/I Elliptical Orbit Simulation

/I This is a simulation of an orbiting body around a large body, such
/l as a planet or comet around the sun.

/I shared under Creative Commons license

I https://creativecommons.org/licenses/by-nc-sa/3.0/

/I Written for Processing by Jason Galbraith

/I Rewritten for p5.js by Sophia Wang, 10.16.2025

/*
*hkkkhkkkhkkkhkhkhkhkhkhkhkhkhhkhkhkhhhkhrhkhkhkhkhhrkhrhkhkhkhkhhrkhrhkhrhhxd

Change the numbers below to see how it changes the simulation!

R L L L e S e e e s e st

*/

/I The following variable is the eccentricity of the orbit.

/I An eccentricity of O is a circle, while an eccentricity of 0.9 is a
/I narrow ellipse.

let eccentricity = 0.39;

/I The following is how many trailing dots to plot.
let TRAILLENGTH = 10;

/I This is how much of an area the planet will sweep out at each step.
let DELTA_T = 5000;

/I This is how much to delay the simulation between steps.
let DELAY = 20;

/[This is the planet size in pixels.
let planetSize = 5;

/I This is the sun size (focus) in pixels
let sunSize = 30;

/*

kkkkkkkkkkkkkkkhkkhkkkhkhkkhkkkhkkhkhkkhkkhkkkkkhkkkkkhkkhkkkkhkkhkhkkkkkkkkkkkkkk

Below here is the actual simulation. You probably shouldn't mess
with this section. Or at least, you should expect weird results.

kkkkkkhkkhkkhhkhkkhkkhkhhkhkkhkkhkhhkhkkhkkhkhhkkhkkhkkkhkkhkkkhkkkkkx

*/

let WIDTH = 600, HEIGHT = 600;
leta = WIDTH/2 * 0.8; //center to major
let ¢ = eccentricity * a; //focus

let b = Math.sqrt((a*a)-(c*c)); //center to minor

let x_trail = new Array(TRAILLENGTH);

let y_trail = new Array(TRAILLENGTH);

let counter = 0, currentAngle = 0, currentTrail = 0, currentDelay = 0O;

/I setup function called initially, only once
function setup() {
createCanvas(600, 600);
background(0);
ellipseMode(RADIUS);
for (leti =0;i < TRAILLENGTH; i++) {/Set trail to draw off screen
x_trail[i] = -100;
y_trail[i] = -100;
}
}

/I Draw function loops
function draw() {
currentDelay++;
if (currentDelay == DELAY) {//If it is time to draw the ellipse
currentDelay = 0;
//These are the x and y coordinates on the ellipse
let startX = x_trail[currentTrail]; //start from most recent position in trail
let startY =y _trail[currentTrail];
let finalX = x_trail[currentTrail];
let finalY = y_trail[currentTrail];
currentTrail++; //set new trail position
if (currentTrail == TRAILLENGTH) {
currentTrail = 0;

}
let totalArea = 0.0;
let changelnAngle = 0.0;
let startH = 0.0; //hypotenuse of first line from focus
let finalH = 0.0; //hypotenuse of second line from focus
let area = 0.0;
let angleRadians = (currentAngle / 180.0) * PI,
let startChangeX = startX-(WIDTH/2+c); //x position from focus of first line
let startChangeY = (HEIGHT/2)-startY; //y position from focus of first line
let startAngle = Math.atan(Math.abs(startChangeY)/Math.abs(startChangeX)); // angle of

first line from focus
if ((startChangeX <= 0) && (startChangeY >= 0)) { //figure out what quadrant you are in

startAngle = Pl/2-startAngle + P1/2;

}
else if ((startChangeX <= 0) && (startChangeY <= 0)) {

startAngle = PI + startAngle;
}
else if ((startChangeX >= 0) && (startChangeY <= 0)) {

startAngle = Pl/2-startAngle + 3*PI/2;
}
let finalChangeX = finalX-(WIDTH/2+c); //X position from focus of second line
let finalChangeY = (HEIGHT/2)-finalY; //Y position from focus of second line
let finalAngle = startAngle;

while (totalArea < DELTA_T) { //while you have not swept out enough area
startX = finalX;
startY = finalY;
startChangeX = startX-(WIDTH/2+c);
startChangeY = (HEIGHT/2)-startY;
startAngle = finalAngle;
currentAngle += 0.1; //change the angle slightly
angleRadians = (currentAngle / 180.0) * PI; //degrees to radians
finalX = a * cos(angleRadians) + WIDTH/2; //calculate x position of new point using center
of ellipse formula
finalY = b * sin(angleRadians) + HEIGHT/2; //calculate y position of new point using center
of ellipse formula
finalChangeX = finalX-(WIDTH/2+c); //calculate distance from focus in x
finalChangeY = (HEIGHT/2)-finalY; //calculate distance from focus in y
finalAngle = Math.atan(Math.abs(finalChangeY)/Math.abs(finalChangeX)); //angle from
second line to focus
if ((finalChangeX <= 0) && (finalChangeY >= 0)) { //figure out your quadrant
finalAngle = PI1/2 - finalAngle + PI/2;
}
else if ((finalChangeX <= 0) && (finalChangeY <= 0)) {
finalAngle = PI + finalAngle;
}
else if ((finalChangeX >= 0) && (finalChangeY <= 0)) {
finalAngle = Pl/2-finalAngle + 3*P1/2;
}
changelnAngle = startAngle - finalAngle; //calculate the change in angle
startH = Math.sqrt(startChangeX*startChangeX+startChangeY*startChangeY); //figure out
the hypotenuse of the first line
finalH = Math.sgrt(finalChangeX*finalChangeX+finalChangeY*finalChangeY)); //figure out
the hypotenuse of the second line
area = startH * finalH * Math.sin(changelnAngle) * 0.5; //calculate the area of that triangle
totalArea += area; //Add that to the total area
}lend while
angleRadians = (currentAngle / 180.0) * P,
x_trail[currentTrail] = a * cos(angleRadians) + WIDTH/2; //figure out planet's x

y_trail[currentTrail] = b * sin(angleRadians) + HEIGHT/2; //figure out planet's y
background(0);

stroke(255);

fill(0);

ellipse(WIDTH/2, HEIGHT/2, a, b); //draw ellipse
fill("#ffffba');
ellipse((WIDTH/2+c), HEIGHT/2, sunSize, sunSize);
for (leti=0;i < TRAILLENGTH; i++){
fill(255);
ellipse(x_trail[i], y_trail[i], planetSize, planetSize); //draw trail
}
stroke(0, 0, 255);
fill(0, 0, 255);
ellipse(x_trail[currentTrail], y_trail[currentTrail], planetSize, planetSize); //draw planet

