
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POLLCT2 Poll the CT-passed-CT2 event flag 2
POLLCT3 Poll the CT-passed-CT3 event flag 3
POLLSE1 Poll the selectable-event-1 event flag 4
POLLSE2 Poll the selectable-event-2 event flag 5
POLLSE3 Poll the selectable-event-3 event flag 6
POLLSE4 Poll the selectable-event-4 event flag 7
POLLPAT Poll the pin-pattern-detected event flag 8
POLLFBW Poll the hub-FIFO-interface-block-wrap event flag 9
POLLXMT Poll the streamer-empty event flag 10
POLLXFI Poll the streamer-finished event flag 11
POLLXRO Poll the streamer-NCO-rollover event flag 12
POLLXRL Poll the streamer-lookup-RAM-$1FF-read event flag 13
POLLATN poll the attention-requested event flag 14
POLLQMT Poll the CORDIC-read-but-no-results event flag 15

Next are the WAITxxx instructions, which will wait for their event-occurred flag to be set (in case it's not, already) and then clear their
event-occurred flag (unless it's being set again by the event sensor), before resuming.

By doing a SETQ right before one of these instructions, you can supply a future CT target value which will be used to end the wait
prematurely, in case the event-occurred flag never went high before the CT target was reached. When using SETQ with 'WAITxxx WC',
C will be set if the timeout occurred before the event; otherwise, C will be cleared.

WAITINT Wait for an interrupt to occur, stalls the cog to save power
WAITCT1 Wait for the CT-passed-CT1 event flag

WAITCT2 Wait for the CT-passed-CT2 event flag

WAITCT3 Wait for the CT-passed-CT3 event flag

WAITSE1 Wait for the selectable-event-1 event flag

WAITSE2 Wait for the selectable-event-2 event flag

WAITSE3 Wait for the selectable-event-3 event flag

WAITSE4 Wait for the selectable-event-4 event flag

WAITPAT Wait for the pin-pattern-detected event flag

WAITFBW Wait for the hub-FIFO-interface-block-wrap event flag
WAITXMT Wait for the streamer-empty event flag

WAITXFI Wait for the streamer-finished event flag

WAITXRO Wait for the streamer-NCO-rollover event flag

WAITXRL Wait for the streamer-lookup-RAM-$1FF-read event flag
WAITATN Wait for the attention-requested event flag

There's no 'WAITQMT' because the event could not happen while waiting.

Last are the 'Uxxx/JNxxx S/#' instructions, which each jump to S/# if their event-occurred flag is set (Jxxx) or clear (JNxxx). Whether or
not a branch occurs, the event-occurred flag will be cleared, unless it's being set again by the event sensor.

JINT/UNINT Jump to S/# if the interrupt-occurred event flag is set/clear
JCT1/JNCT1 Jump to S/# if the CT-passed-CT1 event flag is set/clear
JCT2/IJNCT2 Jump to S/# if the CT-passed-CT2 event flag is set/clear
JCT3/UJNCT3 Jump to S/# if the CT-passed-CT3 event flag is set/clear
JSE1/JNSE1 Jump to S/# if the selectable-event-1 event flag is set/clear
JSE2/JNSE2 Jump to S/# if the selectable-event-2 event flag is set/clear
JSE3/JNSE3 Jump to S/# if the selectable-event-3 event flag is set/clear
JSE4/JNSE4 Jump to S/# if the selectable-event-4 event flag is set/clear
JPAT/JNPAT Jump to S/# if the pin-pattern-detected event flag is set/clear
JFBW/IJNFBW  Jump to S/# if the hub-FIFO-interface-block-wrap event flag is set/clear
JXMT/INXMT  Jump to S/# if the streamer-empty event flag is set/clear
JXFI/INXFI Jump to S/# if the streamer-finished event flag is set/clear
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JXRO/JNXRO  Jump to S/# if the streamer-NCO-rollover event flag is set/clear

JXRL/JNXRL Jump to S/# if the streamer-lookup-RAM-$1FF-read event flag is set/clear

JATN/UNATN Jump to S/# if the attention-requested event flag is set/clear
JQMT/IUNQMT  Jump to S/# if the CORDIC-read-but-no-results event flag is set/clear

Here are detailed descriptions of each event flag. Understand that the 'set' events can also be used as interrupt sources (except in the

case of the first flag which is set when an interrupt occurs):

POLLINT/WAITINT event flag

e Cleared on cog start.
e Set whenever interrupt 1, 2, or 3 occurs (debug interrupts are ignored).
e Also cleared on POLLINT/WAITINT/JINT/JNINT.

POLLCT1/WAITCT1 event flag

e Cleared on ADDCT1.
e Set whenever CT passes the result of the ADDCT1 (MSB of CT minus CT1 is 0).
e Also cleared on POLLCT1/WAITCT1/JCT1/JNCT1.

POLLCT2/WAITCT2 event flag

e Cleared on ADDCT2.
e Set whenever CT passes the result of the ADDCT2 (MSB of CT minus CT2 is 0).
e Also cleared on POLLCT2/WAITCT2/JCT2/JNCT2.

POLLCT3/WAITCTS3 event flag

e Cleared on ADDCT3.
e Set whenever CT passes the result of the ADDCT3 (MSB of CT minus CT3 is 0).
e Also cleared on POLLCT3/WAITCT3/JCT3/JNCT3.

POLLPAT/WAITPAT event flag

Cleared on SETPAT

Set whenever (INA & D) != S after 'SETPAT D/#,S/#' with C=0 and Z=0.
Set whenever (INA & D) == S after 'SETPAT D/#,S/#' with C=0 and Z=1.
Set whenever (INB & D) != S after 'SETPAT D/#,S/#' with C=1 and Z=0.
Set whenever (INB & D) == S after 'SETPAT D/#,S/# with C=1 and Z=1.
Also cleared on POLLPAT/WAITPAT/JPAT/JNPAT.

POLLFBW/WAITFBW event flag

e Cleared on RDFAST/WRFAST/FBLOCK.

e Set whenever the hub RAM FIFO interface exhausts its block count and reloads its 'block count' and 'start address'.

e Also cleared on POLLFBW/WAITFBW/JFBW/JNFBW.

POLLXMT/WAITXMT event flag
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e Cleared on XINIT/XZERO/XCONT.

e Set whenever the streamer is ready for a new command.

e Also cleared on POLLXMT/WAITXMT/JXMT/JNXMT.
POLLXFI/WAITXFI event flag

e Cleared on XINIT/XZERO/XCONT.

e Set whenever the streamer runs out of commands.

e Also cleared on POLLXFI/WAITXFI/JXFI/JNXFI.
POLLXRO/WAITXRO event flag

e Cleared on XINIT/XZERO/XCONT.

e Set whenever the the streamer NCO rolls over.

e Also cleared on POLLXRO/WAITXRO/JXRO/JNXRO.

POLLXRL/WAITXRL event flag

e Cleared on cog start.

e Set whenever location $1FF of the lookup RAM is read by the streamer.

e Also cleared on POLLXRL/WAITXRL/JXRL/JNXRL.

POLLATN/WAITATN event flag
e Cleared on cog start.

e Set whenever any cogs request attention.
e Also cleared on POLLATN/WAITATN/JATN/JNATN.

POLLQMT event flag

e Cleared on cog start.

e Set whenever GETQX/GETQY executes without any CORDIC results available or in progress.

e Also cleared on POLLQMT/WAITQMT/JQMT/JNQMT.

Example: ADDCT1/WAITCT1

'ADDCT1 D,S/# must be used to establish a CT target. This is done by first using 'GETCT D' to get the current CT value into a
register, and then using ADDCT1 to add into that register, thereby making a future CT target, which, when passed, will trigger

the CT-passed-CT1 event and set the related event flag.

GETCT x 'get initial CT
ADDCT1 x,#500 'make initial CT1 target
.loop WAITCT1 'wait for CT to pass CT1l target
ADDCT1 x,#500 'update CT1 target
DRVNOT #0 'toggle PO
JMP #.loop 'loop to the WAITCT1

45



It doesn't matter what register is used to keep track of the CT1 target. Whenever ADDCT1 executes, S/# is added into D, and
the result gets copied into a dedicated CT1 target register that is compared to CT on every clock. When CT passes the CT1
target, the event flag is set. ADDCT1 clears the CT-passed-CT1 event flag to help with initialization and cycling.

Selectable Events
Each cog can track up to four selectable pin, LUT, or hub lock events. This is accomplished by using the SETSERn instruction, where "n"
is 1, 2, 3, or 4. In order for user code to detect the occurrence of the selected event, the following options are available:

The matched WAITSEn instruction will block until the event occurs

The matched POLLSER instruction will check for the event without blocking

The matched JSEn and JNSEn branch instructions will branch according to the polled event state
As an interrupt (see INTERRUPTS)

Each selected event is set or cleared according to the following rules:
e SEnis set whenever the configured event occurs.
e SEnis cleared on matched POLLSEn / WAITSEn / JSEn / JNSEn.
e SEnis cleared when matched 'SETSEn D/#'is called.
SETSEn D/# accepts the following configuration values:
%000_00_00AA = this cog reads LUT address %1111111AA
%000_00_01AA = this cog writes LUT address %1111111AA
%000_00_10AA = odd/even companion cog reads LUT address %1111111AA
%000_00_11AA = odd/even companion cog writes LUT address %1111111AA
%000_01_LLLL =hub lock %LLLL rises
%000_10_LLLL = hub lock %LLLL falls
%000_11_LLLL = hub lock %LLLL changes
%001_PPPPPP = INA/INB bit of pin %PPPPPP rises
%010_PPPPPP = INA/INB bit of pin %PPPPPP falls
%011_PPPPPP = INA/INB bit of pin %PPPPPP changes

%10x_PPPPPP = INA/INB bit of pin %PPPPPP is low
%11x_PPPPPP = INA/INB bit of pin %PPPPPP is high

INTERRUPTS

Each cog has three interrupts: INT1, INT2, and INT3.

INT1 has the highest priority and can interrupt INT2 and INT3.

INT2 has the middle priority and can interrupt INT3.

INT3 has the lowest priority and can only interrupt non-interrupt code.

The STALLI instruction can be used to hold off INT1, INT2 and INT3 interrupt branches indefinitely, while the ALLOWI instruction allows
those interrupt branches to occur. Critical blocks of code can, therefore, be protected from interruption by beginning with STALLI and

ending with ALLOWI.

There are 16 interrupt event sources, selected by a 4-bit pattern:
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To set up an interrupt, you need to first point its IUMP register to your interrupt service routine (ISR). When the interrupt occurs, it will
jump to where the IUMP register points and simultaneously store the C/Z flags and return address into the adjacent IRET register:

$1F0
$1F1
$1F2
$1F3
$1F4
$1F5

When your ISR is done, it can do a RETIx instruction to return to the interrupted code. The RETIx instructions are actually CALLD

instructions:

RETI1
RETI2
RETI3

<off>, default on cog start for INT1/INT2/INT3 event sources
CT-passed-CT1, established by ADDCT1
CT-passed-CT2, established by ADDCT2
CT-passed-CT3, established by ADDCT3
SE1 event occurred, established by SETSE1
SE2 event occurred, established by SETSE2
SE3 event occurred, established by SETSE3
SE4 event occurred, established by SETSE4
Pin pattern match or mismatch occurred, established by SETPAT

Hub RAM FIFO interface wrapped and reloaded, established by RDFAST/WRFAST/FBLOCK

Streamer is ready for another command, established by XINIT/XZERO/ZCONT
Streamer ran out of commands, established by XINIT/XZERO/ZCONT
Streamer NCO rolled over, established by XINIT/XZERO/XCONT
Streamer read location $1FF of lookup RAM
Attention requested by other cog(s)

GETQX/GETQY executed without any CORDIC results available or in progress

RAM / IJMP3
RAM / IRET3
RAM / IJMP2
RAM / IRET2
RAM / IJMPl
RAM / IRET1

CALLD
CALLD
CALLD

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

INB,IRET1 WCZ
INB,IRET2 WCZ
INB,IRET3 WCZ

call
return
call
return
call
return

address
address
address
address
address
address

for
for
for
for
for
for

INT3
INT3
INT2
INT2
INT1
INT1

The CALLD with D = <any register>, S = IRETx, and WCZ, signals the cog that the interrupt is complete. This causes the cog to clear
its internal interrupt-busy flag for that interrupt, so that another interrupt can occur. INB (read-only) is used as D for RETIx instructions to
effectively make the CALLD into a JMP back to the interrupted code.

Instead of using RETIx, though, you could use RESIx to have your ISR resume at the next instruction when the next interrupt occurs:

RESH
RESI2
RESI3

Once you've got the IJMPXx register configured to point to your ISR, you can enable the interrupt. This is done using the SETINTx

instruction:

SETINT1 D/#
SETINT2 D/#
SETINT3 D/#

CALLD
CALLD
CALLD

IJMP1,IRET1 WCZ
IUMP2,IRET2 WCZ
IUMP3,IRET3 WCZ

Set INT1 event to 0..15 (see table above)
Set INT2 event to 0..15 (see table above)
Set INT3 event to 0..15 (see table above)
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Interrupts may be forced in software by the TRGINTX instructions:

TRGINT1 Trigger INT1
TRGINT2 Trigger INT2
TRGINT3 Trigger INT3

Interrupts that have been triggered and are waiting to branch may be nixed in software by the NIXINTx instructions. These instructions
are only useful in main code after STALLI executes or in an ISR which needs to stop a lower-level interrupt from executing after the
current ISR exits:

NIXINT1 Nix INT1
NIXINT2 Nix INT2
NIXINT3 Nix INT3

Interrupts can be stalled or allowed using the following instructions:

ALLOWI Allow any stalled and future interrupt branches to occur indefinitely (default mode on cog start)
STALLI Stall interrupt branches indefinitely until ALLOWI executes

When an interrupt event occurs, certain conditions must be met during execution before the interrupt branch can happen:

ALTxx / CRCNIB / SCA/SCAS / GETCT+WC / GETXACC / SETQ/ SETQ2 / XOR0O32 / XBYTE must not be executing
AUGS must not be executing or waiting for a S/# instruction

AUGD must not be executing or waiting for a D/# instruction

REP must not be executing or active

STALLI must not be executing or active

The cog must not be stalled in any WAITx instruction

Once these conditions are all met, any pending interrupt is allowed to branch, with priority given to INT1, then INT2, and then INT3.

Interrupt branches are realized, internally, by inserting a '"CALLD IRETx,IJMPx WCZ' into the instruction pipeline while holding the
program counter at its current value, so that the interrupt later returns to the address saved in IRETx.

Interrupts loop through these three states:
1) Waiting for interrupt event
2) Waiting for interrupt branch

3) Executing interrupt service routine

During states 2 and 3, any intervening interrupt events at the same priority level are ignored. When state 1 is returned to, a new
interrupt event will be waited for.

Example: Using INT1 as a CT1 interrupt
org

start mov ijmpl, #isrl 'set intl vector
setintl #1 'set intl for ct-passed-ctl event
getct ctl 'set initial ctl target
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addctl ctl,#50
'main program, gets interrupted
loop drvnot #0 'toggle pO

jmp #loop 'loop

'intl isr, runs once every 50 clocks

isrl drvnot #1 'toggle pl
addctl ctl,#50 'update ctl target
retil 'return to main program
ctl res 'reserve long for ctl

DEBUG INTERRUPT

In addition to the three visible interrupts, there is a fourth "hidden" interrupt that has priority over all the others. It is the debug interrupt,
and it is inaccessible to normal cog programs.

Debug interrupts are enabled on a per-cog basis via HUBSET. Each debug-enabled cog will generate a debug interrupt on (re)start
from each COGINIT exercised upon it. Within that initial debug ISR and within each subsequent debug ISR, multiple trigger conditions
may be set for the next debug interrupt. If no trigger conditions are set before the debug ISR ends, no more debug interrupts will occur
until the cog is restarted from another COGINIT.

The last 16KB of hub RAM, which is also mapped to $FC000..$FFFFF, gets partially used as a buffer area for saving and restoring cog
registers during debug ISR's. The initial debug ISR routines are also stored in this upper RAM. Once initialized with debug ISR code,
this upper hub RAM can be write-protected, in which case it is mapped only to $FC000..$FFFFF and it is only writable from within
debug ISR's.

Each cog has an execute-only ROM in cog registers $1F8..$1FF which contains special debug-ISR-entry and -exit routines. These tiny
routines perform seamless register-load and register-restore operations for your debugger program, which must be realized entirely
within debug ISR's.

Execute-only ROM in cog registers $1F8..$1FF

(%cccc = !CogNumber)

Debug ISR Entry - IUMPO is initialized to $1F8 on COGINIT

$1F8 - SETQ #SOF 'save registers $000..S$00F
$1F9 - WRLONG O, * ' = %1111 1111 lccc_c000_0000
$1FA - SETQ #SOF 'load program into $000..S$00F
$1FB - RDLONG O,* ' = %1111 1111 lccc_cl00_0000
$1FC - JMP #0 'jump to loaded program

Debug ISR Exit - Jump here to exit your debug ISR

$1FD - SETQ #SOF 'restore registers $000..S$00F
$1FE - RDLONG O, * '* = %1111 1111 lccc_c000_0000
$1FF - RETIO 'CALLD IRETO,IRETO WCZ

During a debug ISR, INA and INB, normally read-only input-pin registers, become readable/writable RAM registers named |[JMPO and
IRETO, and are used by the debug interrupt as jump and return addresses. On COGINIT, IJMPQ is initialized to $1F8 which is the
debug-ISR-entry routine's address.
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When a debug interrupt occurs with [JMPO pointing to $1F8, the following sequence happens:

- Cog registers $000 to $00F are saved to hub RAM starting at (SFF800 + !CogNumber << 7), or
%1111_1111_1ccc_c000_0000, where %cccc = |CogNumber.

- Cog registers $000 to $00F are loaded from hub RAM starting at (FF840 + !CogNumber << 7), or
%1111_1111_1ccc_c100_0000, where %cccc = |CogNumber.

- A"JMP #$000" executes to run the 16-instruction debugger program that was just loaded into registers $000 to $00F.

Your 16-instruction debugger program will likely want to determine if this debug interrupt was due to a COGINIT, in which case the
debugger will probably want to note that a new program is now running in this cog. Depending on what the debugger must do next, it is
likely that it will need to save more registers to the upper hub RAM and then load in more code from the upper hub RAM to facilitate
more complex operations than the initial 16-instruction ISR can achieve. The ISR may then need to perform some communication
between itself and a host system which may be serving as the debugger's user interface. It may be necessary to employ a LOCK to
time-share P2-to-host communication channels among cogs, likely on P63 (serial Rx) and P62 (serial Tx). This scenario is somewhat
hypothetical, but illustrates the design intent behind the debug interrupt mechanism.

When your debug ISR is complete, you can do a 'JMP #$1FD' to execute the debug-ISR-exit routine which does the following:

- Original cog registers $000 to $00F are restored from hub RAM starting at ($FF800 + !CogNumber << 7), or
%1111_1111_1ccc_c000_0000, where %cccc = |CogNumber.

- A"RETIO" executes to return to the interrupted cog program.

Here is a table of the hub RAM locations used by each cog for register save/restore and ISR images during the debug interrupt when
the register ROM routines are used for ISR entry and exit:

Cog Save/Restore in Hub RAM ISR image in Hub RAM

for Registers $000..$00F for Registers $000..$00F
7 $FFCO00. .$FFC3F SFFC40. .$FFCTF
6 $FFC80. . SFFCBF $FFCCO. .$FFCFF
5 $FFDO00. . $FFD3F $FFD40. .$FFD7F
4 $FFD80. . SFFDBF $FFDCO. . $FEDFF
3 $SFFEO00. . $FFE3F $FFE40. .$FFETF
2 $FFES0. . §FFEBF $FFECO. . $FFEFF
1 $FFF00. . $FFF3F $FFF40..$FFF7F
0 SFFF80. . SFFFBF SFFFCO. .SFFFFF

Though the first debug interrupt upon cog (re)start will always use the debug-ISR-entry routine at $1F8, you may redirect IJMPO during
any debug ISR to point elsewhere for use by subsequent debug interrupts. This would mean that you would lose the initial
register-saving function provided by the small ROM starting at $1F8, so you would have to use some cog registers for debugger-state
storage that don't interfere with the cog program that is being debugged. If no register saving/restoring or host communications are
required, your debug ISR may execute very quickly.

What terminates a debug interrupt is not only RETIO (CALLD INB,INB WCZ), but any D-register variant (CALLD anyreg,INB WCZ). For
example RESIO (CALLD INA,INB WCZ) may be used to resume next time from where this debug ISR left off, but this would imply that
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you are not using the debug-ISR-entry and -exit routines in the cog-register ROM and have, instead, permanently located debugger
code into some cog registers, so that your debugger program is already present at the start of the debug interrupt.

This debug interrupt scheme was designed to operate stealthily, without any cooperation from the cog program being debugged. All
control has been placed within the debug ISR. This isolation from normal programming is intended to prevent, or at least discourage,
programmers from making any aspect of the debug interrupt system part of their application, thereby rendering the debug interrupt
compromised as a standard debugging mechanism. Also, by executing the ISR strictly in cog register space, this scheme does not
interfere with the hub FIFO state, which would be impossible to reconstruct if disturbed by hub execution within the debug ISR.

Below are the instructions which are used in the debugging mechanism:

BRK D/#
During normal program execution, the BRK instruction is used to generate a debug interrupt with an 8-bit code which can be read within
the debug ISR. The BRK instruction interrupt must be enabled from within a prior debug ISR for this to work. Regardless of the
execution condition, the BRK instruction will trigger a debug interrupt, if enabled. The execution condition only gates the writing of the
8-bit code:

D/# = %BBBBBBBB: 8-bit BRK code
During a debug ISR, the BRK instruction operates differently and is used to establish the next debug interrupt condition(s). It is also
used to select INA/INB, instead of the IIMPO/IRETO registers exposed during the ISR, so that the pins' inputs states may be read:

D/# = %aaaaaaaaaaaaaaaaeceee LKJIHGFEDCBA

%aaaaaaaaaaaaaaaaeeee: 20-bit breakpoint address or 4-bit event code (%eeee)
$L: 1 = map INA/INB normally, 0 = map IJMPO/IRETO at INA/INB (default during ISR) *

%K: 1 = enable interrupt on breakpoint address match
%J: 1 = enable interrupt on event %eeee

%$I: 1 = enable interrupt on asynchronous breakpoint (via COGBRK on another cog)
%$H: 1 = enable interrupt on INT3 ISR entry

%G: 1 = enable interrupt on INT2 ISR entry

%F: 1 = enable interrupt on INT1l ISR entry

%E: 1 = enable interrupt on BRK instruction

%D: 1 = enable interrupt on INT3 ISR code (single step)
%C: 1 = enable interrupt on INT2 ISR code (single step)
%$B: 1 = enable interrupt on INT1l ISR code (single step)
%A: 1 = enable interrupt on non-ISR code (single step)

* If set to 1 by the debug ISR, %L must be reset to 0 before exiting the debug ISR, so
that the RETIO instruction is able to see IJMPO and IRETO.

On debug ISR entry, bits L to A are cleared to '0". If a subsequent debug interrupt is desired, a BRK instruction must be executed before
exiting the debug ISR, in order to establish the next breakpoint condition(s).

COGBRK D/#

The COGBRK instruction can trigger an asynchronous breakpoint in another cog. For this to work, the cog executing the COGBRK
instruction must be in its own debug ISR and the other cog must have its asynchronous breakpoint interrupt enabled:

D/# = %CCCC: the cog in which to trigger an asynchronous breakpoint
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GETBRK D WCZ

During normal program execution, GETBRK with WCZ returns various data about the cog's internal status:

C
Z

1 if STALLI mode or 0 if ALLOWI mode (established by STALLI/ALLOWI)
1 if cog started in hubexec or 0 if cog started in cogexec

D[31:23] = 0

D[22] = 1 if colorspace converter is active
D[21] = 1 if streamer is active
D[20] = 1 if WRFAST mode or 0 if RDFAST mode

D[19:16] = INT3 selector, established by SETINT3

D[15:12] = INT2 selector, established by SETINT2

D[11:08] = INT1 selector, established by SETINT1

D[07:06] = INT3 state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
D[05:04] = INT2 state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
D[03:02] = INT1l state: %0x = idle, %10 = interrupt pending, %11 = ISR executing
D[01] = 1 if STALLI mode or 0 if ALLOWI mode (established by STALLI/ALLOWI)
D[00] = 1 if cog started in hubexec or 0 if cog started in cogexec

During a debug ISR, GETBRK with WCZ returns additional data that is useful to a debugger:
C = 1 if debug interrupt was from a COGINIT, indicating that the cog was (re)started

D[31:24] = 8-bit break code from the last 'BRK #/D' during normal execution
D[23] = 1 if debug interrupt was from a COGINIT, indicating that the cog was (re)started

GETBRK D WC
GETBRK with WC always returns the following:
C = LSB of SKIP/SKIPF/EXECF/XBYTE pattern

D[31:28] = 4-bit CALL depth since SKIP/SKIPF/EXECF/XBYTE (skipping suspended if not %0000)
D[27] = 1 if SKIP mode or 0 if SKIPF/EXECF/XBYTE mode
D[26] 1 if LUT sharing enabled (established by SETLUTS)
D[25] = 1 if top of stack = $001FF, indicating XBYTE will execute on next _RET_/RET
D[24:16] = 9-bit XBYTE mode, established by ' RET SETQ/SETQ2' when top of stack = $001FF
D[15:00] = 16 event-trap flags

D[15] = GETQX/GETQY executed without prior CORDIC command

D[14] = attention requested by cog(s)

D[13] = streamer read location $1FF of lookup RAM

D[12] = streamer NCO rolled over

D[11l] = streamer finished, now idle

D[10] = streamer ready to accept new command

D[09] = hub RAM FIFO interface loaded block count and start address
D[08] = pin pattern match occurred

D[07] = SE4 event occurred

D[06] = SE3 event occurred

D[05] = SE2 event occurred

D[04] = SEl event occurred

D[03] = CT-passed-CT1

D[02] = CT-passed-CT2
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D[01] = CT-passed-CT3
D[00] = INT1l, INT2, or INT3 occurred
GETBRK D Wz
GETBRK with WZ always returns the following:
Z = 1 if no SKIP/SKIPF/EXECF/XBYTE pattern queued (D = 0) or 1 if pattern queued (D <> 0)

D = 32-bit SKIP/SKIPF/EXECF/XBYTE pattern, used LSB-first to skip instructions in main code

HUB

Configuration
The hub contains several global circuits which are configured using the HUBSET instruction. HUBSET uses a single D operand to both

select the circuit to be configured and to provide the configuration data:

HUBSET {#)}D - Configure global circuit selected by MSBs

%0000_xxxE DDDD DDMM MMMM MMMM PPPP_CCSS Set clock generator mode

$0001_xxxX XXXX XXXX_ XXXX XXXX XXXX_XXXX Hard reset, reboots chip
%0010_xxxx xxxx xxLW_DDDD_DDDD_DDDD_DDDD Set write-protect and debug enables
%0100_xxxXX XXXX XXXX_XXXX xxxR RLLT TTTT Set filter R to length L and tap T
$1DDD_DDDD_DDDD_DDDD_DDDD_DDDD_DDDD_DDDD Seed Xoroshirol28** PRNG with D

Configuring the Clock Generator
The Prop2 can generate its system clock in several different ways.

There are two separate internal RC clock oscillators that can be used, a 20MHz+ (RCFAST) and a ~20kHz (RCSLOW). The 20MHz+
oscillator is designed to always run at least 20MHz, worst-case, in order to accommodate 2M baud serial loading during boot. The

~20kHz oscillator is intended for low-power operation.

The Xl and XO pins can also be used for clocking, with XI being an input and XO being a crystal-feedback output for 10MHz-20MHz

crystals. Internal loading caps can also be enabled on XI and XO for crystal impedance matching.
If the Xl pin is used as a clock input or crystal oscillator input, its frequency can be modified through an internal phase-locked loop
(PLL). The PLL divides the Xl pin frequency from 1 to 64, then multiplies the resulting frequency from 1 to 1024 in the VCO. The VCO

frequency can be used directly, or divided by 2, 4, 6, ...30, to get the final PLL clock frequency which can be used as the system clock.

The clock configuration setting consists of 25 bits. The four LSBs are all that are needed to switch among clock sources and select all
but the PLL settings.

HUBSET ##%0000_000E_DDDD_DDMM MMMM MMMM PPPP_CCSS 'set clock mode
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The tables below explain the various bit fields within the HUBSET operand:

PLL Setting Value Effect Notes
%E 0/1 PLL off/on Xl input must be enabled by %CC. Allow 10ms for crystal+PLL to
stabilize before switching over to PLL clock source.
%DDDDDD 0..63 1..64 division of XI | This divided Xl frequency feeds into the phase-frequency
pin frequency comparator's 'reference’ input.
%MMMMMMMMMM | 0..1023 | 1..1024 division of | This divided VCO frequency feeds into the phase-frequency
VCO frequency comparator's 'feedback’ input. This frequency division has the
effect of multiplying the divided XI frequency (per %DDDDDD)
inside the VCO. The VCO frequency should be kept within 100
MHz to 200 Mhz.
%PPPP 0 VCO/2 This divided VCO frequency is selectable as the system clock
1 VCO /4 when SS = %11.
2 VCO /6
3 VCO/8 For fastest overclocking, the PLL can be pushed to 350 MHz using
4 VCO /10 the 'VCO / 1' mode (%PPPP = 15).
5 VCO /12
6 VCO /14
7 VCO /16
8 VCO/ 18
9 VCO /20
10 VCO /22
11 VCO /24
12 VCO /26
13 VCO /28
14 VCO /30
15 VCO /1
%CC Xl status XO status Xl /X0 Xl /X0
impedance loading caps
%00 ignored float Hi-Z OFF
%01 input 600-ohm drive 1M-ohm OFF
%10 input 600-ohm drive 1M-ohm 15pF per pin
%11 input 600-ohm drive 1M-ohm 30pF per pin
%SS Clock Source | Notes
%11 PLL CC = %00 and E=1, allow 10ms for crystal+PLL to stabilize before switching to PLL
%10 XI CC = %00, allow 5ms for crystal to stabilize before switching to XI pin
%01 RCSLOW ~20 kHz, can be switched to at any time, low-power
%00 RCFAST 20 MHz+, can be switched to at any time, used on boot-up.

WARNING: Incorrectly switching away from the PLL setting (%SS = %11 and %CC <> %00) with %PPPP = %1111 can cause a clock

glitch which will hang the P2 chip until a reset occurs. In order to safely switch away, always start by switching to an internal RC

oscillator (%SS = %00 or %01), while maintaining the %PPPP = %1111 and %CC settings.
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PLL Example

The PLL's VCO is designed to run between 100 MHz and 200 MHz and should be kept within that range.

Freq(XI) X (%SMMMMMMMMMM + 1)

veo = (%DDDDDD + 1)
PLL = if(%PPPP = 15) = V(O
PLL = el

lf(%PPPP * ls)ﬁm

Let's say you have a 20 MHz crystal attached to XI and XO and you want to run the Prop2 at 148.5 MHz. You could divide the crystal by
40 (%DDDDDD = 39) to get a 500 kHz reference, then multiply that by 297 (%MMMMMMMMMM = 296) in the VCO to get 148.5 MHz.
You would set %PPPP to %1111 to use the VCO output directly. The configuration value would be
%1_100111_0100101000_1111_10_11. The last two 2-bit fields select 15pf crystal mode and the PLL. In order to realize this clock
setting, though, it must be done over a few steps:

HUBSET #S$F0 'set 20 MHz+ (RCFAST) mode
HUBSET ##3%1_100111_0100101000_1111 10 00 'enable crystal+PLL, stay in RCFAST mode
WAITX ##20_000_000/100 'wait ~10ms for crystal+PLL to stabilize

HUBSET ##%1_100111_0100101000_1111 10_11 'now switch to PLL running at 148.5 MHz

The clock selector controlled by the %SS bits has a deglitching circuit which waits for a positive edge on the old clock source before
disengaging, holding its output high, and then waiting for a positive edge on the new clock source before switching over to it. It is
necessary to select mode %00 or %01 while waiting for the crystal and/or PLL to settle into operation, before switching over to either.

Write-Protecting the Last 16KB of Hub RAM and Enabling Debug Interrupts

HUBSET {#}D 'set write-protect and enable debug interrupts

{#}D = %0010_xxxx xxxx xxLW DDDD DDDD_DDDD_DDDD

%L: Lock W and D bit settings until next reset
0
1

establish W and D bit settings and allow subsequent modification
establish W and D bit settings and disallow subsequent modification

%W: Write-protect last 16KB of hub RAM
0 = Last 16KB of hub RAM can be read and written at both its normal range
and at $FC000..$FFFFF (default)

[y
I

Last 16KB of hub RAM disappears from its normal range and is write-

protected at $FC000..S$FFFFF, except from within debug ISR's

%$D: Debug interrupt enables for cogs 15..0, respectively

o
I

Debug interrupt is disabled for cog n (default)
1 = Debug interrupt is enabled for cog n

Examples:
HUBSET ##$2000_0001 'enable debug interrupt for cog 0
HUBSET ##$2001_FFFF 'enable debug interrupts for cogs 15..0

'..and write-protect the last 16KB of hub RAM
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HUBSET

##$2003_0O0FF 'enable debug interrupts for cogs 7..0
'..and write-protect the last 16KB of hub RAM
'..and disallow subsequent changes to this scheme

See the DEBUG INTERRUPT section to learn how debug interrupts work.

Configuring the Digital Filters for Smart Pins

There are four global digital filter settings which can be used by each smart pin to low-pass filter its incoming pin states.

Each filter setting includes a filter length and a timing tap. The filter length is 2, 3, 5, or 8 flipflops, selected by values 0..3. The flipflops

shift pin state data at the timing tap rate and must be unanimously high or low to change the filter output to high or low. The timing tap is

one of the lower 32 bits of CT (the free-running 64-bit global counter), selected by values 0..31. Each time the selected tap transitions,

the current pin state is shifted into the flipflops and if the flipflops are all in agreement, the filter output goes to that state. The filter will

be reflected in the INA/INB bits if no smart pin mode is selected, or the filter states will be used by the smart pin mode as its inputs.

The D operand selects both the filter to configure and the data to configure it with:

HUBSET
HUBSET
HUBSET
HUBSET

##54000_0000 + Length<<5 + Tap
##54000 0080 + Length<<5 + Tap
##54000_0100 + Length<<5 + Tap
##$4000_0180 + Length<<5 + Tap

"Length" is 0..3 for 2, 3, 5, or 8 flipflops.

"Tap" is 0..31 for every single clock, every 2nd clock, every 4th clock,...

The filters are set to the following defaults on reset:

'set £iltO0
'set filtl
'set filt2
'set £ilt3

every 2,147,483,648th clock.

Filter Tap Length Low-pass time
(clocks per (flipflops) (at 6.25ns/clock)
sample)
filto 0 %00 6.25ns *1*2 =
(1:1) (2 flipflops) 12.5ns
filt1 5 %01 6.25ns *32*3 =
(32:1) (3 flipflops) 600ns
filt2 19 %10 6.25ns * 512K * 5 =
(512K:1) (5 flipflops) 16.4ms
filt3 22 %11 6.25ns *4M * 8 =
(4M:1) (8 flipflops) 210ms

Seeding the Xoroshiro128** PRNG

To seed 32 bits of state data into the 128-bit PRNG, use HUBSET with the MSB of D set. This will write {1'b1, D[30:0]} into 32 bits of the
PRNG, affecting 1/4th of its total state. The 1'b1 bit ensures that the overall state will not go to zero. Because the PRNG's 128 state bits
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rotate, shift, and XOR against each other, they are thoroughly spread around within a few clocks, so seeding from a fixed set of 32 bits

should not pose a limitation on seeding quality.

After reset, the boot ROM uses HUBSET to seed the Xoroshiro128** PRNG fifty times, each time with 31 bits of thermal noise gleaned
from pin 63 while in ADC calibration mode. This establishes a very random seed which the PRNG iterates from, thereafter. There is no

need to do this again, but here is how you would do it if X' contained a seed value:

SETB x,#31 'set the MSB of x to make a PRNG seed command
HUBSET x 'seed 32 bits of the Xoroshirol28** state

The Xoroshiro128** PRNG iterates on every clock, generating 64 fresh bits which get spread among all cogs and smart pins. Each cog
receives a unique set of 32 different bits, in a scrambled arrangement with some bits inverted, from the 64-bit pool. Each smart pin
receives a similarly-unique set of 8 different bits. Cogs can sample these bits using the GETRND instruction and directly apply them
using the BITRND and DRVRND instructions. Smart pins utilize their 8 bits as noise sources for DAC dithering and noise output.

Rebooting the Chip

HUBSET can be used to reset and reboot the chip:

HUBSET ##$1000_0000 'generate an internal reset pulse to reboot

HUB RAM

The globally-accessible hub RAM can be read and written as bytes, words, and longs, in little-endian format. Hub addresses are always
byte-oriented. There are no special alignment rules for words and longs in hub RAM. Cogs can read and write bytes, words, and longs
at any hub address, as well as execute instruction longs from any hub address starting at $400 (see COGS > INSTRUCTION MODES
> HUB EXECUTION).

On hub RAM implementations of less than the full 1MB, the last 16KB of hub RAM is normally addressable at both its normal address
range, as well as at $FC000..$FFFFF. This provides a stable address space for the 16KB of internal ROM which gets cached into the
last 16KB of hub RAM on startup. This upper 16KB mapping is also used by the cog debugging scheme.

The last 16KB of RAM can be hidden from its normal address range and made read-only at $FC000..$FFFFF. This is useful for making
the last 16KB of RAM persistent, like ROM. It is also how debugging is realized, as the RAM mapped to $FC000..$FFFFF can still be
written to from within debug interrupt service routines, permitting the otherwise-protected RAM to be used as debugger-application
space and cog-register swap buffers for debug interrupts.

See the HUBSET instruction definition for setting up write-protection.

Here are the hub memory maps for the various FPGA boards currently being supported during development. The "W" column
represents write-protection status, set by HUBSET, for the last 16KB of hub RAM:

FPGA Board | Hub RAM gﬁf:s/ W Lower RAM Gap (reads $00) Top 16KB RAM

peo-vano | 328 | 1|71 200000 RN | 204000, rmeer | orc000. rEEEE, maad
soviceona | waomm | 1 |9 [ gosseo. sueeer | ezoooo.grarrr | srcono. geeeer, ave
mais | ases | o |2 fooe-garer | suoons.ommeer [ secono. geeeee, wn
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0 | $00000..$7FFFF | $80000..$FBFFF | $FC000..$FFFFF, R/W

S PRAS oL 4 1| $00000..$7BFFF | $7C000..$FBFFF | $FC000..$FFFFF, Read

Propl23-A9 512KB 8 0| $00000..$7FFFF | $80000..$FBFFF | $FC000..$FFFFF, R/W

BeMicro-A9 1 | $00000..$7BFFF | $7C000..$FBFFF | $FC000..$FFFFF, Read
Propl23-A9 0 $FC000. . $SFFFFF, R/W

BeMicro-A9 1024KB 16 1 $00000. .$FFFFF none, full map S$FC000. . SFFFFF, Read
P2XBCAMG4PES | .. 8 0| $00000..$7FFFF | $80000..$FBFFF | $FC000..$FFFFF, R/W
<silicon> 1| $00000..$7BFFF | $7C000..$FBFFF | $FC000..$FFFFF, Read

THE COG -to- HUB RAM INTERFACE

Hub RAM is comprised of 32-bit-wide single-port RAMs with byte-level write controls. For each cog, there is one of these RAMSs, but it is
multiplexed among all cogs. Let's call these separate RAMs "slices". Each RAM slice holds every single/2nd/4th/8th/16th (depending on

number of cogs) set of 4 bytes in the composite hub RAM. At every clock, each cog can access the "next" RAM slice, allowing for

continuously-ascending bidirectional streaming of 32 bits per clock between the composite hub RAM and each cog.
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Hub RAM Interface

Every cog can read/write 32 bits per clock

When a cog wants to read or write the hub RAM, it must wait up to #cogs-1 clocks to access the initial RAM slice of interest. Once that
occurs, subsequent slices can be accessed on every clock, thereafter, for continuous reading or writing of 32-bit longs.

To smooth out data flow for less than 32-bits-per-clock between hub RAM and the cog, each cog has a hub FIFO interface which can
be set for hub-RAM-read or hub-RAM-write operation. This FIFO interface allows hub RAM to be either sequentially read or
sequentially written in any combination of bytes, words, or longs, at any rate, up to one long per clock. No matter the transfer frequency
or the word size, the FIFO will ensure that the cog's reads or writes are all properly conducted from or to the composite hub RAM.

Cogs can access hub RAM either via the sequential FIFO interface, or by waiting for RAM slices of interest, while yielding to the FIFO.
If the FIFO is not busy, which is soon the case if data is not being read from or written to it, random accesses will have full opportunity
to access the composite hub RAM.
There are three ways the hub FIFO interface can be used, and it can only be used for one of these at a time:

- Hub execution (when the PC is $00400..$FFFFF)

- Streamer usage (background transfers from hub RAM — pins/DACs, or from pins/ADCs — hub RAM)
- Software usage (fast sequential-reading or sequential-writing instructions)
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For streamer or software usage, FIFO operation must be established by a RDFAST or WRFAST instruction executed from cog RAM
(register/lookup, $00000..$003FF). After that, and while remaining in cog RAM, the streamer can be enabled to begin moving data in
the background, or the two-clock RFxxxx/WFxxxx instructions can be used to manually read and write sequential data.

The FIFO contains (cogs+11) stages. When in read mode, the FIFO loads continuously whenever less than (cogs+7) stages are filled,
after which point, up to 5 more longs may stream in, potentially filling all (cogs+11) stages. These metrics ensure that the FIFO never
underflows, under all potential reading scenarios.

FAST SEQUENTIAL FIFO INTERFACE

To configure the hub FIFO interface for streamer or software usage, use the RDFAST and WRFAST instructions. These instructions
establish read or write operation, the hub start address, and the block count. The block count determines how many 64-byte blocks will
be read or written before wrapping to the original start address and reloading the original block count. If you intend to use wrapping,
your hub start address must be long-aligned (address ends in %00), since there won't be an extra cycle in which to read/write a portion
of a long in an extra hub RAM slice. In cases where you don't want wrapping, just use 0 for the block count, so that wrapping won't
occur until the entire 1MB hub map is sequenced through.

The FBLOCK instruction provides a way to set a new start address and a new 64-byte block count for when the current blocks are fully
read or written and the FIFO interface would have otherwise wrapped back to the prior start address and reloaded the prior block count.
FBLOCK can be executed after RDFAST, WRFAST, or a FIFO block wrap event. Coordinating FBLOCK instructions with streamer-FIFO
activity enables dynamic and seamless streaming between hub RAM and pins/DACs.

Here are the RDFAST, WRFAST, and FBLOCK instructions:

EEEE 1100011 1LI DDDDDDDDD SSSSSSSSS RDFAST D/#,S/#
EEEE 1100100 OLI DDDDDDDDD SSSSSSSSS WRFAST D/#,S/#
EEEE 1100100 1LI DDDDDDDDD SSSSSSSSS FBLOCK D/#,S/#

For these instructions, the D/# operand provides the block count, while the S/# operand provides the hub RAM start address:

D/# %xxxx xxxx_ xxxx xxxx_xx00_0000_0000_0000 block count for limited r/w

FTXXXX XXXX XXXX XxxXx xxBB BBBB BBEB BBEB

block count for wrapping

SH  %$xxxx_xxxx_ xxxx AAAA AAAA AAAA AAAA AAAA
FXXXX_XXXX xxxx AAAA AAAA AAAA AAAA AAOO

start address for limited r/w

start address for wrapping (long-aligned)

RDFAST and WRFAST each have two modes of operation.
If D[31] = 0, RDFAST/WRFAST will wait for any previous WRFAST to finish and then reconfigure the hub FIFO interface for
reading or writing. In the case of RDFAST, it will additionally wait until the FIFO has begun receiving hub data, so that it can

start being used in the next instruction.

If D[31] = 1, RDFAST/WRFAST will not wait for FIFO reconfiguration, taking only two clocks. In this case, your code must allow
a sufficient number of clocks before any attempt is made to read or write FIFO data.

FBLOCK doesn't need to wait for anything, so it always takes two clocks.

Once RDFAST has been used to configure the hub FIFO interface for reading, you can enable the streamer for any hub-reading modes
or use the following instructions to manually read sequential data from the hub:

EEEE 1101011 CZ0 DDDDDDDDD 000010000 RFBYTE D {WC/Wz/WCzZ}
EEEE 1101011 Cz0 DDDDDDDDD 000010001 RFWORD D {WC/Wz/WCZ}
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EEEE 1101011 CZ0O DDDDDDDDD 000010010 RFLONG D {WC/Wz/WCz}
EEEE 1101011 Cz0 DDDDDDDDD 000010011 RFVAR D {WC/Wz/WCz}
EEEE 1101011 CZ0 DDDDDDDDD 000010100 RFVARS D {WC/Wz/WCz}

These instructions all take 2 clocks and read bytes, words, longs, and variable-length data from the hub into D, via the hub FIFO
interface.

If WC is expressed, the MSB of the byte, word, long, or variable-length data will be written to C.

If WZ is expressed, Z will be set if the data read from the hub equals zero, otherwise Z will be cleared.

RFVAR and RFVARS read 1..4 bytes of data, depending upon the MSB of the first byte, and then subsequent bytes, waiting in the
FIFO. While RFVAR returns zero-extended data, RFVARS returns sign-extended data. This mechanism is intended to provide a fast
and memory-efficient means for bytecode interpreters to read numerical constants and offset addresses that were assembled at

compile-time for efficient reading during run-time.

This table shows the relationship between upcoming bytes in the FIFO and what RFVAR and RFVARS will return:

FIFO FIFO FIFO FIFO RFVAR Returns
1st Byte 2nd Byte 3rd Byte 4th Byte RFVARS Returns
%$0SAAAAAA - - - %$00000000_00000000_00000000_OSAAAAAA

%SSSSSSSS_SSSSSSSS_SSSSSSSS_SSAAAAAA

%$1AAAAAAA %$0SBBBBBB - - %$00000000_00000000_O0O0SBBBBB_BAAAAAAA
%SSSSSSSS_SSSSSSSS_SSSBBBBB_BAAAAAAA

$1AAAAAAA %$1BBBBBBB %0scccecce - %$00000000_000SCCCC_CCBBBBBB_BAAAAAAA
%SSSSSSSS_SSSSCCCC_CCBBBBBB_BAAAAAAA

%$1AAAAAAA %$1BBBBBBB %lcccececce %$SDDDDDDD %$000SDDDD_DDDCCCCC_CCBBBBBB_BAAAAAAA
%$SSSSDDDD_DDDCCCCC_CCBBBBBB_BAAAAAAA

Once WRFAST has been used to configure the hub FIFO interface for writing, you can enable the streamer for any hub-writing modes
or use the following instructions to manually write sequential data:

EEEE 1101011 OOL DDDDDDDDD 000010101 WFBYTE D/#
EEEE 1101011 0OL DDDDDDDDD 000010110 WFWORD D/#
EEEE 1101011 OOL DDDDDDDDD 000010111 WFLONG D/#

These instructions all take 2 clocks and write byte, word, or long data in D into the hub via the hub FIFO interface.

If a cog has been writing to the hub via WRFAST, and it wants to immediately COGSTORP itself, a '"WAITX #20' should be executed first,
in order to allow time for any lingering FIFO data to be written to the hub.

RANDOM ACCESS INTERFACE

Here are the random-access hub RAM read instructions:

EEEE 1010110 CZI DDDDDDDDD SSSSSSSSS RDBYTE D,S/#/PTRx {WC/WZ/WCZ}
EEEE 1010111 CZI DDDDDDDDD SSSSSSSSS RDWORD D,S/#/PTRx {WC/WZ/WCZ}
EEEE 1011000 CZI DDDDDDDDD SSSSSSSSS RDLONG D,S/#/PTRx {WC/WZ/WCZ}
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For these instructions, the D operand is the register which will receive the data read from the hub.

The S/#/PTRx operand supplies the hub address to read from.

If WC is expressed, the MSB of the byte, word, or long read from the hub will be written to C.

If WZ is expressed, Z will be set if the data read from the hub equaled zero, otherwise Z will be cleared.

Here are the random-access hub RAM write instructions:

EEEE 1100010 OLI DDDDDDDDD SSSSSSSSS WRBYTE D/#,S/#/PTRx
EEEE 1100010 1LI DDDDDDDDD SSSSSSSSS WRWORD D/#,S/#/PTRx
EEEE 1100011 OLI DDDDDDDDD SSSSSSSSS WRLONG D/#,S/#/PTRx
EEEE 1010011 11T DDDDDDDDD SSSSSSSSS WMLONG D,S/#/PTRx

For these instructions, the D/# operand supplies the data to be written to the hub.

The S/#/PTRx operand supplies the hub address to write to.

WMLONG writes longs, like WRLONG; however, it does not write any D byte fields whose data are $00. This is intended for things like

sprite overlays, where $00 byte data represent transparent pixels.

In the case of the 'S/#/PTRx' operand used by RDBYTE, RDWORD, RDLONG, WRBYTE, WRWORD, WRLONG, and WMLONG, there

are five ways to express a hub address:

$000..$1FF - register whose 20 LSBs will be used as the hub address
#$00. .$FF - 8-bit immediate hub address

##500000. . SFFFFF - 20-bit immediate hub address (invokes AUGS)

PTRx {[index5]} - PTR expression with a 5-bit scaled index

PTRx {[##index20]} - PTR expression with a 20-bit unscaled index (invokes AUGS)

If AUGS is used to augment the #S value to 32 bits, the #S value will be interpreted differently:

#%0AAAAAAAA - No AUGS, 8-bit immediate address

#%1SUPNNNNN - No AUGS, PTR expression with a 5-bit scaled index
##%000000000000AAAAAAAAAAA AAAAAAAAA - AUGS, 20-bit immediate address

##%000000001 SUPNNNNNNNNNNN _NNNNNNNNN - AUGS, PTR expression with a 20-bit unscaled index

PTRx expressions without AUGS:

INDEX6 = -32..+31 for non-updating offsets
INDEX = 1..16 for ++'s and --'s
SCALE = 1 for RDBYTE/WRBYTE, 2 for RDWORD/WRWORD, 4 for RDLONG/WRLONG/WMLONG

S = 0 for PTRA, 1 for PTRB
U = 0 to keep PTRx same, 1 to update PTRx (PTRx += INDEX*SCALE)
P = 0 to use PTRx + INDEX*SCALE, 1 to use PTRx (post-modify)

IIIIII = INDEX6, uses %100000..%111111 for -32..-1 and %000000..%011111 for 0..31

NNNNN = INDEX, uses %00001..%01111 for 1..15 and %00000 for 16

nnnnn = -INDEX, uses %10000..%11111 for -16..-1
1SUPNNNNN PTR expression
100000000 PTRA 'use PTRA
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110000000 PTRB 'use

100IIIIII PTRA[INDEX6] 'use
110IIIIII PTRB[INDEX6] 'use
101100001 PTRA++ 'use
111100001 PTRB++ 'use
101111111 PTRA-- 'use
111111111 PTRB-- 'use
101000001 ++PTRA 'use
111000001 ++PTRB 'use
101011111 --PTRA 'use
111011111 --PTRB 'use
1011NNNNN PTRA++ [ INDEX] 'use
1111NNNNN PTRB++ [ INDEX] 'use
101lnnnnn PTRA-- [ INDEX] 'use
111lnnnnn PTRB-- [ INDEX] 'use
101 ONNNNN ++PTRA [ INDEX] 'use
111 ONNNNN ++PTRB [ INDEX] 'use
1010nnnnn -—-PTRA [ INDEX] 'use
1110nnnnn --PTRB [ INDEX] 'use
Examples:

Read byte at PTRA into D

1111 1010110 001 DDDDDDDDD 100000000
Write lower word in D to PTRB - 7*2

1111 1100010 101 DDDDDDDDD 110111001
Write long value 10 at PTRB, PTRB += 1*4

1111 1100011 011 000001010 111100001
Read word at PTRA into D, PTRA -= 1*2

1111 1010111 001 DDDDDDDDD 101111111
Write lower byte in D at PTRA - 1*1, PTRA -= 1*1

1111 1100010 001 DDDDDDDDD 101011111
Read long at PTRB + 10*4 into D, PTRB += 10*4

1111 1011000 001 DDDDDDDDD 111001010
Write lower byte in D to PTRA, PTRA += 15*1

1111 1100010 001 DDDDDDDDD 101101111
Read word at PTRB into D, PTRB += 16*2

1111 1010111 001 DDDDDDDDD 111100000

PTRB

PTRA + INDEX6*SCALE
PTRB + INDEX6*SCALE

PTRA, PTRA
PTRB, PTRB
PTRA, PTRA
PTRB, PTRB
PTRA + SCALE, PTRA
PTRB + SCALE, PTRB
PTRA - SCALE, PTRA
PTRB - SCALE, PTRB
PTRA, PTRA
PTRB, PTRB
PTRA, PTRA
PTRB, PTRB

PTRA + INDEX*SCALE, PTRA
PTRB + INDEX*SCALE, PTRB
PTRA - INDEX*SCALE, PTRA
PTRB - INDEX*SCALE, PTRB

RDBYTE

WRWORD

WRLONG

RDWORD

WRBYTE

RDLONG

WRBYTE

RDWORD

D,PTRA

D,PTRB[-7]

#10, PTRB++

D,PTRA--

D,--PTRA

D,++PTRB[10]

D,PTRA++[15]

D,PTRB++[16]

SCALE
SCALE
SCALE

= SCALE
= SCALE

SCALE

= SCALE

SCALE

INDEX*SCALE

= INDEX*SCALE
= INDEX*SCALE

INDEX*SCALE

= INDEX*SCALE
= INDEX*SCALE

INDEX*SCALE
INDEX*SCALE
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PTRx expressions with AUGS:

If "##" is used before the index value in a PTRx expression, the assembler will automatically insert an AUGS instruction and assemble
the 20-bit index instruction pair:

RDBYTE D,++PTRB[##$12345]

...becomes. ..
1111 1111000 000 000111000 010010001 AUGS #$00E12345
1111 1010110 001 DDDDDDDDD 101000101 RDBYTE D, #$00E12345 & $1FF

FAST BLOCK MOVES

By preceding RDLONG with either SETQ or SETQ2, multiple hub RAM longs can be read into either cog register RAM or cog lookup
RAM. This transfer happens at the rate of one long per clock, assuming the hub FIFO interface is not accessing the same hub RAM
slice as RDLONG, on the same cycle, in which case the FIFO gets priority access and the block move must wait for the hub RAM slice
to come around again. If WC/WZ/WCZ are used with RDLONG, the flags will be set according to the last long read in the sequence.
Use SETQ+RDLONG to read multiple hub longs into cog register RAM:

SETQ #x 'x = number of longs, minus 1, to read
RDLONG first reg,S/#/PTRx 'read x+1 longs starting at first reg

Use SETQ2+RDLONG to read multiple hub longs into cog lookup RAM:

SETQ2 #x 'Xx = number of longs, minus 1, to read
RDLONG first_ lut,S/#/PTRx 'read x+1 longs starting at first_ lut

Similarly, WRLONG and WMLONG can be preceded by either SETQ or SETQ2 to write either multiple register RAM longs or lookup
RAM longs into hub RAM. When WRLONG/WMLONG's D field is an immediate, it instead writes that immediate value to RAM,
functioning as a memory filler.

Use SETQ+WRLONG/WMLONG to write multiple register RAM longs into hub RAM:

SETQ #x 'Xx = number of longs, minus 1, to write
WRLONG first reg,S/#/PTRx 'write x+1 longs starting at first reg

RAM registers $1F8..$1FF are special-purpose registers which cannot be transferred to hub RAM via SETQ+WRLONG/WMLONG.
Use SETQ2+WRLONG/WMLONG to write multiple lookup RAM longs into hub RAM:

SETQ2 #x 'Xx = number of longs, minus 1, to write
WRLONG first lut,S/#/PTRx 'write x+1 longs starting at first_lut

For fast block moves, PTRx expressions cannot have arbitrary index values, since the index will be overridden with the number of
longs, with bit 4 of the encoded index value serving as the ++/-- indicator. In plain PTRA/PTRB cases, the index will be overridden with

Zero:

SETQ #x 'x = number of longs, minus 1
RDLONG first_reg,PTRA 'read x+1 longs from PTRA

64



SETQ #x 'x = number of longs, minus 1

RDLONG first reg, PTRA++ 'read x+1 longs from PTRA, PTRA += (x+1)*4

SETQ #x 'x = number of longs, minus 1

RDLONG first reg,PTRA-- 'read x+1 longs from PTRA, PTRA -= (x+1)*4

SETQ #x 'Xx = number of longs, minus 1

RDLONG first reg,++PTRA 'read x+1 longs from PTRA+ (x+1)*4, PTRA += (x+1)*4
SETQ #x 'x = number of longs, minus 1

RDLONG first reg,--PTRA 'read x+1 longs from PTRA- (x+1)*4, PTRA -= (x+1)*4

Because these fast block moves yield to the hub FIFO interface, they can be used during hub execution.

CORDIC Solver

In the hub, there is a 54-stage pipelined CORDIC solver that can compute the following functions for all cogs:

32 x 32 unsigned multiply with 64-bit product

64 / 32 unsigned divide with 32-bit quotient and 32-bit remainder

Square root of 64-bit unsigned value with 32-bit result

32-bit signed (X,Y) rotation around (0,0) by a 32-bit angle with 32-bit signed (X,Y) results
32-bit signed (X,Y) to 32-bit (length,angle) - cartesian to polar

32-bit (length,angle) to 32-bit signed (X,Y) - polar to cartesian

32-bit unsigned integer to 5:27-bit logarithm

5:27-bit logarithm to 32-bit unsigned integer

When a cog issues a CORDIC instruction, it must wait for its hub slot, which is zero to (cogs-1) clocks away, in order to hand off the
command to the CORDIC solver. Fifty-five clocks later, results will be available via the GETQX and GETQY instructions, which will wait
for the results, in case they haven't arrived yet.

MULTIPLY

To multiply two unsigned 32-bit numbers together, use the QMUL instruction (CORDIC instructions wait for the hub slot):
QMUL D/#,s/# - Multiply D by S
To get the results (these instructions wait for the CORDIC results):

GETQX lower_long
GETQY upper_long

DIVIDE

For convenience, two different divide instructions exist, each with an optional SETQ prefix instruction which establishes a non-0 value
for one 32-bit part of the 64-bit numerator:

ODIV  D/#,S,# - Divide {$00000000:D} by S
...0r...
SETQ o/# - Set top part of numerator
QDIV D/#,S,# - Divide {Q:D} by S
...0r...
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QFRAC D/#,S,# - Divide {D:$00000000} by S
...Or...

SETQ Q/# - Set bottom part of numerator

QFRAC D/#,S,# - Divide {D:Q} by S

To get the results:

GETQX quotient
GETQY remainder

SQUARE ROOT
To get the square root of a 64-bit integer:

QSQRT D/#,S,# - Compute square root of {S:D}
To get the result:

GETQX root

(X,Y) ROTATION

The rotation function inputs three terms: 32-bit signed X and Y values, and an unsigned 32-bit angle, where $00000000..$FFFFFFFF =

0..359.9999999 degrees. The Y term, if non-zero, is supplied via an optional SETQ prefix instruction:

SETQ Q/# - Set Y
OROTATE D/#,S,# - Rotate (D,Q) by S
...Or...
QROTATE D/#,S,# - Rotate (D,$00000000) by S

Notice that in the second example, a polar-to-cartesian conversion is taking place.
To get the results:

GETQX X
GETQY Y

(X,Y) VECTORING

The vectoring function converts (X,Y) cartesian coordinates into (length,angle) polar coordinates:
QVECTOR D/#,S,# - (X=D,Y=S) cartesian into (length,angle) polar
To get the results:

GETQX length
GETQY angle
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LOGARITHM

To convert an unsigned 32-bit integer into a 5:27-bit logarithm, where the top 5 bits hold the whole part of the power-of-2 exponent and
the bottom 27 bits hold the fractional part:

QLOG D/# - Compute log base 2 of D
To get the result:

GETQX logarithm

EXPONENT

To convert a 5:27-bit logarithm into a 32-bit unsigned integer:
QEXP D/# - Compute 2 to the power of D
To get the result:

GETQX integer

OVERLAPPING CORDIC COMMANDS

Because each cog's hub slot comes around every 1/2/4/8/16 clocks (8 clocks for the current P2X8C4M64P, since it has 8 cogs) and the
pipeline is 54 clocks long, it is possible to overlap CORDIC commands, where several commands are initially given to the CORDIC
solver, and then results are read and another command is given, indefinitely, until, at the end, the trailing results are read. You must not
have interrupts enabled during such a juggle, or enough clocks could be stolen by the interrupt service routine that one or more of your
results could be overwritten before you can read them. If you ever attempt to read results when none are available and none are in
progress, GETQX/GETQY will only take two clocks and the QMT (CORDIC empty) event flag will be set.

CORDIC overlapping command demo

- outputs 32 sine waves of increasing frequency on P@..P31 using 990-ohm DACs
' - uses SETQ+QROTATE+GETQY+GETQX, the most input/output-intensive CORDIC command

con _clkfreq = 256_000 000 'clock frequency

clks = 3*256 'clocks per frame, 3 complete DAC cycles

f = 100 frac (_clkfreq / clks) '100 Hz, gets multiplied by 100, 101, 102..

dacmode = %10100_00000000_01_00011_0 '990-ohm DAC + pwm-dithered 16-bit DAC mode
dat org

wrpin  ##dacmode,pins32 'set 16-bit pwm-dither DAC mode for PO..P31

wxpin  ##clks,pins32 'set period for three pwm-dithered DAC cycles

dirh pins32 ‘enable smart pins
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loop

setq
qrotate

setq
grotate

setq
grotate

setq
grotate

setq
grotate

setq
qrotate

setq
grotate

setq
grotate

getqy
getqgx

setq
grotate

getaqy
getqgx

setq
grotate

getqy
getqgx

setq
qrotate

getay
getgx

setq
grotate

getqy

y+00
X+00, a+00

y+01
x+01,a+01

y+02
X+02,a+02

y+03
X+03,a+03

y+04
X+04,a+04

y+05
X+05, a+05

y+06
X+06, a+06

y+07
X+07,a+07

y+00
X+00

y+08
X+08,a+08

y+01
X+01

y+09
X+09, a+09

y+02
X+02

y+10
X+10,a+10

y+03
X+03

y+11
x+11,a+11

y+04

'clk
'w=wait

'2
'Pw+2

'2
'4w+2

'2
"4w+2

'2
"4w+2

‘2
'4w+2

'2
"4w+2

'2
"Aw+2

'2
"Aw+2

Rotate 32 sets of (x,y) coordinates at different rates
by overlapping CORDIC commands and result fetches

sum

I=cordic tick

10!

12
18!

20
26!

28
34!

36
42!

44
50!

52
58!

60
62

64
66!

68
70

72
74!

76
78

80
82!

84
86

88
920!

92

begin first 8 commands

result 00 is ready at 54!!!

get result 00, no waiting!!!

begin overlapping commands and results
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getqgx

setq
grotate

getqy
getqgx

setq
grotate

getqy
getqgx

setq
qrotate

getaqy
getqgx

setq
grotate

getay
getqgx

setq
grotate

getqy
getqgx

setq
grotate

getaqy
getqgx

setq
grotate

getaqy
getqgx

setq
grotate

getay
getqgx

setq
grotate

getqy
getqgx

X+04

y+12
X+12,a+12

y+05
X+05

y+13
X+13,a+13

y+06
X+06

y+14
x+14,a+14

y+07
X+07

y+15
X+15,a+15

y+08
X+08

y+16
x+16,a+16

y+09
X+09

y+17
X+17,a+17

y+10
x+10

y+18
Xx+18,a+18

y+11
x+11

y+19
X+19,a+19

y+12
X+12

y+20
X+20,a+20

y+13
X+13

94

96
98!

100
102

104
106!

108
110

112
114!

116
118

120
122!

124
126

128
130!

132
134

136
138!

140
142

144
146!

148
150

152
154!

156
158

160
162!

164
166
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setq
grotate

getaqy
getqgx

setq
grotate

getqy
getqgx

setq
qrotate

getay
getgx

setq
grotate

getqy
getqgx

setq
grotate

getaqy
getqgx

setq
grotate

getqy
getqgx

setq
qrotate

getay
getgx

setq
grotate

getqy
getqgx

setq
grotate

getaqy
getqgx

y+21
x+21,a+21

y+14
X+14

y+22
X+22,a+22

y+15
X+15

y+23
X+23,a+23

y+16
X+16

y+24
X+24,a+24

y+17
X+17

y+25
x+25,a+25

y+18
X+18

y+26
X+26,a+26

y+19
X+19

y+27
X+27,a+27

y+20
X+20

y+28
X+28,a+28

y+21
X+21

y+29
X+29,a+29

y+22
X+22

168
170!

172
174

176
178!

180
182

184
186!

188
190

192
194!

196
198

200
202!

204
206

208
210!

212
214

216
218!

220
222

224
226!

228
230

232
234!

236
238
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setq y+30 '2 240

grotate x+30,a+30 ‘2 242!
getqy  y+23 ‘2 244
getgx  x+23 ‘2 246
setq y+31 '2 248
grotate x+31,a+31 '2 250!
getqy y+24 '2 252 get 8 trailing results
getgx  x+24 ‘2 254
getqy  y+25 "4w+2 260
getgx  x+25 '2 262
getqy y+26 "4w+2 268
getgx  x+26 '2 270
getqy  y+27 "4aw+2 276
getgx  x+27 '2 278
getqy y+28 '4w+2 284
getgx  x+28 '2 286
getqy y+29 "Aw+2 292
getgx  x+29 '2 294
getqy y+30 "4w+2 300
getgx  x+30 ‘2 302
getqy y+31 '4w+2 308
getgx  x+31 '2 310

Wait for next DAC frame
.wait testp #0 wc 'check ina[@]
if_nc jmp #.wait

' Output y[@@..31] (sines) to PO..P31 DACs

rep @.r,#32 'ready to update 32 DACs
alts i,#y ‘get y[00..31] into next s and inc i
getword j,0-0,#1 'get upper word of y
bitnot j,#15 'convert signed word to unsigned word for DAC output
wypin j,1i 'update DAC output value
incmod 1i,#31 'inc index, wrap to ©
.r
drvnot #32 ‘toggle P32 on each iteration
jmp #loop "loop for another sample set

' Data




pins32 long 0 addpins 31 'pin range for PO..P31

i long 0 "index
j long 0 'misc
long $7F000000[32] 'initial (x,y) coordinates

long  $00000000[32]

a long 100*f,101*f,102*f,103*f,104*f,105*f,106*f,107*f 'ascending frequencies
long 108*F,109%f,110*f,111*F, 112*f,113*F,114*f, 115*f
long 116*F,117*F,118*F,119%F, 120%F,121*F, 122*F, 123*f
long 124*f,125*%F,126*f,127*f,128*f,129*f,130*f,131*f

LOCKS

The hub contains a pool of 16 semaphore bits, called locks. Locks can be used by cogs to coordinate exclusive access of a shared
resource. In order to use a lock, one cog must first allocate a lock with LOCKNEW. Once allocated, cooperative cogs use LOCKTRY
and LOCKREL to respectively take or release the allocated lock. When the lock is no longer needed, it may be returned to the
unallocated lock pool by executing LOCKRET.

The LOCK instructions are:
LOCKNEW D {WC}
LOCKRET {#}D
LOCKTRY {#}D {WC}
LOCKREL {#}D {WC}

What a lock represents is completely up to the application using it. locks are just a means of allowing one cog at a time the exclusive
status of 'owner'. All participant cogs must agree on a lock's number and its purpose for a lock to be useful.

Allocating Locks

LOCKNEW is used to allocate a lock from the hub lock pool. If an unallocated lock is available, that lock's number will be stored in the
D register. If WC is set on the instruction, the C flag will indicate whether a lock was allocated. Zero (0) indicates success, while one
(1) indicates that all locks are already allocated. A cog may allocate more than one lock. Once a lock has been allocated, the lock
number may be shared with other cogs so that they can use LOCKTRY/LOCKREL.

LOCKRET is used to refurn an allocated lock to the lock pool. Any cog can return an allocated lock, even if it wasn't the cog that
allocated it with LOCKNEW.

Using Locks

A cog may attempt to take an allocated lock by executing LOCKTRY with the lock number. If WC is used with the instruction, the C flag
will indicate afterwards whether the lock was successfully taken. Zero (0) indicates that the lock was not taken because either another
cog is holding it or the lock is not allocated, while one (1) indicates that the lock was successfully taken (or is now "held" by this cog).
While the lock is held, no other cog can take the lock until the cog that's holding the lock either executes LOCKREL with the lock
number or it is stopped via COGSTOP or restarted via COGINIT.

Because lock arbitration is performed by the hub in a round-robin fashion, any cog waiting in a loop to capture a lock will get its fair turn:
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'Keep trying to capture lock until successful

.try

When a cog is done with a held lock, it must execute LOCKREL to release it for other cogs to take. Only the cog that has taken the

IF_NC

lock can release it.

LOCKTRY write_lock WC
JMP #.try

NOTE: A lock will also be implicitly released if the cog that's holding the lock is stopped (COGSTOP) or restarted (COGINIT),
or if LOCKRET is executed for that lock.

LOCKREL can also be used to query the current lock status. When LOCKREL is executed with WC, the C flag will indicate whether the

lock is currently taken. Additionally, if the D field references a register (not an immediate value), the register will be written with the cog

ID of the current owner (if held) or last owner (if released). If the cog executing LOCKREL is also the cog that is holding the lock, the

normal LOCKREL behavior will still be performed (i.e. the lock will be released).

SMART PINS

Each 1/0O pin has a 'smart pin' circuit which, when enabled, performs some autonomous function on the pin. Smart pins free the cogs

from needing to micro-manage many I/O operations by providing high-bandwidth concurrent hardware functions which cogs could not

perform as well on their own by manipulating I/0 pins via instructions.

Normally, an I/O pin's output enable is controlled by its DIR bit and its output state is controlled by its OUT bit, while the IN bit returns
the pin's read state. In smart pin modes, the DIR bit is used as an active-low reset signal to the smart pin circuitry, while the output
enable state is controlled by a configuration bit. In some modes, the smart pin takes over driving the output state, in which case the
OUT bit gets ignored. The IN bit serves as a flag to indicate to the cog(s) that the smart pin has completed some function or an event

has occurred, and acknowledgment is perhaps needed.

Smart pins have four 32-bit registers inside of them:

mode

X
Y
z

- smart pin mode, as well as low-level /0 pin mode (write-only)

- mode-specific parameter (write-only)

- mode-specific parameter (write-only)

- mode-specific result (read-only)

These four registers are written and read via the following 2-clock instructions, in which S/# is used to select the pin number (0..63) and
D/# is the 32-bit data conduit:

WRPIN
WXPIN
WYPIN
RDPIN
RQPIN
AKPIN

Each cog has a 34-bit bus to each smart pin for write data and acknowledgment signaling. Each smart pin OR's all incoming 34-bit

buses from the cogs in the same way DIR and OUT bits are OR'd before going to the pins. Therefore, if you intend to have multiple

D/#,s/#
D/#,s/#
D/#,s/#
D,S/# {WC}
D,S/# {WC}
S/#

Set
Set
Set
Get
Get

smart pin
smart pin
smart pin
smart pin

smart pin

S/#
S/#
S/#
S/#
S/#

mode to D/#, ack pin

parameter X to D/#, ack pin

parameter Y to D/#, ack pin

result Z into D, flag into C, ack pin
result Z into D, flag into C, don't ack pin

Acknowledge pin S/#
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cogs execute WRPIN / WXPIN / WYPIN / RDPIN / AKPIN instructions on the same smart pin, you must be sure that they do so at
different times, in order to avoid clobbering each other's bus data. Any number of cogs can read a smart pin simultaneously, without bus
conflict, though, by using RQPIN (‘read quiet'), since it does not utilize the 34-bit cog-to-smart-pin bus for acknowledgement signaling,
like RDPIN does.

Each smart pin has an outgoing 33-bit bus which conveys its Z result and a special flag. RDPIN and RQPIN are used to multiplex and
read these buses, so that a pin's Z result is read into D and its special flag can be read into C. C will be either a mode-related flag or the
MSB of the Z result.

For the WRPIN instruction, which establishes both the low-level and smart-pin configuration for each 1/O pin, the D operand is

composed as:

D/# = %AAAA BBBB FFF_MMMMMMMMMMMMM TT SSSSS_0

$AAAA: 'A' input selector
Oxxx = true (default)
lxxx = inverted
x000 = this pin's read state (default)
x001 = relative +1 pin's read state
x010 = relative +2 pin's read state
x011 = relative +3 pin's read state
x100 = this pin's OUT bit from cogs
x101 = relative -3 pin's read state
x110 = relative -2 pin's read state

x111 = relative -1 pin's read state

$BBBB: 'B' input selector
Oxxx = true (default)
lxxx = inverted
x000 = this pin's read state (default)
x001 = relative +1 pin's read state
x010 = relative +2 pin's read state
x011 = relative +3 pin's read state
x100 = this pin's OUT bit from cogs
x101 = relative -3 pin's read state
x110 = relative -2 pin's read state

x111 = relative -1 pin's read state

$FFF: 'A' and 'B' input logic/filtering (after 'A' and 'B' input selectors)
000 = A, B (default)
001 = A AND B, B
010 = A OR B, B
011 = A XOR B, B
100 = A, B, both filtered using global filt0 settings

101 = A, B, both filtered using global filtl settings
110 = A, B, both filtered using global filt2 settings
111 = A, B, both filtered using global filt3 settings
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The resultant 'A' will drive the IN signal in non-smart-pin modes.

%M. .M: 1low-level pin control

In the Spin2 documentation, there are many predefined labels documented, which cover these pin

configurations, as well as the smart pin modes.

WRPIN D[20:8] Configuration Internal Configuration
M[12:0] Legend Input Pin Output CIOHHHLLL | OE DAC | ADC |ADC Mode | Compare
0000 _CIOHHHLLL Pin Logic ouT CIOHHHLLL | DIR | 0 0 0
0001 CIOHHHLLL c | mv/our Pin Logic Input CIOHHHLLL | DIR | O 0 0
0010 CIOHHHLLL 3 iiZZ@d Adj Logic Input CIOHHHLLL | DIR | 0 0 0
0011 CIOHHHLLL Pin Schmitt ouT CIOHHHLLL | DIR | 0 0 0
0100_CIOHHHLLL | .4 Pin Schmitt Input CIOHHHLLL | DIR | 0 o 0
0101 CIOHHHLLL 0[Tree | Adj Schmitt Input CIOHHHLLL | DIR | 0 0 0
0110 CIOHHHLLL | ©I"* Pin > Adj ouT CIOHHHLLL | DIR | 0 0 Pin > Adj
0111 CIOHHHLLL Pin > Adj Input CIOHHHLLL | DIR | 0 0 Pin > Adj
O | output

10000070HHHLLL 0 | True ADC, GIO 1x ouT 100HHHLLL | DIR | O 1 000 0
100001 OHHHLLL | !"* ADC, VIO 1x ouT 100HHHLLL | DIR | O 1 001 0
10001070HHHLLL ADC, float ouT 100HHHLLL | DIR | O 1 010 0
100011 OHHHLLL HEE | e ADC, Pin 1x ouT 100HHHLLL | DIR | O 1 011 0
100100 OHHHLLL 000 | Fast ADC, Pin 3.16x ouUT 100HHHLLL | DIR | 0 1 100 0
100101 OHHHLLL | oor [1:%%® | Apc, Pin 10x ouT 100HHHLLL | DIR [0 |1 |101 0
100110 OHHHLLL 011 | 150k ADC, Pin 31.6x ouT 100HHHLLL | DIR | 0 1 110 0
100111 OHHHLLL | 100 i?&m ADC, Pin 100x oUT 100HHHLLL | DIR | 0 1 111 0
10100_pDDDDDDD | 112 [ %A | Ape, Pin 1x 5 |DAC 990, 3.3V 10xxxxxxX | 0 DIR | OUT | 011 0
10101_DDDDDDDD ADC, Pin 1x g |[DAC 600Q, 2.0V 10xxXXXXX | 0 DIR | OUT | 011 0
10110_DDPDDDDDD | o - ADC, Pin 1x T DAC 123.75Q, 3.3V LOXXXXXXX | 0 DIR | OUT | 011 0
10111_DDDDDDDD DAC Level ADC, Pin 1x = DAC 75Q, 2.0V 10xxxxxxx | 0 DIR | OUT | 011 0
11007CDDDDDDDD Pin > D ouT, 1.5kQ C00001001 [ DIR | O 0 Pin > D
1101_cDDDDDDDD | APt Pin > D IInput, 1.5kQ €01001001 | DIR | 0 0 Pin > D
1110_CDDDDDDDD 1| prive Adj > D Input, 1.5kQ C00001001 | DIR | 0 0 Adj > D
1111 CDDDDDDDD Adj > D I Tnput, 1.5kQ €01001001 | DIR | O 0 Adj > D
$TT: pin DIR/OUT control (default = %00)

for odd pins, 'OTHER' = even pin's NOT output state (diff source)

for even pins, 'OTHER' = unique pseudo-random bit (noise source)

for all pins, 'SMART' = smart pin output which overrides OUT/OTHER

'DAC_MODE' is enabled when M[12:10] = %101
'BIT DAC' outputs {2{M[7:4]}} for 'high' or {2{M[3:0]}} for 'low' in DAC_MODE

for smart pin mode off (%$SSSSS = %00000) :

DIR enables output

for non-DAC_MODE:

0x = OUT drives output
1x

OTHER drives output

for DAC_MODE:
00 OUT enables ADC, M.[7..0] sets DAC level
01 OUT enables ADC, M.[3..0] selects cog DAC channel
10 OUT drives BIT DAC



11 = OTHER drives BIT_ DAC

for all smart pin modes (%SSSSS > %$00000):
x0 output disabled, regardless of DIR
x1

output enabled, regardless of DIR
for DAC smart pin modes (%$SSSSS = %00001..%00011):
0x = OUT enables ADC in DAC_MODE, M.[7..0] overridden

1x = OTHER enables ADC in DAC_MODE, M.[7..0] overridden

for non-DAC smart pin modes (%SSSSS = %$00100..%11111):

O0x = SMART/OUT drives output or BIT DAC if DAC_MODE
1lx = SMART/OTHER drives output or BIT DAC if DAC_MODE
$SSSSS: 00000 = smart pin off (default)

00001 = long repository (M.[12..10] '= %101)
00010 = long repository (M.[12..10] '= %101)
00011 = long repository (M.[12..10] '= %101)
00001 = DAC noise (M.[12..10] = %101)
00010 = DAC 16-bit dither, noise (M.[12..10] = %101)
00011 = DAC 16-bit dither, PWM (M.[12..10] = %101)

00100* = pulse/cycle output

00101* = transition output

00110* = NCO frequency

00111* = NCO duty

01000* = PWM triangle

01001* = PWM sawtooth

01010* = PWM switch-mode power supply, V and I feedback

01011 = periodic/continuous: A-B quadrature encoder

01100 = periodic/continuous: inc on A-rise & B-high

01101 = periodic/continuous: inc on A-rise & B-high / dec on A-rise & B-low
01110 = periodic/continuous: inc on A-rise {/ dec on B-rise}

01111 = periodic/continuous: inc on A-high {/ dec on B-high}

10000 = time A-states

10001 = time A-highs

10010 = time X A-highs/rises/edges -or- timeout on X A-high/rise/edge
10011 = for X periods, count time

10100 = for X periods, count states

10101 = for periods in X+ clocks, count time

10110 = for periods in X+ clocks, count states

10111 = for periods in X+ clocks, count periods

11000 = ADC sample/filter/capture, internally clocked

11001 = ADC sample/filter/capture, externally clocked

11010 = ADC scope with trigger

11011* = USB host/device (even/odd pin pair = DM/DP)
11100* = sync serial transmit (A-data, B-clock)

11101 = sync serial receive (A-data, B-clock)

11110* = async serial transmit (baudrate)



11111 = async serial receive (baudrate)

* OUT signal overridden

When a mode-related event occurs in a smart pin, it raises its IN signal to alert the cog(s) that new data is ready, new data can be
loaded, or some process has finished. A cog acknowledges a smart pin whenever it does a WRPIN, WXPIN, WYPIN, RDPIN or AKPIN
on it. This causes the smart pin to lower its IN signal so that it can be raised again on the next event. Note that since the RQPIN
instruction (read quiet) does not do an acknowledge, it can be used by any number of cogs, concurrently, to read a pin without bus
conflict.

After WRPIN/WXPIN/WYPIN/RDPIN/AKPIN, it will take two clocks for IN to drop, before it can be polled again:

WRPIN/WXPIN/WYPIN/RDPIN/AKPIN 'acknowledge smart pin, releases IN from high
NOP 'elapse 2 clocks (or more)
TESTP pin WC 'IN can now be polled again

A smart pin should be configured while its DIR bit is low, holding it in reset. During that time, WRPIN/WXPIN/WYPIN can be used to
establish the mode and related parameters. Once configured, DIR can be raised high and the smart pin will begin operating. After that,
depending on the mode, you may feed it new data via WXPIN/WYPIN or retrieve results using RDPIN/RQPIN. These activities are
usually coordinated with the IN signal going high.

Note that while a smart pin is configured, the %TT bits, explained above, will govern the pin's output enable, regardless of the DIR
state.

A smart pin can be reset at any time, without the need to reconfigure it, by clearing and then setting its DIR bit.

To return a pin to normal mode, do a "WRPIN #0,pin".

PIN CONFIGURATION MODES

Each 1/0O pin has 13 configuration bits which determine the operation of its 3.3V circuit. The M.[12..0] bits within the WRPIN instruction's
D.[20..8] operand go directly to these bits. In some smart pin modes, these bits are partially overwritten to set things like DAC values.

Below is a diagram of a single 1/O pin circuit. It is powered from its local 3.3V supply pin. It connects to its own pin, as well as its
odd/even adjacent pin. Pins PO and P1 see each other's pins as adjacent pins, as do P2 and P3, etc.
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Vxxyy

M12 >——M12 vio

M11 >—{M11
M10 >—]{M10
M9 >— Mo
M8 >—{ M8 PIN
M7 >—— M7
M6 >— M6
M5 >— M5 PIN

M4 >——M4 I/O

M3 >——M3

M2 >—— M2 PIN

M1 >——M1

M@ >—— Mo
DIR »>——DIR ADJ]
OUT >»>——0UT
IN <=—— 1IN
ADJACENT
PIN

CLK >—>

GND

N

PO..P63
(64 Instances)

Equivalent Schematics for Each Unique I/0 Pin Configuration
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%0000OMMMMMMMM - Logic

M6
D
CLK >—>

o

o

—>IN
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%00100MMMMMMMM - Logic with Adjacent-Pin Feedback

ADJACENT
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=Ds
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%00101IMMMMMMMM - Logic with Adjacent-Pin Feedback, Clocked
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PIN

oo ) O]
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OE
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%0011O0MMMMMMMM - Schmitt

D_m
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%01000MMMMMMMM - Schmitt with Feedback

o

%01001IMMMMMMMM - Schmitt with Feedback, Clocked

M6
D
CLK »>—p>

—>IN

o
L=

)o—

%01010MMMMMMMM - Schmitt with Adjacent-Pin Feedback

M7
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| :> DIR
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I I ouT
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pi R
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%01011IMMMMMMMM - Schmitt with Adjacent-Pin Feedback, Clocked

M7
>IN
|:> DIR
CLK >——p
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CLK >—p>

o
©

o
©
=]

- ®
g
11 PIN
o e
= =
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%01100MMMMMMMM - Comparator

DIR

V6 OE
w DRIVE o
ot —/ / | adea-doe M7
IIIIII :}:::::>———>IN
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mmmmmm
zzzzzz
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%01101IMMMMMMMM - Comparator, Clocked
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M0 = ==

mmmmmm
zzzzzz

M6 OE
out gEeNds "
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%01110MMMMMMMM - Comparator with Feedback

DIR

M6 OE
m DRIVE our ;
NNNNNN M7
111111 :}::::::}———»IN

T = =

mmmmmm
zzzzzz

ADJACENT
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%01111IMMMMMMMM - Comparator with Feedback, Clocked

DIR

o
=
—

M6i::;>§ :
CLK>——p

OF
n DRIVE our
FELIS 7

+ D Qf—IN
1 1 1 1 l l PIN COMPARE
=E== = = =
ADJACENT
PIN

%10OMMMMMMMMMM - ADC

with Optional Drive

SSsS

ADC

DIR ©10 (Float
@11 [1x
T 1@0 |3.2x
101 |1ex
M6 OE 110 |32x
p o DRIVE our PIN BIT—>1IN 111 [1eex
o ggeNos
CLK>—F> M9 >—]s2 A
L) S v
bimoge w—1se ADC
CLK>—F
%101MMMMMMMMMM - DAC with Optional ADC s oac
009|990 ohm 3.3V
22 DIR 201|600 ohm 2.ev
160(124 ohm 3.3V
T T T 11l 75 ohm 2.ev
N OE
CLK >—P> DAC ouT PIN BIT—>IN
R8833888 ot - N>
LT ADC
pepzroee “t

%11000MMMMMMMM - Level Comparator with 1.5k Output

out b

DIR

1.5k

PIN

+

COMPARE
ouT -

o
>
(@]

M7 >——D7
M6 »>—— D6
M5 >—D5
M4 »—— D4
M3 >——D3
M2 >——D2
M1 >——D1
Mo >—— Do

IN
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%11001IMMMMMMMM - Level Comparator with 1.5k Output, Clocked

DIR

out>—Ip ¢ b

CLK >—p

1.5k

PIN

o
>
(@]

+

COMPARE D QF—1IN
ouT -
CLK >—p>

M7 >——D7
M6 »>——D6
M5 >——D5
M4 >—— D4
M3 >——D3
M2 >——D2

M1>——D1
Mo >—— Do

%11010MMMMMMMM - Level Comparator with Local Feedback

DIR

1.5k

PIN

=
.
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%111MOMMMMMMMM - Level Comparator with Separate Feedback

DIR

i

ADJACENT PIN

PIN

COMPARE

%111IMIMMMMMMMM - Level Comparator with Separate Feedback, Clocked

DIR

i

D Q IN

ADJACENT PIN

COMPARE

SMART PIN MODES

Below is a list of all smart pin modes. These are set by the %SSSSS bits within the D.[5..1] operand of the WRPIN instruction.

%00000 = normal mode

This mode is for normal operation, without any smart pin functionality.

%00001..%00011 and not DAC_MODE = long repository
This mode turns the smart pin into a long repository, where WXPIN writes the long and RDPIN/RQPIN can read the long.

When active (DIR=1), WXPIN updates the long and raises IN.

During reset (DIR=0), WXPIN instructions are ignored and IN is low.



%00001 and DAC_MODE = DAC noise

This mode overrides M.[7..0] to feed the pin's 8-bit DAC pseudo-random data on every clock. M.[12..10] must be set to %101 to
configure the low-level pin for DAC output. Each pin in this mode receives a unique data pattern.

X.[15..0] can be set to a sample period, in clock cycles, in case you want to mark time with IN raising at each period completion. If a
sample period is not wanted, set X.[15..0] to zero (65,536 clocks), in order to maximize the unused sample period, thereby reducing
switching power.

RDPIN/RQPIN can be used to retrieve the 16-bit ADC accumulation from the last sample period.

During reset (DIR=0), IN is low.

%00010 and DAC_MODE = DAC 16-bit with pseudo-random dither

This mode overrides M.[7..0] to feed the pin's 8-bit DAC with pseudo-randomly-dithered data on every clock. M.[12..10] must be set to
%101 to configure the low-level pin for DAC output.

X.[15..0] establishes the sample period in clock cycles.
Y.[15..0] establishes the DAC output value which gets captured at each sample period and used for its duration.

On completion of each sample period, Y.[15..0] is captured for the next output value and IN is raised. Therefore, you would coordinate
updating Y.[15..0] with IN going high.

Pseudo-random dithering does not require any kind of fixed period, as it randomly dithers the 8-bit DAC between adjacent levels, in
order to achieve 16-bit DAC output, averaged over time. So, if you would like to be able to update the output value at any time and have
it take immediate effect, set X.[15..0] to one (IN will stay high).

If OUT is high, the ADC will be enabled and RDPIN/RQPIN can be used to retrieve the 16-bit ADC accumulation from the last sample
period. This can be used to measure loading on the DAC pin.

During reset (DIR=0), IN is low and Y.[15..0] is captured.

%00011 and DAC_MODE = DAC 16-bit with PWM dither

This mode overrides M.[7..0] to feed the pin's 8-bit DAC with PWM-dithered data on every clock. M.[12..10] must be set to %101 to
configure the low-level pin for DAC output.

X.[15..0] establishes the sample period in clock cycles. The sample period must be a multiple of 256 (X.[7..0]=0), so that an integral
number of 256 steps are afforded the PWM, which dithers the DAC between adjacent 8-bit levels.

Y.[15..0] establishes the DAC output value which gets captured at each sample period and used for its duration.

On completion of each sample period, Y.[15..0] is captured for the next output value and IN is raised. Therefore, you would coordinate
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updating Y.[15..0] with IN going high.

PWM dithering will give better dynamic range than pseudo-random dithering, since a maximum of only two transitions occur for every
256 clocks. This means, though, that a frequency of Fclock/256 will be present in the output at -48dB.

If OUT is high, the ADC will be enabled and RDPIN/RQPIN can be used to retrieve the 16-bit ADC accumulation from the last sample
period. This can be used to measure loading on the DAC pin.

During reset (DIR=0), IN is low and Y.[15..0] is captured.

%00100 = pulse/cycle output

This mode overrides OUT to control the pin output state.

X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.

X.[31..16] establishes a value to which the base period counter will be compared to on each clock cycle, as it counts from X.[15..0]
down to 1, before starting over at X.[15..0] if decremented Y > 0. On each clock, if the base period counter > X.[31..16] and Y > O, the
output will be high (else low).

Whenever Y.[31..0] is written with a non-zero value, the pin will begin outputting a high pulse or cycles, starting at the next base period.

After each pulse, Y is decremented by one, until it reaches zero, at which the output will remain low.

Some examples:
If X.[31..16] is set to 0, the output will be high for the duration of Y > 0.
If X.[15..0] is set to 3 and X.[31..16] is set to 2, the output will be 0-0-1 (repeat) for the duration of Y > 0.

IN will be raised and the pin will revert to low output when the pulse or cycles complete, meaning Y has been decremented to zero.

During reset (DIR=0), IN is low, the output is low, and Y is set to zero.

%00101 = transition output

This mode overrides OUT to control the pin output state.

X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units. The base-period counter
begins decrementing and periodically reloading as soon as the smart pin is out of reset. All transition outputs will be synchronized to
this free-running base period.

Whenever Y.[31..0] is written with a non-zero value, the pin will begin toggling for Y transitions at each base period, starting at the next
base period.

IN will be raised when the transitions complete, with the pin remaining in its current output state.

During reset (DIR=0), IN is low, the output is low, and Y is set to zero.
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%00110 = NCO frequency

This mode overrides OUT to control the pin output state.

X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
Upon WXPIN, X.[31..16] is written to Z.[31..16] to allow phase setting, even during reset.

Y.[31..0] will be added into Z.[31..0] at each base period.

The pin output will reflect Z.[31].

IN will be raised whenever Z overflows.

During reset (DIR=0), IN is low, the output is low, and Z[15:0] is set to zero.

%00111 = NCO duty

This mode overrides OUT to control the pin output state.

X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
Upon WXPIN, X.[31..16] is written to Z.[31..16] to allow phase setting.

Y.[31..0] will be added into Z.[31..0] at each base period.

The pin output will reflect Z overflow.

IN will be raised whenever Z overflows.

During reset (DIR=0), IN is low, the output is low, and Z is set to zero.

%01000 = PWM triangle

This mode overrides OUT to control the pin output state.
X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
X.[31..16] establishes a PWM frame period in terms of base periods.

Y.[15..0] establishes the PWM output value which gets captured at each frame start and used for its duration. It should range from zero
to the frame period (value specified in X.[31..16]).

A counter, updating at each base period, counts from the frame period down to one, then from one back up to the frame period. Then,
Y.[15..0] is captured, IN is raised, and the process repeats.
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Note that the overall update time is TWO frame periods times the base period.

At each base period, the captured output value is compared to the counter. If it is equal or greater, a high is output. If it is less, a low is
output. Therefore, a zero will always output a low and the frame period value will always output a high.

During reset (DIR=0), IN is low, the output is low, and Y.[15..0] is captured.

%01001 = PWM sawtooth

This mode overrides OUT to control the pin output state.
X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
X.[31..16] establishes a PWM frame period in terms of base periods.

Y.[15..0] establishes the PWM output value which gets captured at each frame start and used for its duration. It should range from zero
to the frame period.

A counter, updating at each base period, counts from one up to the frame period. Then, Y.[15..0] is captured, IN is raised, and the
process repeats.

At each base period, the captured output value is compared to the counter. If it is equal or greater, a high is output. If it is less, a low is
output. Therefore, a zero will always output a low and the frame period value will always output a high.

During reset (DIR=0), IN is low, the output is low, and Y.[15..0] is captured.

%01010 = PWM switch-mode power supply with voltage and current feedback

This mode overrides OUT to control the pin output state.
X.[15..0] establishes a base period in clock cycles which forms the empirical high-time and low-time units.
X.[31..16] establishes a PWM frame period in terms of base periods.

Y.[15..0] establishes the PWM output value which gets captured at each frame start and used for its duration. It should range from zero
to the frame period.

A counter, updating at each base period, counts from one up to the frame period. Then, the 'A’ input is sampled at each base period
until it reads low. After 'A' reads low, Y.[15..0] is captured, IN is raised, and the process repeats.

At each base period, the captured output value is compared to the counter. If it is equal or greater, a high is output. If it is less, a low is
output. If, at any time during the cycle, the 'B' input goes high, the output will be low for the rest of that cycle.

Due to the nature of switch-mode power supplies, it may be appropriate to just set Y.[15..0] once and let it repeat indefinitely.
During reset (DIR=0), IN is low, the output is low, and Y.[15..0] is captured.
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WXPIN is used to set the base period (X.[15..0]) and the PWM frame count (X.[31..16]). The base period is the number of
clocks which makes a base unit of time. The frame count is the number of base units that make up a PWM cycle.

WYPIN is used to set the output value (Y.[15..0]), which is internally captured at the start of every PWM frame and compared
to the frame counter upon completion of each base unit of time. If the output value is greater than or equal to the frame

counter, the pin outputs a high, else a low. This is intended to drive the gate of the switcher FET.

The "A" input is the voltage detector for the SMPS output. This could be an adjacent pin using the internal-DAC-comparison
mode to observe the center tap of a voltage divider which is fed by the final SMPS output. When "A" is low, a PWM cycle is
performed because the final output voltage has sagged below the requirement and it's time to do another pulse.

The "B" input is the over-current detector which, if ever high during the PWM cycle, immediately forces the output low for the
rest of that PWM cycle. This could be an adjacent pin using the internal-DAC-comparison mode to observe a shunt resistor
between GND and the FET source. When the shunt voltage gets too high, too much current is flowing (or the desired amount
of current is flowing), so the output goes low to turn off the FET and allow the inductor connected to its drain to shoot high,

creating a power pulse to be captured by a diode and dumped into a cap, which is the SMPS final output.

%01011 = A/B-input quadrature encoder

X.[31..0] establishes a measurement period in clock cycles.

If zero is used for the period, the measurement operation will not be periodic, but continuous, like a totalizer, and the current 32-bit
quadrature step count can always be read via RDPIN/RQPIN.

If a non-zero value is used for the period, quadrature steps will be counted for that many clock cycles and then the result will be placed
in Z while the accumulator will be set to the 0/1/-1 value that would have otherwise been added into it. This way, all quadrature steps
get counted across measurements. At the end of each period, IN will be raised and RDPIN/RQPIN can be used to retrieve the last
32-bit measurement.

It may be useful to configure both 'A' and 'B' smart pins to quadrature mode, with one being continuous (X=0) for absolute position
tracking and the other being periodic (x<>0) for velocity measurement.

The quadrature encoder can be "zeroed" by pulsing DIR low at any time. There is no need to do another WXPIN.

During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

%01100 = Count A-input positive edges when B-input is high
X.[31..0] establishes a measurement period in clock cycles.

If zero is used for the period, the measurement operation will not be periodic, but continuous, like a totalizer, and the current 32-bit high
count can always be read via RDPIN/RQPIN.

If a non-zero value is used for the period, events will be counted for that many clock cycles and then the result will be placed in Z, while
the accumulator will be set to the 0/1 value that would have otherwise been added into it, beginning a new measurement. This way, all
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events get counted across measurements. At the end of each period, IN will be raised and RDPIN/RQPIN can be used to retrieve the

32-bit measurement.

During reset (DIR=0), IN is low and Z is set to the adder value (0/1).

%01101 = Accumulate A-input positive edges with B-input supplying increment (B=1) or
decrement (B=0)

X.[31..0] establishes a measurement period in clock cycles.

If zero is used for the period, the measurement operation will not be periodic, but continuous, like a totalizer, and the current 32-bit high
count can always be read via RDPIN/RQPIN.

If a non-zero value is used for the period, events will be counted for that many clock cycles and then the result will be placed in Z, while
the accumulator will be set to the 0/1/-1 value that would have otherwise been added into it, beginning a new measurement. This way,
all events get counted across measurements. At the end of each period, IN will be raised and RDPIN/RQPIN can be used to retrieve
the 32-bit measurement.

During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

%01110 AND !Y.[0] = Count A-input positive edges

%01110 AND Y.[0] = Increment on A-input positive edge and decrement on B-input positive
edge

X.[31..0] establishes a measurement period in clock cycles. Y.[0] establishes whether to just count A-input positive edges (=0), or to

increment on A-input positive edge and decrement on B-input positive edge (=1).

If zero is used for the period, the measurement operation will not be periodic, but continuous, like a totalizer, and the current 32-bit high
count can always be read via RDPIN/RQPIN.

If a non-zero value is used for the period, events will be counted for that many clock cycles and then the result will be placed in Z, while
the accumulator will be set to the 0/1/-1 value that would have otherwise been added into it, beginning a new measurement. This way,
all events get counted across measurements. At the end of each period, IN will be raised and RDPIN/RQPIN can be used to retrieve
the 32-bit measurement.

During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

%01111 AND !Y.[0] = Count A-input highs

%01111 AND Y.[0] = Increment on A-input high and decrement on B-input high

X.[31..0] establishes a measurement period in clock cycles. Y.[0] establishes whether to just count A-input highs (Y.[0]=0), or to
increment on A-input high and decrement on B-input high (Y.[0]=1).
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If zero is used for the period, the measurement operation will not be periodic, but continuous, like a totalizer, and the current 32-bit high
count can always be read via RDPIN/RQPIN.

If a non-zero value is used for the period, events will be counted for that many clock cycles and then the result will be placed in Z, while
the accumulator will be set to the 0/1/-1 value that would have otherwise been added into it, beginning a new measurement. This way,
all events get counted across measurements. At the end of each period, IN will be raised and RDPIN/RQPIN can be used to retrieve

the 32-bit measurement.

During reset (DIR=0), IN is low and Z is set to the adder value (0/1/-1).

%10000 = Time A-input states

Continuous states are counted in clock cycles.

Upon each state change, the prior state is placed in the C-flag buffer, the prior state's duration count is placed in Z, and IN is raised.
RDPIN/RQPIN can then be used to retrieve the measurement. Z will be limited to $80000000.

If states change faster than the cog is able to retrieve measurements, the measurements will effectively be lost, as old ones will be
overwritten with new ones. This may be gotten around by using two smart pins to time highs, with one pin inverting its 'A" input. Then,
you could capture both states, as long as the sum of the states' durations didn't exceed the cog's ability to retrieve both results. This

would help in cases where one of the states was very short in duration, but the other wasn't.

During reset (DIR=0), IN is low and Z is set to $00000001.

%10001 = Time A-input high states

Continuous high states are counted in clock cycles.

Upon each high-to-low transition, the previous high duration count is placed in Z, and IN is raised. RDPIN/RQPIN can then be used to

retrieve the measurement. Z will be limited to $80000000.

During reset (DIR=0), IN is low and Z is set to $00000001.

%10010 AND !Y.[2] = Time X A-input highs/rises/edges

Time is measured until X A-input highs/rises/edges are accumulated.

X.[31..0] establishes how many A-input highs/rises/edges are to be accumulated.
Y.[1..0] establishes A-input high/rise/edge sensitivity:
%00 = A-input high

%01 = A-input rise
%1x = A-input edge
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Time is measured in clock cycles until X highs/rises/edges are accumulated from the A-input. The measurement is then placed in Z,
and IN is raised. RDPIN/RQPIN can then be used to retrieve the measurement. Z will be limited to $80000000.

During reset (DIR=0), IN is low and Z is set to $00000001.

%10010 AND Y.[2] = Timeout on X clocks of missing A-input high/rise/edge

If no A-input high/rise/edge occurs within X clocks, IN is raised, a new timeout period of X clocks begins, and Z maintains a running
count of how many clocks have elapsed since the last A-input high/rise/edge. Z will be limited to $80000000 and can be read any time
via RDPIN/RQPIN.

If an A-input high/rise/edge does occur within X clocks, a new timeout period of X clocks begins and Z is reset to $00000001.

X.[31..0] establishes how many clocks before a timeout due to no A-input high/rise/edge occurring.
Y.[1..0] establishes A-input high/rise/edge sensitivity:

%00 = A-input high

%01 = A-input rise

%1x = A-input edge

During reset (DIR=0), IN is low and Z is set to $00000001.

%10011 = For X periods, count time

%10100 = For X periods, count states

X.[31..0] establishes how many A-input rise/edge to B-input rise/edge periods are to be measured.
Y.[1..0] establishes A-input and B-input rise/edge sensitivity:

%00 = A-input rise to B-input rise

%01 = A-input rise to B-input edge

%10 = A-input edge to B-input rise

%11 = A-input edge to B-input edge

Note: The B-input can be set to the same pin as the A-input for single-pin cycle measurement.

Clock cycles or A-input trigger states are counted from each A-input rise/edge to each B-input rise/edge for X periods. If the A-input
rise/edge is ever coincident with the B-input rise/edge at the end of the period, the start of the next period is registered. Upon
completion of X periods, the measurement is placed in Z, IN is raised, and a new measurement begins. RDPIN/RQPIN can then be
used to retrieve the completed measurement. Z will be limited to $80000000.

The first mode is intended to be used as an oversampling period measurement, while the second mode is a complementary duty
measurement.

During reset (DIR=0), IN is low and Z is set to $00000000.
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%10101 = For periods in X+ clock cycles, count time
%10110 = For periods in X+ clock cycles, count states

%10111 = For periods in X+ clock cycles, count periods

X.[31..0] establishes the minimum number of clock cycles to track periods for. Periods are A-input rise/edge to B-input rise/edge.
Y.[1..0] establishes A-input and B-input rise/edge sensitivity:

%00 = A-input rise to B-input rise

%01 = A-input rise to B-input edge

%10 = A-input edge to B-input rise

%11 = A-input edge to B-input edge

Note: The B-input can be set to the same pin as the A-input for single-pin cycle measurement.

A measurement is taken across some number of A-input rise/edge to B-input rise/edge periods, until X clock cycles elapse and then
any period in progress completes. If the A-input rise/edge is ever coincident with the B-input rise/edge at the end of the period, the start
of the next period is registered. Upon completion, the measurement is placed in Z, IN is raised, and a new measurement begins.
RDPIN/RQPIN can then be used to retrieve the completed measurement. Z will be limited to $80000000.

The first mode accumulates time within each period, for an oversampled period measurement.

The second mode accumulates A-input trigger states within each period, for an oversampled duty measurement.

The third mode counts the periods.

Knowing how many clock cycles some number of complete periods took, and what the duty was, affords a very time-efficient and

precise means of determining frequency and duty cycle. At least two of these measurements must be made concurrently to get useful
results.

During reset (DIR=0), IN is low and Z is set to $00000000.

%11000 = ADC sample/filter/capture, internally clocked

%11001 = ADC sample/filter/capture, externally clocked

These modes facilitate sampling, SINC filtering, and raw capturing of ADC bitstream data.

For the internally-clocked mode, the A-input will be sampled on every clock and should be a pin configured for ADC operation
(M.[12..10] = %100). In the externally-clocked mode, the A-input will be sampled on each B-input rise, so that an external delta-sigma

ADC may be employed.

WXPIN sets the mode to X.[5..4] and the sample period to POWER(2, X.[3..0]). Not all mode and period combinations are useful, or

even functional:
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X.[5.4] — %00 %01 %10 %11
Mode — SINC2 Sampling SINC2 Filtering SINCS3 Filtering Bitstream capturing

X.[3..0] Sample Period Sample Resolution Post-diff ENOB* Post-diff ENOB* (LSB = oldest bit)
%0000 1 clock impractical impractical impractical 1 new bit
%0001 2 clocks 2 bits impractical impractical 2 new bits
%0010 4 clocks 3 bits impractical impractical 4 new bits
%0011 8 clocks 4 bits 4 impractical 8 new bits
%0100 16 clocks 5 bits 5 8 16 new bits
%0101 32 clocks 6 bits 6 10 32 new bits
%0110 64 clocks 7 bits 7 12 overflow
%0111 128 clocks 8 bits 8 14 overflow
%1000 256 clocks 9 bits 9 16 overflow
%1001 512 clocks 10 bits 10 18 overflow
%1010 1,024 clocks 11 bits 1 overflow overflow
%1011 2,048 clocks 12 bits 12 overflow overflow
%1100 4,096 clocks 13 bits 13 overflow overflow
%1101 8,192 clocks 14 bits 14 overflow overflow
%1110 16,384 clocks overflow overflow overflow overflow
%1111 32,768 clocks overflow overflow overflow overflow

* ENOB = Effective Number of Bits, or the sample resolution

For modes other than SINC2 Sampling (X.[5..4] > %00), WYPIN may be used after WXPIN to override the initial period established by

X.[3..0] and replace it with the arbitrary value in Y.[13..0]. For example, if you'd like to do SINC3 filtering with a period of 320 clocks, you
could follow the WXPIN with a '"WYPIN #320,adcpin’. The smart pin accumulators are 27 bits wide. This allows up to 2*(27/3), or 512,

clocks per decimation in SINC3 filtering mode and up to 2/(27/2), or 11,585, clocks in SINC2 filtering mode.

Upon completion of each sample period, the measurement is placed in Z, IN is raised, and a new measurement begins. RDPIN/RQPIN

can then be used to retrieve the completed measurement.

About SINC2 and SINC3 filtering

SINC2 filtering works by summing the input bit into an accumulator on each clock which, in turn, is summed into another accumulator,
to create a double integration. At the end of each sampling period, the difference between the new and previous second accumulator's
value is the conversion sample, and the 'previous' value is updated. This process has the pleasant effect of returning an extra bit of
resolution over simple bit-summing, as well as filtering away rectangular-sampling-window effects. SINC2 filtering is best for DC
measurements, where precision is important. Practical measurements of 14-bit resolution can be made every 8,192 clocks using SINC2
filtering. After starting SINC2 filtering, the filter will become accurate starting on the third sample.
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SINCS3 filtering is like SINC2, but employs an additional level of accumulation to increase sensitivity to dynamics in the input signal.
SINC3 doubles the ENOB (effective number of bits) over simple bit-summing for fast signals, but it is only slightly better at DC
measurements than SINC2 filtering at the same sample period. Because SINC3 takes more resources within the smart pin, it is limited
to 512 samples per period, making it less practical than SINC2 for precision DC measurements, but quite ideal for tracking fast,
dynamic signals. After starting SINC3 filtering, the filter will become accurate starting on the fifth sample.

Because the accumulators are 27 bits wide, 32-bit integer adds and subtracts in software will roll over incorrectly. There are two ways
to handle this:

You can either prescale the 27-bit values to 32-bit values:

RDPIN x,#adcpin 'get SINC2 accumulator

SHL x,#5 'prescale 27-bit to 32-bit
SUB x,diff 'compute sample

ADD diff, x 'update diff value

Or you can post-trim them to 27-bit values:

RDPIN  x,#adcpin 'get SINC2 accumulator
SUB x,diff 'compute sample

ADD diff, x 'update diff value
ZEROX x,#26 'trim to 27-bit

SINC2 Sampling Mode (%00)

This mode performs complete SINC2 conversions, updating the ADC output sample at the end of each period. Once this mode is
enabled, it is only necessary to do a RDPIN/RQPIN to acquire the latest ADC sample. The limitation of this mode is that it only works at
power-of-2 sample periods, since that stricture afforded efficient implementation within the smart pin, making complete conversions
possible without software. There is an additional SINC2 filtering mode (%01) which allows non-power-of-2 sample periods, but you
must perform the difference computation in software.

To begin SINC2 sampling:

WRPIN ##%100011_0000000_00_11000_0,adcpin 'configure ADC+sample pin(s)
WXPIN #%00_0111,adcpin 'SINC2 sampling at 8 bits
DIRH adcpin 'enable smart pin(s)

NOTE: The variable 'adcpin’ could enable multiple pins by having the additional number of pins in bits 10..6. For example, if 'adcpin’
held %00111_010000, pins 16 through 23 would have been simultaneously configured by the above code.

To read the latest ADC sample, just do a RDPIN/RQPIN:

RDPIN sample,adcpin 'read sample at any time
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This mode performs SINC2 filtering, which requires some software interaction in order to realize ADC samples.

To begin SINC2 filtering:
WRPIN ##%100011_0000000_00_11000_0,#adcpin 'configure ADC+filter pin(s)
WXPIN #%01_0111,#adcpin 'SINC2 filtering at 128 clocks

DIRH #adcpin 'enable smart pin(s)

Pin interaction must occur after each sample period, so it may be good to set up an event to detect the pin's IN going high:

SETSE1 #%001<<6 + adcpin 'SEl triggers on pin high
.loop WAITSEl 'wait for sample period done
RDPIN x,#adcpin 'get SINC2 accumulator
SUB x,diff 'compute sample
ADD diff,x 'update diff value
SHR x,#6 'justify 8-bit sample
ZEROX x,#7 'trim 8-bit sample
'use x here 'use sample somehow
JMP #.loop 'loop for next period
x RES 1 'sample value
diff RES 1 'diff value

Note that it is necessary to shift the computed sample right by some number of bits to leave the ENOBs intact. For SINC2 filtering, you
must shift right by LOG2(clocks per period)-1, which in this case is LOG2(128)-1 = 6.

SINC3 Filtering Mode (%10)

This mode performs SINC3 filtering, which requires some software interaction in order to realize ADC samples.

To begin SINC3 filtering:
WRPIN ##%100011_0000000_00_11000_0,#adcpin 'configure ADC+filter pin(s)
WXPIN #%10_0111,#adcpin 'SINC3 filtering at 128 clocks

DIRH #adcpin 'enable smart pin(s)

Pin interaction must occur after each sample period, so it may be good to set up an event to detect the pin's IN going high:

SETSE1 #%001<<6 + adcpin 'SEl triggers on pin high
.loop WAITSEl 'wait for sample period done

RDPIN x, #adcpin 'get SINC3 accumulator

SUB x,diffl 'compute sample

ADD diffl,x 'update diffl value

SUB x,diff2 'compute sample
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ADD diff2,x 'update diff2 value

SHR x,#7 'justify 14-bit sample
ZEROX x,#13 'trim 14-bit sample
'use x here 'use sample somehow
JMP #.loop 'loop for next period

x RES 1 'sample value

diffl RES 1 'diffl value

diff2 RES 1 'diff2 value

Note that it is necessary to shift the computed sample right by some number of bits to leave the ENOBs intact. For SINC3 filtering, you

must shift right by LOG2(clocks per period), which in this case is LOG2(128) = 7.

Bitstream Capturing Mode (%11)

This mode captures the raw bitstream coming from the ADC. It buffers 32 bits and is meant to be read once every 32 clocks, in order to

get contiguous snapshots of the ADC bitstream. RDPIN/RQPIN is used to read the snapshots. Bit 31 of the data will be the most recent

ADC bit, while bit O will be from 31 clocks earlier.

To begin raw bitstream capturing:

WRPIN ##%100011_0000000_00_11000_0,adcpin 'configure ADC+sample pin(s)
WXPIN #%11_0101,adcpin 'raw sampling every 32 clocks
DIRH adcpin 'enable smart pin(s)

To get a snapshot of the latest 32 bits of the ADC bitstream, just do a RDPIN/RQPIN:
RDPIN bitstream,adcpin 'get snapshot of ADC bitstream

This mode can be used for purposes other than capturing ADC bitstreams. It's really just capturing the A-input without regard to pin
configuration.

%11010 = ADC Scope with Trigger

This mode calculates an 8-bit ADC sample and checks for hysteretic triggering on every clock, providing the basis of oscilloscope

functionality. Samples from blocks of up to four pins can be grouped into a 32-bit data pipe for recording by the streamer or reading by

the GETSCP instruction (see 'SCOPE Data Pipe' below).

There are three different windowed filter functions from which ADC samples can be computed. On each clock, the incoming ADC bit is

shifted into a tap string and the weighted tap bits are summed together to produce the sample. The samples are normalized to 8 bits in

size, but the DC dynamic range is ~5 to ~6 bits, depending on the filter length. These are plots of the actual filter shapes and sizes:
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28-tap Hann 45-tap Tukey 68-tap Tukey

The scope trigger function is set by two 6-bit parameters, A and B, which MSB-justify to the 8-bit samples for comparison. Triggering is
a two-step process of arming and then triggering, which raises the IN signal and waits for a new arming event. The relationship

between A and B determine the triggering pattern:

A and B Arming Event Trigger Event

relationship (initial / after trigger) (after arming)
A>B sample.[7..2] => A sample.[7..2] <B
A<=B sample.[7..2] <A sample.[7..2] => B

WXPIN is used to configure this mode.

X.[15..10] sets the B trigger value.
X.[7..2] sets the A trigger value.
X.[1..0] selects the filter:
%00 = 68-tap Tukey filter
%01 = 45-tap Tukey filter
%1x = 28-tap Hann filter
RDPIN/RQPIN always returns the 8-bit sample, along with the 'armed' state in the C flag.

When 'armed' and then 'triggered', IN is raised and the 'armed' state is canceled.

SCOPE Data Pipe

Each cog has a 32-bit SCOPE data pipe which is intended to be used with smart pins configured to the 'scope' mode. The SCOPE data
pipe continuously aggregates the lower bytes of RDPIN values from a 4-pin block, so that the streamer can record up to four

time-aligned 8-bit ADC samples per clock. They can also be read at once via the GETSCP instruction.

The SETSCP instruction enables the SCOPE data pipe and selects the 4-pin block whose lower bytes of RDPIN values it will
continuously carry:

SETSCP {#}D 'D[6] enables the SCOPE data pipe, D.[5..2] selects the 4-pin block

The GETSCP instruction gets the SCOPE data pipe's current four bytes:
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GETSCP D 'Get the lower-byte RDPIN values of four pins into the bytes of D

If the SCOPE data pipe didn't exist, the closest you could come to the GETSCP instruction would be this sequence, which would not
have time-aligned samples:

RQPIN x,#pinblock | 3 'read pin3 long into x
ROLBYTE y,x 'rotate pin3 byte into y
RQPIN x,#pinblock | 2 'read pin2 long into x
ROLBYTE y,x 'rotate pin2 byte into y
RQPIN x,#pinblock | 1 'read pinl long into x
ROLBYTE y,x 'rotate pinl byte into y
RQPIN x,#pinblock | 0 'read pin0 long into x
ROLBYTE y,x 'rotate pin0 byte into y

The SCOPE data pipe is generic in function and may find other uses than carrying just 'scope’ data.

%11011 = USB host or device, full-speed (12Mbps) or low-speed (1.5Mbps)

This mode requires that two adjacent pins be configured together to form a USB pair, whose OUTs and %HHH_LLL drive modes will be
overridden to control their output states. These pins must be an even/odd pair, having only the LSB of their pin numbers different. For
example: pins 0 and 1, pins 2 and 3, and pins 4 and 5 can form USB pairs. The lower pin in the pair is DM, while the upper pin is DP,
per USB naming convention. They can both be configured via a single WRPIN with D data of %1_11011_0. Using D data of
%0_11011_0 will disable the output drive and effectively create a USB 'sniffer'. NOTE: In Propeller 2 emulation on an FPGA, there
are no built-in 1.5k and 15k resistors, like the ASIC smart pins have, so it is up to you to install these yourself on the DP and
DM lines.

WXPIN is used on the lower pin to establish the specific USB mode and set the baud rate. Once established, these settings can be
changed on-the-fly without resetting the USB smart pins. This is necessary when talking to both 'full-speed’ and 'low-speed' devices
over a USB hub.

- D.[15] must be 1 for 'host' mode or 0 for 'device' mode. This bit only affects the IDLE drive states. In 'host' mode, both pins will
be pulled low via 15k resistors during IDLE. In 'device' mode, one pin will be pulled high via a 1.5k resistor, while the other pin
will be floated during IDLE. In 'device' mode, D.[14] controls which pin gets pulled high and which pin gets floated.

- D.[14] must be 1 for 'full-speed' mode or O for 'low-speed' mode. In 'full-speed' mode, the IDLE state is when DM is low and DP
is high, with DP getting pulled high when in 'device' mode. In 'low-speed' mode, the IDLE state is when DP is low and DM is
high, with DM getting pulled high when in 'device' mode (exact opposite of 'full speed' mode). The DP/DM electrical
designations can actually be switched by swapping 'low-speed' and 'full-speed' modes, due to USB's complementary line

signaling.

- D.[13..0] sets the baud rate, which is a 16-bit fraction of the system clock (ie (12_000_000 FRAC clkfreq) >> 16), whose two
MSBs must be 0, necessitating that the baud rate be less than 1/4th of the system clock frequency. For example, if the main
clock is 80MHz and you want a 12MHz baud rate (full-speed), use 12,000,000 / 80,000,000 * $10000 = 9830, or $2666. To use
this baud rate and select 'host' mode and 'full-speed', you could do '"WXPN ##$C000 | $2666,lowerpin'.
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The upper (odd) pin is the DP pin. No WXPIN/WYPIN instructions are used by this pin, but if executed, they will acknowledge the pin,
as if an AKPIN was executed. This pin's IN goes high whenever the two-level FIFO output buffer in the USB smart pin has room for
another byte, signaling that a new output byte can be written via WYPIN to the lower (even) pin. You must do an AKPIN on the upper

pin to return its IN pin to a low state, in order to detect the next FIFO-not-full signal.

The lower (even) pin is the DM pin. This pin's IN is raised whenever a change of status occurs in the receiver. At any point, a
RDPIN/RQPIN can be used on this pin to read the 16-bit status word. WXPIN is used on this pin to set the NCO baud rate and WYPIN

is used to write to the output buffer.

To start USB, clear the DIR bits of the intended two pins and configure them both using "WRPIN #%1_11011_0,bothpins'. Use WXPIN
to set the mode and baud rate. Then, set the pins' DIR bits to enable them. You are now ready to read the receiver status via
RDPIN/RQPIN and set output states and send packets via WYPIN.

To affect the line states or send a packet, wait for the upper pin's IN to be high, indicating that the two-level FIFO buffer has room for
another byte. Then, use WYPIN 'bytevalue,bothpins' to write a byte value to the bottom pin and incidentally acknowledge the upper pin

to lower its IN signal.

Here are the D values for WYPIN:

0 = output IDLE - default state, two 15k pull-downs for 'host' or a 1.5k pull-up and a float for 'device'
1 = output SEO - drive both DP and DM low

2 = output K - drive K state onto DP and DM (opposite)

3 =output J - drive J state onto DP and DM (opposite), like IDLE, but driven

4 = output EOP - output end-of-packet: SEO, SEO, J, then IDLE

$80 = SOP - output start-of-packet: KIKIKJKK, then bytes, automatic EOP when buffers empty
$00..$FF = data - after $80 (SOP), contiguous data bytes can be sent

To send a packet, first do a "WYPIN #$80,bothpins'. Then, do a "WYPIN byte,bothpins' to buffer each next byte. The transmitter will
automatically send an EOP when you stop giving it bytes. Remember to wait for the upper pin's IN bit to be high before doing each
WYPIN.

All output activity is synchronized to the NCO baud generator, so even if you output simple states, like J, K, or IDLE, they won't take
effect until the next bit period and will each be one bit period in duration, if immediately followed by another state. Otherwise, the
last-set state will remain.

It is necessary to know when a transmitted packet completes, so that you can start another packet or begin waiting for a response. This
is done by repeating 'RDPIN status,lowerpin’, waiting for bit 2 (SEO in) of status to go high. Once that bit is high, the transmitter FIFO
has run out of data and is now signaling the EOP (end of packet) sequence. You can then start another packet without the transmitter
interpreting the next WYPIN as a data byte of the prior packet.

There are separate state machines for transmitting and receiving. Only the baud generator is common between them. The transmitter
was just described above. Below, the receiver is detailed. Note that the receiver receives not just input from another host/device, but all

local output, as well.

At any time, a RDPIN/RQPIN can be executed on the lower pin to read the current 16-bit status of the receiver, with the error flag (also
bit 6) going into C. The lower pin's IN will be raised whenever a change occurs in the receiver's status, but this feature is maybe only
practical for detecting initial device plug-in, since during normal operation, there is activity every millisecond on the USB bus.
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The receiver's status bits are as follows:

[31..16] <unused>
[15..8]

(7]
[6]
(5]
[4]
(3]
(2]
(1]
[0]

- $0000
byte - last byte received
byte toggle - cleared on SOP, toggled on each byte received
error - cleared on SOP, set on bit-unstuff error or EOP SEO > 2 bit periods or SE1
EOP in - cleared on SOP or 7 bit periods of J or K, set on EOP
SOP in - cleared on EOP or 7 bit periods of J or K, set on SOP
steady state - cleared on DP/DM state change, set on 7 bit periods of no change
SEOQ in - high when DP/DM state is SEQ
Kin - high when DP/DM state is K
Jin - high when DP/DM state is J

The result of a RDPIN/RQPIN can be bit-tested for events of interest. It can also be shifted right by 8 bits to LSB-justify the last byte

received and get the byte toggle bit into C, in order to determine if you have a new byte. Assume that 'flag' is initially zero:

SHR D,#8 WC
RCL flags,#1
TEST flags,#%11 WC
<use byte in D>

'get byte into D, get toggle bit into C
'rotate toggle bit into buffer

'if new and old toggle bits differ, C =1
'if new byte, do something with it

%11100 = synchronous serial transmit

This mode overrides OUT to control the pin output state.

Words of 1 to 32 bits are shifted out on the pin, LSB first, with each new bit being output two internal clock cycles after registering a

positive edge on the B input. For negative-edge clocking, the B input may be inverted by setting B.[3] in WRPIN's D value.

WXPIN is used to configure the update mode and word length.

X.[5] selects the update mode:

X.[5] = 0 sets continuous mode, where a first word is written via WYPIN during reset (DIR=0) to prime the shifter. Then, after

reset (DIR=1), the second word is buffered via WYPIN and continuous clocking is started. Upon shifting each word, the

buffered data written via WYPIN is advanced into the shifter and IN is raised, indicating that a new output word can be buffered

via WYPIN. This mode allows steady data transmission with a continuous clock, as long as the WYPIN's after each IN-rise

occur before the current word transmission is complete.

X.[5] = 1 sets start-stop mode, where the current output word can always be updated via WYPIN before the first clock, flowing
right through the buffer into the shifter. Any WYPIN issued after the first clock will be buffered and loaded into the shifter after
the last clock of the current output word, at which time it could be changed again via WYPIN. This mode is useful for setting up

the output word before a stream of clocks are issued to shift it out.

X.[4..0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.

WYPIN is used to load the output words. The words first go into a single-stage buffer before being advanced to the shifter for output.
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Each time the buffer is advanced into the shifter, IN is raised, indicating that a new output word can be written via WYPIN. During reset,

the buffer flows straight into the shifter.

If you intend to send MSB-first data, you must first shift and then reverse it. For example, if you had a byte in D that you wanted to send
MSB-first, you would do a 'SHL D,#32-8' and then a'REV D'.

During reset (DIR=0) the output is held low. Upon release of reset, the output will reflect the LSB of the output word written by any
WYPIN during reset.

%11101 = synchronous serial receive

Words of 1 to 32 bits are shifted in by sampling the A input around the positive edge of the B input. For negative-edge clocking, the B
input may be inverted by setting B.[3] in WRPIN's D value.

WXPIN is used to configure the sampling and word length.
X.[5] selects the A input sample position relative to the B input edge:

X.[5] = 0 selects the A input sample just before the B input edge was registered. This requires no hold time on the part of the

sender.

X.[5] = 1 selects the sample coincident with the B edge being registered. This is useful where transmitted data remains steady
after the B edge for a brief time. In the synchronous serial transmit mode, the data is steady for two internal clocks after the B
edge was registered, so employing this complementary feature would enable the fastest data transmission when receiving

from another smart pin in synchronous serial transmit mode.
X.[4..0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.

When a word is received, IN is raised and the data can then be read via RDPIN/RQPIN. The data read will be MSB-justified.

If you received LSB-first data, it will require right-shifting, unless the word size was 32 bits. For a word size of 8 bits, you would need to
do a 'SHR D,#32-8' to get the data LSB-justified.

If you received MSB-first data, it will need to be reversed and possibly masked, unless the word size was 32 bits. For example, if you
received a 9-bit word, you would do 'REV D' + 'ZEROX D,#8' to get the data LSB-justified.

%11110 = asynchronous serial transmit

This mode overrides OUT to control the pin output state.

Words from 1 to 32 bits are serially transmitted on the pin at a programmable baud rate, beginning with a low "start" bit and ending with
a high "stop" bit.

WXPIN is used to configure the baud rate and word length.

X.[31..16] establishes the number of clocks in a bit period, and in case X.[31..26] is zero, X.[15..10] establishes the number of fractional

clocks in a bit period. The X bit period value can be simply computed as: (clocks * $1_0000) & $FFFFFCO00. For example, 7.5 clocks
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would be $00078000, and 33.33 clocks would be $00215400.
X.[4..0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.

WYPIN is used to load the output words. The words first go into a single-stage buffer before being advanced to a shifter for output. This
buffering mechanism makes it possible to keep the shifter constantly busy, so that gapless transmissions can be achieved. Any time a
word is advanced from the buffer to the shifter, IN is raised, indicating that a new word can be loaded.

Here is the internal state sequence:

Wait for an output word to be buffered via WYPIN, then set the 'buffer-full' and 'busy’ flags.

Move the word into the shifter, clear the 'buffer-full' flag, and raise IN.

Output a low for one bit period (the START bit).

Output the LSB of the shifter for one bit period, shift right, and repeat until all data bits are sent.

Output a high for one bit period (the STOP bit).

If the 'buffer-full' flag is set due to an intervening WYPIN, loop to (2). Otherwise, clear the 'busy' flag and loop to (1).

o ok N2

RDPIN/RQPIN with WC always returns the 'busy' flag into C. This is useful for knowing when a transmission has completed. The busy
flag can be polled starting three clocks after the WYPIN, which loads the output words:

WYPIN x, #txpin 'load output word

WAITX #1 'wait 2+1 clocks before polling busy
wait RDPIN x,#txpin WC 'get busy flag into C
IF C JMP #wait 'loop until C = 0

During reset (DIR=0) the output is held high.

%11111 = asynchronous serial receive

Words from 1 to 32 bits are serially received on the A input at a programmable baud rate.
WXPIN is used to configure the baud rate and word length.

X.[31..16] establishes the number of clocks in a bit period, and in case X.[31..26] is zero, X.[15..10] establishes the number of fractional
clocks in a bit period. The X bit period value can be simply computed as: (clocks * $1_0000) & $FFFFFC00. For example, 7.5 clocks
would be $00078000, and 33.33 clocks would be $00215400.

X.[4..0] sets the number of bits, minus 1. For example, a value of 7 will set the word size to 8 bits.
Here is the internal state sequence:

Wait for the A input to go high (idle state).

Wait for the A input to go low (START bit edge).
Delay for half of a bit period.

If the A input is no longer low, loop to (2).

Delay for one bit period.

Right-shift the A input into the shifter and delay for one bit period, repeat until all data bits are received.

N o o s~ ooDnN =

Capture the shifter into the Z register and raise IN.
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8. Loopto (1).

RDPIN/RQPIN is used to read the received word. The word must be shifted right by 32 minus the word size. For example, to LSB-justify
an 8-bit word received, you would do a 'SHR D,#32-8'.

BOOT PROCESS (needs more editing)

Boot Pattern Set By Resistors P61 P60 P59

Serial window of 60s, default. none none none
Serial window of 60s, overrides SPl and SD. | ignored ignored pull-up
Serial window of 100ms, then SPI flash. pull-up ignored none

If SPI flash fails then serial window of 60s.

SPI flash only (fast boot), no serial window. pull-up ignored pull-down
If SPI flash fails then shutdown.

SD card with serial window on failure. no pull-up | pull-up none

If SD card fails then serial window of 60s. (built into SD card)

SD card only, no serial window. no pull-up | pull-up pull-down
If SD card fails then shutdown. (built into SD card)

Boot Serial P63 (input) P62 (output)

Serial RX X

Boot Memory P61 (output) P60 (output) P59 (output) P58 (input)
SPI flash CSn (input) CLK (input) DI (input) DO (output)
SD card CLK (input) CSn (input) DI (input) DO (output)

After a hardware reset, cog 0 loads and executes a booter program from an internal ROM. The booter program (ROM_Booter.spin2)
performs the following steps:
1) If an external pull-up resistor is sensed on P61 (SPI_CS), then attempt to boot from SPI:
a) Load the first 1024 bytes (256 longs) from SPI into the hub starting at $00000.
b) Compute the 32-bit sum of the 256 longs.
c) Ifthe sumis "Prop" ($706F7250):
i) Copy the first 256 longs from hub into cog registers $000..$0FF.
i) If an external pull-up resistor is sensed on P60 (SPI_CK):
(1) Execute 'JMP #$000' to run the SPI program. Done.
iii) Begin waiting for serial command(s) on P63 (RX_PIN).
iv) If 100ms elapsed and no command begun:
(1) Execute 'JMP #$000' to run the SPI program. Done.
V) If a program successfully loads serially within 60 seconds:
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(1) Execute 'COGINIT #0,#0' to relaunch cog 0 from $00000. Done.
vi) Execute 'JMP #$000' to run the SPI program. Done.
2) Wait for serial command(s) on P63 (RX_PIN):
a) If a program successfully loads serially within 60 seconds:
i) Execute 'COGINIT #0,#0' to relaunch cog 0 from $00000. Done.
b) Slow clock to 20kHz and stop cog 0. Done.

SERIAL LOADING PROTOCOL

The built-in serial loader allows Propeller 2 chips to be loaded via 8-N-1 asynchronous serial into P63, where START=low and
STOP=high, at any rate the sender uses, between 9,600 baud and 2,000,000 baud.

The loader automatically adapts to the sender's baud rate from every ">" character ($3E) it receives. It is necessary to initially send "> "
($3E, $20) before the first command, and then use ">" characters periodically throughout your data to keep the baud rate tightly
calibrated to the internal RC oscillator that the loader uses during boot ROM execution. Received ">" characters are not passed to the
command parser, so they can be placed anywhere.

The loader's response messages are sent back serially over P62 at the same baud rate that the sender is using. P62 is normally driven
continuously during the serial protocol, but will go into open-drain mode when either the INA or INB mask of a command is non-0
(masking is explained below).

Unless preempted by a program in a SPI memory chip with a pull-up resistor on P60 (SPI_CK), the serial loader becomes active within
15ms of reset being released.

Between command keywords and data, whitespace is required. The following characters, in any contiguous combination, constitute a
single whitespace:

$09 TAB

$0a LF

$0D CR

$20 SP

$3D =" (may be present in Base64 data)

There are four commands which the sender can issue:
1) Request Propeller type:
Prop_Chk <INAmask> <INAdata> <INBmask> <INBdata>
2) Change clock setting:
Prop Clk <INAmask> <INAdata> <INBmask> <INBdata> <HUBSETclocksetting>
3) Load and execute hex data, with and without sum checking:

Prop Hex <INAmask> <INAdata> <INBmask> <INBdata> <hexdatabytes> ?
Prop_ Hex <INAmask> <INAdata> <INBmask> <INBdata> <hexdatabytes> ~

4) Load and execute Base64 data, with and without sum checking:

Prop_ Txt <INAmask> <INAdata> <INBmask> <INBdata> <base64chrs> ?
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Prop_ Txt <INAmask> <INAdata> <INBmask> <INBdata> <base64chrs> ~

Each command keyword is followed by four 32-bit hex values which allow selection of certain chips by their INA and INB states. If you
wanted to talk to any and all chips that are connected, you would use zeroes for these values. In case multiple chips are being loaded
from the same serial line, you would probably want to differentiate each download by unique INA and INB mask and data values. When
the serial loader receives data and mask values which do not match its own INA and INB ports, it waits for another command. Note that
you cannot use INA[1:0] for this purpose, since they are configured as smart pins used for automatic baud detection by the loader.
Because the command keywords all contain an underscore ("_"), they cannot be mistaken by intervening data belonging to a command
destined for another chip, while a new command is being waited for.

If, at any time, a character is received which does not comport with expectations (i.e. an "x" is received when hex digits are expected),
the loader aborts the current command and waits for a new command.

Prop_Chk

The Prop_Chk command returns CR+LF+"Prop_Ver"+SP+VerChr+CR+LF. VerChr is "A".."Z" and indicates the version of Propeller
chip. The Rev B/C silicon responds with "G":

Sender: "> Prop Chk 0 0 0 0"+CR
Loader. CR+LF+"Prop_Ver G"+CR+LF

Prop_Clk

The Prop_Clk command is used to update the chip's clock source, as if a HUBSET ##$0xxxxxxx instruction were being executed. For
details (and caveats), see Configuring the Clock Generator. Upon receiving a valid Prop_Clk command, the loader immediately echoes

a "." character and then performs the following steps:

Switches to the internal 20MHz source.

Sets the desired configuration (except mode).

Waits ~6ms for the clock hardware to settle to the new configuration.
Enables the desired clock mode.

Pobd-=

NOTE: After the command is sent, the sender should wait an ~10ms, then send "> " ($3E, $20) auto-baud sequence to adjust
for the new clock configuration.

NOTE: If an image is loaded (see Prop_Hex/Prop_Txt) after switching to a PLL clock mode that is different than the mode
used by that image, the uploaded image may need to issue a "HUBSET #$F0" before switching to the desired clock mode.
See the warning in Configuring the Clock Generator for more details. An alternative approach is to use the same clock
configuration as used by the image. This means that the image's call to HUBSET will effectively be a NOP, but always safe to
perform.

NOTE TO FPGA USERS: The only supported clock-setting values are $00 for 20MHz and $FF for 80MHz. This value would
be used instead of the 25-bit value for the regular instruction. Wait ~10ms before sending "> ".

PLL Example
To update the clock source per PLL Example:

Sender: "> Prop Clk 0 0 0 0 19D28F8"+CR
Loader: "."

Sender: (wait ~10ms)

Sender: "> Prop Clk 0 0 0 0 19D28FB"+CR
Loader: "."

NOTE: An initial "Prop_Clk 0 0 0 0 FO0"is not required since the clock circuit starts up in this mode.

Reset to Boot Clock Configuration

To return to the clock configuration on bootup:
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Sender: "> Prop Clk 0 0 0 0 FO"+CR
Loader: "."

Prop_Hex

The Prop_Hex command is used to load byte data into the hub, starting at $00000, and then execute them. Hex bytes must be
separated by whitespaces. Only the bottom 8 bits of hex values are used as data.

If the command is terminated with a "~" character, the loader will do a 'COGINIT #0,#0' to relaunch cog 0 (currently running the booter
program) with the new program starting at $00000.

If the command is terminated with a "?" character, the loader will send either a "." character to signify that the embedded checksum was
correct, in which case it will run the program as "~" would have. Or, it will send a "I" character to signify that the checksum was

incorrect, after which it will wait for a new command.

To demonstrate hex loading, consider this small program:

DAT ORG
not dirb 'all outputs

.1p not outb 'toggle states (blinks leds on Propl23 & P2 Eval boards)
waitx ##20_000_000/4 'wait %4 second
jmp #.1p 'loop

It assembles to:

00000- FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD FO FF 9F FD

Here is how you would run this program from the serial loader:

Sender: "> Prop Hex 0 0 0 O FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD FO FF 9F FD ~"

In the case of our assembled program, there are 5 little-endian longs which sum to $E6CE9A2C. To generate an embedded checksum
long, you would compute $706F7250 ("Prop") minus the sum $E6CE9A2C, which results in $89A0D824. Those four bytes could be
appended to the data as follows. Note that it doesn't matter where your embedded checksum long is placed, only that it be long-aligned
within your data:

Sender: "> Prop_ Hex 0 00O FB F7 23 F6 FD FB 23 F6 25 26 80 FF 1F 80 66 FD FO FF 9F FD 24 D8 A0
89 2"
Loader: "."

It's a good idea to start each hex data line with a ">" character, to keep the baud rate tightly calibrated.

Prop_Txt

The Prop_Txt command is like Prop_Hex, but with one difference: Instead of hex bytes separated by whitespaces, it takes in Base64
data, which are text characters that convey six bits, each, and get assembled into bytes as they are received. This format is 2.25x
denser than hex, and so minimizes transmission size and time.

These are the characters that make up the Base64 alphabet:

npn ngn = $00..$19
ngw  ngn = $1A..833
novr ., ngn = $34..$3D
"y = $3E
w/m = $3F

Whitespaces are ignored among Base64 characters.

108



To load and run the program used in the Prop_Hex example:

Sender: "> Prop Txt 0 0 0 0 +/cj9v37I/Y1JoD/H4Bm/£fD/n/0 ~"

To add the embedded checksum:

Loader: "."

Sender: "> Prop Txt 0 0 0 0 +/cj9v371/Y1JoD/H4Bm/£fD/n/0k2KCJ ?"

It's a good idea to start each Base64 data line with a ">" character, to keep the baud rate tightly calibrated.

SUMMARY

It is possible to uniquely load many Propeller chips from the same serial signal by giving them each a different INA/INB signature and

not connecting SPI memory chips or SD cards to P61..P58.

To try out the serial loader, just open a terminal program on your PC with the Propeller 2 connected and type: "> Prop_Chk 00 0
0"+CR. You can also cut and paste those Prop_Hex and Prop_Txt example lines to load the blinker program. A simple Propeller 2

development tool needs no special serial signalling, just simple text output that needn't worry about PC/Mac/Unix new-line differences,

whitespace conventions, or generating non-standard characters.

Assembly Language

For a detailed list of assembly-language instructions, see this document:

h : riv 1 m n2id=1 vJk-A wgXTKTdf JKHYH

Below are the contents of the instructions.txt file which include assembly instructions and

assembler directives.

1rZwxB-DcIiAZN

|
rdRAM Ib |------- + | rdRAM Ic |------- + | rdRAM Id
| | | | | |
latch Da |---+ +----> rdRAM Db |------------ > latch Db |---+ +----> rdRAM Dc |------------ > latch Dc
latch sa |---+ +----> rdRAM Sb |-----------= > latch Sb |---+ +----> rdRAM Sc |------------ > latch Sc
latch Ia |---+ +----> latch Ib |----==-=—=--- > latch Ib |---+ +----> latch Ic |-------=—--- > latch Ic
| | | | |
+ ALU > wrRAM Ra

| stall/done = 'gox'

|

ALU: > wrRAM Rb
|
| stall/done = 'gox'

|

'get' | done = 'go' 'get’ done = 'go'
instructions
EEEE 0000000 CZI DDDDDDDDD SSSSSSSSS ROR D,S/#
EEEE 0000001 CZI DDDDDDDDD SSSSSSSSS ROL D,S/#
EEEE 0000010 CZI DDDDDDDDD SSSSSSSSS SHR D,S/#
EEEE 0000011 CZI DDDDDDDDD SSSSSSSSS SHL D,S/#

+----> rdRAM Dd |-------

+----> rdRAM Sd

+----> latch Id |-------

rdRAM Ie

————— > latch Dd

----> latch sd

————— > latch Id

|
-ALU:

|

|

|

'get’

{WC/WZ/WCZ}
{WC/WZ/WCZ}
{WC/WZ/WCZ}
{WC/WZ/WCZ}

> wrRAM Rc

stall/done = 'gox'

done = 'go'
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000001011
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SSSSSsSSss

SSSSSSSSS

SSSSSSSSS
SSSSSSSSS

JSE3
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JFBW
JXMT
JXFI
JXRO
JXRL
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JOMT
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JNCT1
JNCT2
JNCT3
JNSE1
JNSE2
JNSE3
JNSE4
JNPAT
JNFBW
JNXMT
JNXFI
JNXRO
JNXRL
JNATN
JNOMT

<empty>
<empty>

SETPAT

WRPIN
WXPIN
WYPIN
WRLUT

WRBYTE
WRWORD
WRLONG

RDFAST
WRFAST
FBLOCK

XINIT
XZERO
XCONT

REP
COGINIT

OMUL
QDIV
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CZ0
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000011010
000011011
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000011110
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000100000
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000100100
000100100
000100100
000100100
000100100
000100100
000100100
000100100
000100100
000100100
000100100

QFRAC
QSQRT
QROTATE
QVECTOR

HUBSET
COGID
COGSTOP
LOCKNEW
LOCKRET
LOCKTRY
LOCKREL
QLOG
QEXP

RFBYTE
RFWORD
RFLONG
RFVAR

RFVARS

WEFBYTE
WEWORD
WFLONG

GETQX
GETQY

GETCT
GETRND

SETDACS
SETXFRQ
GETXACC
WAITX

SETSE1
SETSE2
SETSE3
SETSE4

POLLINT
POLLCT1
POLLCT2
POLLCT3
POLLSE1l
POLLSE2
POLLSE3
POLLSE4
POLLPAT
POLLFBW
POLLXMT
POLLXFI
POLLXRO
POLLXRL
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000101111
000101111

000110000
000110001
000110010
000110011

000110100
000110101

POLLATN
POLLQMT

WAITINT
WAITCT1
WAITCT2
WAITCT3
WAITSE1l
WAITSE2
WAITSE3
WAITSE4
WAITPAT
WAITFBW
WAITXMT
WAITXFI
WAITXRO
WAITXRL
WAITATN

ALLOWI
STALLI

TRGINT1
TRGINT2
TRGINT3

NIXINT1
NIXINT2
NIXINT3

SETINT1
SETINT2
SETINT3

SETQ
SETQ2

PUSH
POP

JMP
CALL
RET
CALLA
RETA
CALLB
RETB

JMPREL
SKIP
SKIPF
EXECF

GETPTR
GETBRK
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000111111

001000000
001000001
001000010
001000011
001000100
001000101
001000110
001000111

001000000
001000001
001000010
001000011
001000100
001000101
001000110
001000111

001001000
001001001
001001010
001001011
001001100
001001101
001001110
001001111

001010000
001010001
001010010
001010011
001010100
001010101
001010110
001010111

001011000
001011001
001011010
001011011

COGBRK
BRK
SETLUTS

SETCY
SETCI
SETCQ
SETCFRQ
SETCMOD

SETPIV
SETPIX

COGATN

TESTP
TESTPN
TESTP
TESTPN
TESTP
TESTPN
TESTP
TESTPN

DIRL
DIRH
DIRC
DIRNC
DIRZ
DIRNZ
DIRRND
DIRNOT

OUTL
OUTH
OouTC
OUTNC
OouTZ
OUTNZ
OUTRND
OUTNOT

FLTL
FLTH
FLTC
FLTNC
FLTZ
FLTNZ
FLTRND
FLTNOT

DRVL
DRVH
DRVC
DRVNC
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WC/WZ
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ORC/ORZ
ORC/ORZ
XORC/XORZ
XORC/XORZ

{Wezy
{Wczy
{Wczy
{Wcz}
{Wcz}
{Wcz}
{Wcz}
{Wcz}

{Wczy
{Wczy
{Wcz}
{Wcz}
{Wcz}
{Wcz}
{Wez}
{Wcz}

{wcz}
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{wWcz}

{wcz}
{Wcz}
{Wcz}
{Wcz}

116




EEEE
EEEE
EEEE
EEEE

EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE
EEEE

EEEE
EEEE

EEEE
EEEE
EEEE
EEEE

EEEE
EEEE

EEEE
EEEE

1101011 CzL
1101011 CzZL
1101011 CZL
1101011 CzZL

1101011 000
1101011 000
1101011 000
1101011 00O
1101011 000
1101011 000
1101011 o000
1101011 o000
1101011 000
1101011 000
1101011 czo
1101011 czo
1101011 000
1101011 000
1101011 o000
1101011 o000
1101011 cz1

1101011 OOL
1101011 00O

1101100 RAA
1101101 RAA
1101110 RAA
1101111 RAA

11100WW RAA
11101WW RAA

11110NN NNN
11111NN NNN

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD

DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
DDDDDDDDD
Occcczzzz

DDDDDDDDD
DDDDDDDDD

AAAAAAAAA
AAAAAAAAA

NOP

NOT

NEG
NEGC
NEGNC
NEGZ
NEGNZ
ENCOD
ONES
TEST

register
register
register
register
register
register
register
register
register
register

001011100 DRVZ D/# {wCz}
001011101 DRVNZ D/# {wWCz}
001011110 DRVRND D/# {WCz}
001011111 DRVNOT D/# {wcz}
001100000 SPLITB D
001100001 MERGEB D
001100010 SPLITW D
001100011 MERGEW D
001100100 SEUSSF D
001100101 SEUSSR D
001100110 RGBSQZ D
001100111 RGBEXP D
001101000 XORO32 D
001101001 REV D
001101010 RCZR D {WC/WZ/WCZ}
001101011 RCZL D {WC/Wz/WCZ}
001101100 WRC D
001101101 WRNC D
001101110 WRZ D
001101111 WRNZ D
001101111 MODCZ «c,z {WC/WZ/WCZ}
001110000 SETSCP D/#
001110001 GETSCP D
AAAAAAAAA JMP #{\1a
AAAAAAAAA CALL #{\}1a
AAAAAAAAA CALLA #{\}A
AAAAAAAAA CALLB  #{\}A
AAAAAAAAA CALLD register, #{\}A
AAAAAAAAA LOC register, #{\}A
NNNNNNNNN AUGS #N
NNNNNNNNN AUGD #N
$00000000
NOT register,register
ABS register,register
NEG register,register
NEGC register,register
NEGNC register,register
NEGZ register,register
NEGNZ register,register
ENCOD register,register
ONES register,register
TEST register,register
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SETNIB register/#
GETNIB register
ROLNIB register

SETBYTE register/#
GETBYTE register
ROLBYTE register

SETWORD register/#
GETWORD register
ROLWORD register

ALTSN register
ALTGN register
ALTSB register
ALTGB register
ALTSW register
ALTGW register
ALTR register
ALTD register
ALTS register
ALTB register
ALTI register
instruction)

DECOD register
BMASK register

POPA register
POPB register

RESI3
RESI2
RESI1
RESIO

RETI3
RETI2
RETI1
RETIO
AKPIN register/#

PUSHA
PUSHB

register/#
register/#

XSTOP

MODC c
MODZ z

SETNIB
GETNIB
ROLNIB

SETBYTE
GETBYTE
ROLBYTE

SETWORD
GETWORD
ROLWORD

ALTSN
ALTGN
ALTSB
ALTGB
ALTSW
ALTGW
ALTR
ALTD
ALTS
ALTB
ALTI

DECOD
BMASK

RDLONG
RDLONG

CALLD
CALLD
CALLD
CALLD

CALLD

CALLD

CALLD

CALLD

WRPIN

WRLONG
WRLONG

XINIT

MODCZ
MODCZ

0,register/#,#0 (use after ALTSN)
register,0,#0 (use after ALTGN)
register,0,#0 (use after ALTGN)

0,register/#,#0 (use after ALTSB)

register,0,#0 (use after ALTGB)
register,0,#0 (use after ALTGB)
0,register/#,#0 (use after ALTSW)
register,0,#0 (use after ALTGW)

register,0,#0 (use after ALTGW)
register, #0

register, #0

register, #0

register, #0

register, #0

register, #0

register, #0

register, #0

register, #0

register, #0

register,#%101_100_100 (substitute register for next

register,register
register,register

register,--PTRA
register,--PTRB

$1F0,$1F1 WCZ
$1F2,$1F3 WCZ
$1F4,$1F5 WCZ
INA,INB WCZ

INB,$1F1 WCZ
INB, $1F3 WCZ
INB, $1F5 WCZ
INB, INB WCZ

#1,register/#

register/#,PTRA++
register/#,PTRB++

#0,#0
c,0 {WC}
0,z {WZ}
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_CLR = %0000

_NC_AND NZ = %0001
_NZ AND NC = %0001
_GT = %0001
_NC_AND Z = %0010
_Z AND NC = %0010
_NC = %0011
_GE = %0011
_C_AND NZ = %0100
_NZ AND C = %0100
_Nz = %0101
_NE = %0101
_C NE Z = %0110
_Z NE C = %0110
_NC_OR_NZ = %0111
_NZ OR_NC = %0111
_C AND Z = %1000
_Z AND C = %1000
_C EQ Z = %1001
_Z EQ C = %1001
_Z = %1010
_E = %1010
_NC OR _Z = %1011
_Z OR_NC = %1011
_C = %1100
_LT = %1100
_C_OR NZ = %1101
_NZ OR C = %1101
_C OR Z = %1110
_Z OR C = %1110
_LE = %1110
_SET = %1111
Examples:

MODCZ _CLR, _Z OR C WCZ 'c=0, 2 |=C
MODCZ _Nz,0 WC 'cC = 12
MODCZ 0, SET WZ 'z =1
MODC _Nz AND C WC 'c =12 & C
MODZ _Z NE C WZ 'Z =2 *~C
notes

A symbol declared under ORGH will return its hub address when referenced.

A symbol declared under ORG will return its cog address when referenced,
but can return its hub address, instead, if preceded by 'Q':

COGINIT #0, #@newcode
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For immediate-branch and LOC address operands, "#" is used before the
address. In cases where there is an option between absolute and relative
addressing, the assembler will choose absolute addressing when the branch
crosses between cog and hub domains, or relative addressing when the
branch stays in the same domain. Absolute addressing can be forced by
following "#" with "\".

CALLPA/CALLPB/DJZ. . JNXRL/JNATN/JNQMT = rel_imm9/ind_reg20
JMP/CALL/CALLA/CALLB/CALLD - abs_imm20/rel_ imm20/ind reg20
LOC - abs_imm20/rel_imm20

If a constant larger than 9 bits is desired in an instruction, use "##",
instead of "#" to invoke AUGS/AUGD:

AND address, ##S$FFFFF
DJINZ register, ##far_away

The following assembler directives exist:
ORGH {hub_address}

Set hub mode and an optional address to £ill to with $00 bytes.

ORG {cog_address {,cog_address_limit}}

Set cog mode with optional cog address and limit. Defaults to $000,$200.
If $200..$3FF used for cog address, LUT range selected. Doesn't generate
any data.

ORGF cog_address

Fill to cog_address with $00 bytes. Must be in cog mode.

RES cog_registers

Reserve cog registers. Doesn't generate any data. Must be in cog mode.

FIT cog_or_hub_address

Make sure cog code fits within cog or hub address.

ALIGNW/ALIGNL

Align to next word/long in hub.
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BYTE data{[count]}{,data{[count]}...}
WORD data{[count]}{,data{[count]}...}
LONG data{[count]}{,data{[count]}...}

Generate byte/word/long data with optional repeat count.

ot ROM / Debug ROM

re [15:0][31:0] booti = {

// cold boot rom - only cogl on startup

32'b1111 1100100 010 000000000 111111000, // 0 = wrfast #0,ptra (begin write at $FC000)
32'b1111 1100110 110 000000001 111111001, /1= rep #1,ptrb (write $4000 bytes)
32'b1111 1101011 000 000000000 000010101, /{2 = wibyte O (write rom byte to hub ram)
32'b1111 1100100 010 000000000 111111000, // 3 = wrfast #0,ptra (finish write)

32'b1111 1100111 010 000000000 111111000, // 4 = coginit #0,ptra (restart at $FC000)
32'b1111 1100111 010_000000000_111111000, // 5= (unused, same as 4)

32'b1111 1100111 010 000000000 111111000, // 6 = (unused, same as 4)

32'b1111 1100111 010 000000000 111111000, // 7= (unused, same as 4)

// warm boot rom - via coginit

32'p1111 0110000 001_111111100_000000000, [0 = mov outa,#0 (clear port shadow registers)

32'p1111 0110000 001 111111101 000000000, [/ 1= mov outb,#0

32'p1111 0110000 001 111111110 111111000, [ 2 = mov ina, #51F8 (point ina/ijmp0 to cog's initial int0 handler)
3'k111, 'hubs, 28'R1101011 001_111110111 000101000, f1 3 = setqg #31F7 (if 'hubs, load $1F8 longs from ptrb)

3'k111, 'hubs, 28'21011000_001_000000000_110000000, f/ 4 = rdlong O,ptrb

21'b1111 1101011 000_1111110, 'hubs, 10'k1l_000101100, [ = jup dirb/ptrb (if 'hubs, Jjump to $000 (dirb=0), else ptrb)
21'b1111 1101011 000 1111110, 'hubs, 10'bl_000101100, f/ & = (unused, same as 5)

21'b1111 1101011 000 1111110, thubs, 10'bl_ 000101100 £/ 7 = (unused, same as 5)

}:

re [7:0][31:0] debugi = {

// debug rom - executes in $001F8..$001FF

32'b1111 1101011 001 000001111 000101000, /1 0 = setq  #$OF (ready to save registers §$000..$00F)
32'b1111 1100011 000_000000000_111111000, // 1= wrlong O,ptra (ptra reads %1111 1111 lccc c000_0000)
32'b1111 1101011 001 000001111 000101000, /12 = setq  #$OF (ready to load program into §000..$00F)
32'b1111 1011000 000_000000000_111111001, // 3 = rdlong 0,ptrb (ptrb reads %1111 1111 lccc c100_0000)
32'b1111 1101100 000_000000000_000000000, 7/ 4= imp #0 {jump to loaded program)

32'b1111 1101011 001 000001111 000101000, // 5 = setq  #$OF (ready to restore registers §000..$00F)
32'b1111 1011000 000_000000000_111111000, // 6 = rdlong 0,ptra (ptra reads %1111 1111 lccc c000_0000)
32'b1111 1011001 110 111111111 111111111 /17 = retid ('calld inb,inb wcz')

}:
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