HW 6 | Appointment Reservation System

Objectives: To gain experience with database application development, and learn how to use
SQL from within Python via pymssql.

Due dates:

e Setup: due Monday, February 26th at 11:00pm
e Part 1: due Wednesday, February 28th at 11:00pm
e Part 2: due Wednesday, March 7th at 11:00pm

(setup video for Python)

Contents:
Introduction

Setup (deliverables)

Homework Requirements

Part 1 (deliverables)

Part 2 (deliverables)
Grading

Introduction

A common type of application that connects to a database is a reservation system, where users
schedule time slots for some centralized resource. In this assignment you will program part of
an appointment scheduler for vaccinations, where the users are patients and caregivers keeping
track of vaccine stock and appointments.

This application will run on the command line terminal, and connect to a database server you
create with your Microsoft Azure account.

You will have two main tasks:
e Complete the design of the database schema with an E/R diagram and create table
statements
e Implement the code that stores Patient information, and lets users interactively schedule
their vaccine appointments. We have implemented the code that caregivers use to
manage the appointment slots and inventory, which will be a useful reference for you.
The implementation is broken up into two milestones, part 1 and part 2, described below.

https://uw.hosted.panopto.com/Panopto/Pages/Auth/Login.aspx?instance=UWNetid&Auth=SessionView&panoptoState=94b9105a-e338-4b96-8641-b11e0069ce16

Be Careful: This homework requires writing a non-trivial amount of code; our solution is about
600 lines, including the starter code. It will take SIGNIFICANTLY more time than your previous
assignments.

Setup

*Make sure to finish this part of the assignment and upload your setup verification of
step 2.4 for the first 5 points!* We have a setup video for this part to help you with the
steps! See the link above.

2.1 Clone the starter code

1. Navigate to the Github repository hosting the starter code:

https://github.com/aaditya1004/vaccine-scheduler-python (As you continue to work on

the assignment, DO NOT manipulate the internal project structure of the assignment.

This will save you some headache when it comes time to submit your code)

2. Click on the green button “Code” and select “Download ZIP” from the drop-down menu.

+ master ~ ¥ 1branch > 0tags Go to file Add file ~ Code ~

. aaditya1004 [FINAL] all caregiver functions work end to end k-] Clone
HTTPS SSH GitHub CLI

. S IEY https://github.com/aadityalee4/vaccine-sct
3 .gitignore skeleton of all files copied frc Use Git or checkout with SVN using the web URL
[README.md

) Open with GitHub Desktop

README.md ~
m m Download ZIP

Python Application for Vaccine Scheduler

3. Once your download completes, decompress the ZIP file and retrieve the starter code.

2.2 Read through the starter code

We created the important folders and files you will be using to build your application:

https://github.com/aaditya1004/vaccine-scheduler-python

e src.main.scheduler/
Scheduler.py:

m This is the main entry point to the command-line interface application.
Once you compile and run Scheduler.py, you should be able to interact
with the application.

db/:

m This is a folder holding all of the important components related to your
database.

m ConnectionManager.py: This is a wrapper class for connecting to the
database. Read more in 2.3.4. You should run this document to connect
to the database so you can successfully interact with the application.

model/:

m This is a folder holding all the class files for your data model.

m You should implement all classes for your data model (e.g., patients,
caregivers) in this folder. We have created implementations for Caregiver
and Vaccines, and you need to complete the Patient class (which can
heavily borrow from Caregiver). Feel free to define more classes or
change our implementation if you want!

e src.main.resources/
o create.sql: SQL create statements for your tables, we have included the
create table code for our implementation. You should copy, paste, and run the

code (along with all other create table statements).

2.3 Configure your database connection

2.3.1 Installing dependencies and Anaconda

Our application relies on a few dependencies and external packages. You'll need to install those

dependencies to complete this assignment.

We will be using Python SQL Driver to allow our Python application to connect to an Azure

database. We recommend using Anaconda for completing this assignment.

Mac users, follow the instructions in the link to install Anaconda on macOS:

https://docs.anaconda.com/anacondalinstall/mac-os/

Windows users, follow the instructions in the link to install Anaconda on Windows:

https://docs.anaconda.com/anacondal/install/windows/. You can choose to install Pycharm for

Anaconda, but we recommend installing Anaconda without PyCharm as we will be using the

terminal.

Check that you have Anaconda installed by running conda -V. If it outputs a version, you are

good to go!

After installing Anaconda:
1. We first need to create a development environment in conda.
a. macOS users: launch terminal and navigate to the source directory.
b. Windows users: launch “Anaconda Prompt” and navigate to the source directory.
2. Follow the steps here to create an environment. Make sure you remember the name of
your environment.
a. Run: conda create -n [environment name]
3. Activate your environment following the steps here.
a. Run: conda activate [environment name]
i. NOTE: You will know you activated the environment if you see the
(Homework_6) label instead of the (base) label
b. To deactivate, Run: conda deactivate
Run “conda install pymssql’ to install the dependencies.

Run “conda env list” and ensure that the * is next to the environment you just created

Disclaimer: You don’t need to put the file you downloaded in Step 2.1 into the environment

folder. You can leave it wherever you downloaded.

2.3.3 Setting up credentials

The first step is to retrieve the information to connect to your Microsoft Azure Database.

e The server name can be found in your Azure portal. Only use the part before

“ database.windows.net”

https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/windows/
https://stackoverflow.com/questions/58291108/conda-not-found-after-upgrading-to-macos-catalina
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#activating-an-environment

o In the example below, it would be “data514server”.
o YOU NEED TO CHANGE THIS ACCORDING TO YOUR DATABASE!
e The database name can be found in your Azure portal
o In the example below, it would be “data514db”
o YOU NEED TO CHANGE THIS ACCORDING TO YOUR DATABASE!
e The User ID would be of the format <user id>@<server name>
o For example, it could be exampleUser@data514server where “exampleUser” is
the login ID that you used to log in to the query editor on Azure and
“‘data514server” is the server name.
e Password is what you use to log in to your query editor on the Azure portal.
o If your password contains special characters (!, *, etc), you will need to escape
the special characters using a backslash. For example, if your password is
pass!123, you would run conda env config vars set Password=pass\!123.

o data514db (data514server/data514db) =

SQL database
0O Search (Cmd+/) \ « [copy 'O Restore 7T Export @ Setserverfirewall [i] Delete /” Connectwith.. ~ < Feedback

@ Overview A Essentials
esource group (change: 514ResourceGrou; erver name ataS14server.database windows.net

& Activity log Rs group (ge) : DATAS14Rs Group S data514: datab o

@ Tags Status Online Elastic pool No elastic pool

2 b d sof ol Location West US 2 Connection strings : Show database connection strings

iagnose and solve problems

Subscription (change) DATA 514 TAs Pricing tier Standard S0: 10 DTUs

Earliest restore point : 2021-04-21 00:00 UTC

Quick start

Subscription ID 741b98c2-274d-4f56-80a9-1e321ad0b217
H Query editor (preview)

Tags (change) : Click here to add tags

Once you've retrieved the credentials needed, you can set up your environment variables.

2.3.3 Setting up environment variables

Make sure to set this in the environment you created if you’re using virtual environments!
Remember, to go into the environment you created, you’ll need to activate it.

In your terminal or Anaconda Prompt, type the following:

conda env config vars set Server={}

conda env config vars set DBName={}

conda env config vars set UserlD={}

conda env config vars set Password={}

Where “{}” is replaced by the respective information you retrieved from step. Do not

actually include the {}.

You will need to reactivate your environment after that with just the command “conda
activate [environment nhame]”. Don’t do conda deactivate before this. After running conda
activate, verify you set your credentials properly by running conda env config vars list. You
should see the Server, DBName, UserlD, and Password fields. It should look similar to this:

Server = your-server-name

DBName = your-db-name

UserlD = username@your-server-name
Password = your-password

env =

config =

vars =

set =

If your password field looks off, be sure that you escaped it properly, as mentioned above.

2.3.4 Working with the connection manager

In scheduler.db.ConnectionManager.py, we have defined a wrapper class to help you
instantiate the connection to your SQL Server database. You’ll need to run this document to
connect to your database: Run “python ConnectionManager.py”.

We recommend reading about pymssqgl Connection and Cursor classes for retrieving and
updating information in your database.

Here’s an example of using ConnectionManager.

instantiating a connection manager class and cursor
cm = ConnectionManager()
conn = cm.create_connection()F

cursor = conn.cursor()

example 1: getting all names and available doses in the vaccine table
get_all vaccines = "SELECT Name, Doses FROM vaccines"
try:

cursor.execute(get_all vaccines)

for row in cursor:

(name:" + str(row[‘Name’]) + ", available_doses: + str(row[‘Doses’]))

except pymssql.Error:

(“Error occurred when getting details from Vaccines”)

example 2: getting all records where the name matches “Pfizer”
get_pfizer = "SELECT * FROM vaccine WHERE name = %s"
try:

cursor.execute(get_pfizer, ‘fizer’)

https://pymssql.readthedocs.io/en/stable/ref/pymssql.html#connection-class
https://pymssql.readthedocs.io/en/stable/ref/pymssql.html#cursor-class

for row in cursor:

+ str(row[‘Doses’]))

(name:" + str(row[‘Name’]) + ", available_doses:
except pymssql.Error:

(“Error occurred when getting pfizer from Vaccines”)

Helpful resources on writing pymssql:

Documentation -> https://www.pymssal.org/ref/pymssagl.html

Examples -> https://www.pymssql.org/pymssql_examples.html

2.4 Verify your setup

Once you're done with everything, try to run the program and you should see the following
output. You should be running the program in terminal (macOS) or Anaconda Prompt (Windows)
and in your conda environment.

Note: Command to run the program: “python Scheduler.py” or “python3 Scheduler.py”.

Welcome to the COVID-19 Vaccine Reservation Scheduling Application!
*** pPlease enter one of the following commands ***

create_patient <username> <password>

create_caregiver <username> <password>

login_patient <username> <password>

login_caregiver <username> <password>

search_caregiver_schedule <date>

reserve <date> <vaccine>

upload_availability <date>

cancel <appointment_id>

add_doses <vaccine> <number>

show_appointments
logout
quit

If you can see the list of options above, congratulations! You have verified your local setup.

https://www.pymssql.org/ref/pymssql.html
https://www.pymssql.org/pymssql_examples.html

Next, to verify that you have set up your database connection correctly, try to create a
caregiver with the command “create_caregiver <username> <password>". Make sure you

have created the tables on Azure before testing this command.

To verify you have done the setup, take a screenshot or phone picture of this screen on your
computer, along with your created caregiver on Azure (a simple SELECT showing that you

have created a caregiver would work), and upload to gradescope for 5 points.

Deliverables for Setup
Due: Monday, February 26th at 11:00pm
Upload to Gradescope a screenshot or phone picture of the welcome prompt on your computer

and the successful “create_caregiver <username> <password>" command, along with your

created caregiver on Azure.

Requirements

Your assignment is to build a vaccine scheduling application (with a database hosted on

Microsoft Azure) that can be deployed by hospitals or clinics and supports interaction with users

through the terminal/command-line interface. In the real world it is unlikely that users would be

using the command line terminal instead of a GUI, but all of the application logic would remain

the same. For simplicity of programming, we use the command line terminal as our user

interface for this assignment.

We need the following entity sets in our database schema design (hint: you should probably be

defining your class files based on this!):

Patients: these are customers that want to receive the vaccine.

Caregivers: these are employees of the health organization administering the
vaccines.

Vaccines: these are vaccine doses in the health organization’s inventory of

medical supplies that are on hand and ready to be given to the patients.

In this assignment, you will need to:

Complete the design of the database schema, with an E/R diagram and table statements
(Part 1);

Implement the missing functionality from the application (Part 1 & Part 2)

A few things to note:

You should handle invalid inputs gracefully. For example, if the user types a command
that doesn’t exist, it is bad to immediately terminate the program. A better design
would be to give the user some feedback and allow them to re-type the command.
Points will be taken off if the program terminates immediately after receiving
invalid input. While you don’t have to consider all possible inputs, error handling for
common errors (e.g., missing information, wrong spelling) should be considered.
After executing a command, you should re-route the program to display the list of
commands again. For example:

o If a patient ‘reserves’ their vaccine for a date, you should update your database

to reflect this information and route the patient back to the menu again.

1.3 How to handle passwords

You should never directly store any password in the database. Instead, we'll be using a
technique called salting and hashing. In cryptography, salting hashes refer to adding random
data to the input of a hash function to guarantee a unique output. We will store the salted
password hash and the salt itself to avoid storing passwords in plain text. Use the following

code snippet as a template for computing the hash given a password string:

import hashlib

import os

salt = os.urandom(16)

hash = hashlib.pbkdf2 hmac(

'sha256',
.encode('utf-8"),
salt,

Part 1

Design

You will first need to work on the design of your database application. Before you begin,
please carefully read the assignment specification (including Part 2) and the starter code,
and think about what tables would be required to support the required operations. Once
you have an idea of how you want to design your database schema:
e Draw the ER diagram of your design and place it under src.main.resources
(design.pdf).
e Write the create table statements for your design, create the tables on Azure, and save
the code under src.main.resources (create.sql).
You will also need to implement the corresponding Python classes of your design. We have
implemented Caregiver.py for you, but feel free to change any of the details. You will need the
following classes, and you may implement more data models if you feel the necessity:
e Caregiver.py: data model for caregivers (implemented for you.)
e Vaccine.py: data model for vaccines (implemented for you.)
e Patient.py: data model for patients.
o You will implement this class, it can be mostly based on Caregiver.py

Implementation

Congratulations! You’re now ready to implement your design! For Part 1, you will need to
implement the following functionalities. We have implemented account creation for caregivers as

an example for you, please read through our implementation before you begin.

You will need to implement the following operations:
e create patient <username> <password>
o Print "Created user <username>" if create was successful.
m Example: Created user pl

If the username is already taken, print “Username taken, try again”.

o

o

For all other errors, print “Create patient failed”.
o Your output must match exactly. Do not include the “< >” in your output.

e login_patient <username> <password>

o

Print "Logged in as <username>" if login was successful.
m Example: Logged in as pl
o If a useris already logged in in the current session, you need to log out first
before logging in again. In this case, print “User already logged in, try again”
o For all other errors, print "Login patient failed"
o Your output must match exactly. Do not include the “< >” in your output.

Deliverables for Part 1

Due: Wednesday, February 28th at 11:00pm

You are free to define any additional files, but Part 1 should have at least the following:
e src.main.resources
o design.pdf: the design of your database schema.
o create.sql: the create statement for your tables.
e src.main.scheduler.model
o Caregiver.py: the data model for your caregivers.
o Patient.py: the data model for your users.
o Vaccine.py: the data model for vaccines.
o Any other data models you have created.
e src.main.scheduler
o Scheduler.py: the main runner for your command-line interface.

Part 2

You will implement the rest of your application in Part 2.

For most of the operations mentioned below, Your program will need to do some checks to

ensure that the appointment can be reserved (e.g., whether the vaccine still has available

doses). Again, you do not have to cover all of the unexpected situations, but we do require you

to have a reasonable amount of checks (especially the easy ones).

For Part 2, you will need to implement the following operations:

search_caregiver_schedule <date>
o Both patients and caregivers can perform this operation.
o Output the username for the caregivers that are available for the date ordered
alphabetically by the username of the caregiver.
o Then, output the vaccine name and number of available doses for that vaccine
separated by a space.

m For example if we had 3 available caregivers (c1, c2, c3) and 3 available
vaccines (Covid, Flu, HPV), the output of “search_caregiver_schedule
12-03-2023” should be:
cl
c2
c3
Covid 2
Flu 5
HPV 3

e Do not include any other formatting (punctuation, titles, etc). The
output should look exactly as above.

o If no user is logged in, print “Please login first”
o For all other errors, print "Please try again”
reserve <date> <vaccine>
o Patients perform this operation to reserve an appointment.
o Caregivers can only see a maximum of one patient per day, meaning that if the

reservation went through, the caregiver is no longer available for that date.

o If there are available caregivers, choose the caregiver by alphabetical order and
print “Appointment ID {appointment_id}, Caregiver username {username}’.
m For example, the output of “reserve 12-03-2023 Covid” should be:
Appointment ID 1, Caregiver username cl
o If no caregiver is available, print “No caregiver is available” and return.
o If not enough vaccine doses are available, print "Not enough available doses"
and return.
o If no user is logged in, print “Please login first” and return.
o If the current user logged in is not a patient, print “Please login as a patient” and
return.
o For all other errors, print "Please try again”.
show_appointments
o Output the scheduled appointments for the current user (both patients and
caregivers).
o For caregivers, you should print the appointment ID, vaccine name, date, and
patient name. Order by the appointment ID. Separate each attribute with a space.
m For example, if caregiver c1 is logged in, the output of
“show_appointments” should look like:
1 Covid 12-03-2023 pl
3 Flu 12-05-2023 p3
o For patients, you should print the appointment ID, vaccine name, date, and
caregiver name. Order by the appointment ID. Separate each attribute with a
space.
m For example, if patient p1 is logged in, the output of
“show_appointments” should look like:
1 Covid 12-03-2023 cl1
2 HPV 12-04-2023 c2
o If no user is logged in, print “Please login first”
o For all other errors, print "Please try again”
Logout
o If not logged in, you should print “Please login first”. Otherwise, print
“Successfully logged out”.

o For all other errors, print "Please try again”.

Deliverables for Part 2

Due: Wednesday, March 7th at 11:00pm

When you’re finished, please turn in the entire repository by compressing the project folder into

a zip file, then uploading it on Gradescope.

NOTE: Gradescope has a known error where some files will not upload “Server responded with

0 code.” If this happens you may use the github upload option.

Grading

Your grade for this homework will be worth 100 points, divided as:

e Setup (5 points)
o Finish setup through step 2.4 and upload your verification to Gradescope

e Part 1 (45 points)
o Design (15 points)

Your database design including the files design.pdf and create.sq|l

o Implementation (30 points)
Your working implementation of the Part 1 functions:

create_patient, login_patient

e Part 2 (55 points)
o Implementation (55 points)

The remainder of the functions for Patient:
search_caregiver_schedule, reserve, show_appointments, logout

Additionally, you may receive up to 10 points of extra credit for implementing one of the options
below

Optional Extra credit

You can do either one of the following extra tasks by the final due date for 10 extra credit points.

1. Add guidelines for strong passwords. In general, it is advisable that all passwords used

to access any system should be strong. Add the following check to only allow strong

passwords:

a.
b.
c.
d.

At least 8 characters.
A mixture of both uppercase and lowercase letters.
A mixture of letters and numbers.

Inclusion of at least one special character, from “I”, “@”, “#*, “?”.

2. Both caregivers and patients should be able to cancel an existing appointment.

Implement the cancel operation for both caregivers and patients. Hint: both the patient’s

schedule and the caregiver’s schedule should reflect the change when an appointment

is canceled.

> cancel <appointment_id>

Common Questions

Q: My Azure subscription has been canceled?! What should | do?

A: Ask a course staff or post on Ed for more credits.

Q: My IDE is not recognizing my imports, what should | do?

A: You will likely need to set up source root for your IDE. Check the documentation for your
specific IDE on how to set up source roots.

Q: I'm getting an error: “AttributeError: ‘NoneType' object has no attribute 'cursor”.

A: This is indicating that there is something wrong with your database connection setup. Verify

that you have followed our instructions and read the error messages carefully.

Q: I'm setting a DB error when trying to create a caregiver for my setup.

A: Make sure you have created your tables on Azure.

	HW 6 | Appointment Reservation System
	Introduction
	Setup
	2.1 Clone the starter code

	
	2.2 Read through the starter code
	2.3 Configure your database connection
	2.3.1 Installing dependencies and Anaconda
	2.3.3 Setting up credentials
	2.3.3 Setting up environment variables

	2.3.4 Working with the connection manager

	2.4 Verify your setup
	Deliverables for Setup

	
	Requirements
	1.3 How to handle passwords

	
	Part 1
	Design
	Implementation
	Deliverables for Part 1

	Part 2
	Deliverables for Part 2

	Grading
	
	Optional Extra credit
	Common Questions

