
 

GameGraph Readme 

You can find the most up to date version of this document at here: 

https://docs.google.com/document/d/1glRwCFsv4xCQHawcW4QywXEmoLYDXGcuxpvNLEd_i4
Y/edit?usp=sharing 

You can find the online API here: 

https://dev.inverseclockwork.com/gamegraph/api/ 

 

1. Demo materials 
1.1. Post-installation notes 
1.2. Running the demo in the editor 

2. Concepts 
1.1. Scene/logic decoupling 
1.2. State 
1.3. Scene sets 
1.4. Variables 
1.5. Modifiers and modification lists 
1.6. Representations 
1.7. Filters 
1.8. Graph 
1.9. Loading screens 

3. Workflow with the system 
2.1. Generating the prerequisite assets 
2.2. Generating the scene sets 
2.3. Settings 
2.4. Generating the variables 
2.5. Setting up the representations in the scenes 
2.6. Setting up the modifiers in the scenes 
2.7. Graph visualization 
2.8. Debugging 

4. Programming considerations 
3.1. State serialization and deserialization 
3.2. Manually activating the system 
3.3. Extending the system 

3.3.1. Representations 
3.3.2. Modifications 
3.3.3. Modifiers 

https://docs.google.com/document/d/1glRwCFsv4xCQHawcW4QywXEmoLYDXGcuxpvNLEd_i4Y/edit?usp=sharing
https://docs.google.com/document/d/1glRwCFsv4xCQHawcW4QywXEmoLYDXGcuxpvNLEd_i4Y/edit?usp=sharing
https://dev.inverseclockwork.com/gamegraph/api/


 

3.3.4. Variables 
3.3.5. Loading screens 

 



 

1. Demo materials 

1.1. Post-installation notes 

All demo materials are contained in GameGraphData and Demo folders. Please delete 
GameGraphData to have a clean slate for your own work. You can also delete the Demo folder 
as unnecessary. 

1.2. Running the demo in the editor 

The system is dependent on addressables and as such “Demo/ICW GameGraph Demo Group” 
must be contained in the addressable groups. If the addressables aren’t installed before 
installing the GameGraph package, this has to be dragged into the addressables window 
manually. 
Then load up the BootScene and press play. This scene doesn’t strictly need to be loaded as 
the system will load regardless (unless specified not to) but this ensures that the staging is more 
clean. 

2. Concepts 

1.1. Scene/logic decoupling 

As much as is viable, the system is designed to not house logic data on the scene files. This 
helps with version control and graph calculation. 

1.2. State 

The system holds a state - that is the savable active condition. This can be serialized and 
deserialized as needed containing all seed data to reconstruct the game state. It doesn’t contain 
all runtime information, but enough that it’s kept simple and effective. 

1.3. Scene sets 

Scenes are loaded from scene sets - which act as the basebones of the states and contain a 
base scene and then optionally additive scenes and dynamically loaded additive scenes. 
These dynamic additions are loaded if filter conditions are met. 

1.4. Variables 

The system has support for simple variable flags. 

1.5. Modifiers and modification lists 

Scene sets can have modification lists associated with them. The scenes loaded by the set 
should then have a trigger mechanism for activating that modification list. These modifiers 
change the variables and load different scene sets. 

1.6. Representations 

Scenes can have representations of the state by filtering for conditions and running triggers etc. 
These representations should be resettable and can be changed whichever way while the 
scene set is loaded. 



 

Representations can be skipped to the end or function as a process. For example, navigation 
representation can be set upon activation during the same scene set to navigate a character to 
a point but if the conditions are met and the scene set is loaded after that, to set the character to 
the appropriate destination from get go. 

1.7. Filters 

Filters are used by scene set dynamic scenes and by representations to funnel the states during 
which they’re active. These are constructed by simple logic operations and such. 

1.8. Graph 

For debugging and illustrative purposes, the system can be set to calculate a flow graph of the 
game states by running through every state and possible modification outside of the play mode. 
These generated possible states can then be examined and/or loaded for debugging. 

1.9. Loading screens 

Loading screens can be provided by implementing a LoadingScreen component on a prefab 
and feeding it in. 

3. Workflow with the system 

2.1. Generating the prerequisite assets 

First, ensure that addressables have a group generated for the system. Then, open 
“Tools/ICW/GameGraph/SceneSet Viewer” and generate the base assets from there. 
 

2.2. Generating the scene sets 

Click the “Create New SceneSet” button and name it. Ensure that the first scene set field is set 
at some scene set. 
Load up the wanted scenes in unity and click “Generate from currently loaded” to attempt an 
automatic assignment. 
You can also manually add the addressable references to the scenes. At least the main scene 
has to be set. 

2.3. Settings 

In the “Graph settings” section, the default loading bar can be assigned. One builtin is provided 
with the package. 
First scene set field needs to be set and auto start is generally better to be left on unless you 
have some other considerations and know that you want to activate the system manually. 

2.4. Generating the variables 

Open the variable viewer through “Tools/ICW/GameGraph/Variable Viewer” and click “Create a 
New Variable”. 
Then select the variable type and rename it by pressing the button with the variable’s name on 
it. 
By using “.”-character, the variable can be namespaced for organization. 



 

2.5. Setting up the representations in the scenes 

Create a game object and add any of the builtin representations to it. For example, spawn 
representation which is useful for ensuring that if the scene has multiple entry doorways, the 
player can be spawned by the correct one. 
Assign the prefab and configure which previous scene set the spawn is from. Require a 
previous set toggle being set and the scene set not being assigned is the initial spawn at the 
beginning of the game. 
Events representation can be used to drive Unity Events which is wildly useful. 

2.6. Setting up the modifiers in the scenes 

Most useful modifier out of the builtin ones is probably the modifier on demand that can be 
triggered by the system using its API. There is also a modifier on trigger. 
Modifiers hook up to a modification list which can be generated from the component. The newly 
generated modification list is then associated with the scene set and can not be shared between 
scene sets. 
Modifiers can be given requirements that need to be fulfilled before the activation can succeed 
using a filter. 
The actual modifications can be set to change variables or the current scene set which will then 
trigger a scene load. 

2.7. Graph visualization 

Open “ICW/Tools/GameGraph/Graph Viewer” and press the “Calculate graph” button. 
This generates the graph by running through all possible places in the graph and retrieving the 
states. 
Be warned that the system will cut off recursing on the same scene set to prevent infinite 
looping at some point. This doesn’t mean that during gameplay this is not possible but the graph 
can be left inconclusive at some cases (with increasing counters without a hard limit on the max 
value imposed by the e.g. entry demands). 
The scene sets or the connections between them can be clicked to open the state explorer. 
Press explore on some From/To instances and explore possible variable state conditions. When 
a matching state is found, “Configure debug from this” button is shown. 
By clicking it, the debug window is opened. 

2.8. Debugging 

When the debug window is open, whatever state depiction is configured in it will be loaded 
when play mode is entered. 

4. Programming considerations 

3.1. State serialization and deserialization 

GameGraph.GetStateAsJson() and GameGraph.SetStateFromJson(string data) can be 
used to save and load the state to/from string. 
The system needs to be readied at this point, which can be checked with GameGraph.IsReady. 



 

3.2. Manually activating the system 

If the system has been configured not to start automatically, 
GameGraph.Instance.StartPrimedGraph() can be used to load the first scene set. 

3.3. Extending the system 

3.3.1. Representations 

Deriving a class from Representation and overriding OnRepresentationActivated(bool 
skipToEnd) and OnRepresentationDisabled(bool skipToEnd) can be used to create new 
scene hooks for the system. 
RepresentationEvents can be used as an example of doing this. 

3.3.2. Modifications 

All modifications derive from Modification and use the Apply method to change state data. The 
method takes in the current state and can access variables with 
state.AccessVariable(VariableContainer originalReference, out Variable var). 
The originalReference is assigned from the editor and is used as an identifier where the out 
Variable is a reference to the runtime data container or whatever type the variable happens to 
be. 
The builtin types are IntVariable and BoolVariable. 
Use VariableContainerType(typeof(variableType)) attribute to require a specific type of 
variable for the modification. 
Additionally the modifications can change the scene set by using 
state.ChangeActiveSceneSet(SceneSet destination, LoadingScreen 
overrideLoadingScreenPrefab). 

3.3.3. Modifiers 

All modifiers derive from Modifier class. The most simple of these is ModifierOnDemand which 
demonstrates that Apply method triggers the modification itself. 

3.3.4. Variables 

Variables derive from Variable<datatype> and have to implement IsEqual(datatype other), 
IsLarger(datatype other), IsSmaller(datatype other) methods. Datatype denotes the 
contained type. The builtin types are bool and int. 

3.3.5. Loading screens 

Loading screens derive from LoadingScreen class. They should implement StartFadingIn() 
and StartFadingOut(). 
CanChange should be set to true when the loading screen covers the entire screen. This 
means that the system can behind the scenes load the new scenes in. After that is complete, 
the system will call StartFadingOut() which should have a mechanism to self-destruct after any 
possible animations are complete. 
See DefaultLoadingScreen for an example. 


	GameGraph Readme 
	 
	1. Demo materials 
	1.1. Post-installation notes 
	1.2. Running the demo in the editor 

	2. Concepts 
	1.1. Scene/logic decoupling 
	1.2. State 
	1.3. Scene sets 
	1.4. Variables 
	1.5. Modifiers and modification lists 
	1.6. Representations 
	1.7. Filters 
	1.8. Graph 
	1.9. Loading screens 

	3. Workflow with the system 
	2.1. Generating the prerequisite assets 
	2.2. Generating the scene sets 
	2.3. Settings 
	2.4. Generating the variables 
	2.5. Setting up the representations in the scenes 
	2.6. Setting up the modifiers in the scenes 
	2.7. Graph visualization 
	2.8. Debugging 

	4. Programming considerations 
	3.1. State serialization and deserialization 
	3.2. Manually activating the system 
	3.3. Extending the system 
	3.3.1. Representations 
	3.3.2. Modifications 
	3.3.3. Modifiers 
	3.3.4. Variables 
	3.3.5. Loading screens 



