Heat and Temperature Concepts

What is Heat?

If you have a cup of hot cocoa, the cup feels warm to the touch. Why is this? The '_____' has travelled from the cocoa to the cup due to the particle's _____ and ____ with the cup's _____. This transfer of '_____' is what is known as _____. ______ is the amount of _____ in a sample of matter. Since Heat is the ______ of _____, it can be _____ from one mass to another and moves from particles that are at a higher _____ to ones that are at a lower _____. Particles that are 'cold' Particles that area 'warm' Particles that are 'hot' These terms are relative terms that describe an of that can be used for comparison with each other. But, they don't give us an idea as to_____heat they have relative to all other particles.

What is Temp	<u>erature?</u>	
There are	many ways to '	' the amount of heat in particles.
Many cou	ntries of the world use the	scale which sets the boiling
point of water at	and the freezir	g point at
The U.S. u	ses the	scale which is based mostly
on	solution propert	ies and a previously used scale that had
	at 0 degrees and	andat 7.5,
	temp at 22.	
Both scales have	different increments:	
1 Degree conversion between		a degree! Here is the
°F to °C -	Deduct 32, then multip	ly by 5, then divide by 9
°C to °F -	Multiply by 9, then divi	de by 5, then add 32
Practice proble	<u>ems</u>	
95F to C		
-14C to F		
Another Scale	<u> </u>	
		m 'Lord' Kelvin) is an
	Kelvin is known as '	
This is the point a	at which all particle	and there is
zero	taken up by the particl	es in a substance.
This is also the SI	unit of choice for Physical Scie	nces. Mainly because there are no
	numbers•	

°C	°F	Description		
180	356	Moderate Oven		
100	212			
40	104	Hot Bath		
37	98.6			
30	86	Beach weather		
21	70			
10	50	Cool Day		
0	32	point of water		
-18	0	Very Cold Day		
-40	-40	Extremely Cold Day (and the same number!)		

(**bold** are exact)

Heat and Temperature related

So, Temperature is a measurement of the	ne amount of
	in the particles of a substance.

Heat and Temperature Concepts Part 2: Heat Transfer

Methods of Heat Transfer

Heat flows from particles at a	to a			
But do they flow the sai	me through all materials?			
Does heat flow the same through	as it does through			
materials?				
There are three basic methods in which he	eat can be transferred through particles			
of different phases.				
Conduction				
Conduction occurs when two objects at	are in			
contact with each other.				
Heat flows from theto	o the object until they are			
both at the same temperature.				
Conduction is the movement of heat thro	ough a substance by the			
of molecules.				
Heat flows by conduction best through	, because the particles are			
close together and have better with each other.				
Conductors Vs. Insulators				
All metals have high	_ and are good conductors, while			
rubber, plastic, ceramics and glass have low	, making			
them the best				

Metals are good c	onductors because	their particles	allow	 	
to flow from atom to atom		This is due to			
their higher					
Convection					
Convection occurs when	warmer areas of a _		or a	rise to	
cooler areas in the	or	·			
As this happens, co	ooler liquid or gas ta	ikes the place o	of the warmer a	areas which	
have risen higher. This cyc	_ pattern and				
heat is	to coole	r areas. You se	e convection w	hen you	
Convection is the	flow of heat energy	through		<u>.</u>	
Radiation					
Radiation is a method of h	neat transfer that do	oes not rely upo	on any		
between the	ween the and the heated object.				
For example, we feel heat	from the	_ even though	we are not tou	uching it. Heat	
can be transmitted throug	gh		by		
radiation.					
Radiation is a form of ene	rgy transport consi	sting of		waves	
traveling at the	of light. <u>No</u>)	is exchanged	and no	
is req	<u>uired.</u>				