

SECTION A (15 Marks)

1. Multiple Choice Questions

- i. B – The study of computers and their applications
- ii. B – Printer
- iii. B – CPU
- iv. C – Printer
- v. C – Operating System
- vi. B – Fixing computer problems
- vii. C – Input → Processing → Output → Storage
- viii. B – Frequent backups
- ix. C – Hardware, software, and users working together
- x. B – Following algorithms and logical steps

2. Matching Items

- i. Operating System → B (Main software controlling computer operations)
- ii. Algorithm → A (Step-by-step instructions for solving a problem)
- iii. Hardware → D (Physical components of a computer)
- iv. Software → C (Non-physical parts of a computer)
- v. Troubleshooting → E (Process of identifying and fixing problems)

SECTION B (70 Marks)

3. Computer Science Basics

- (a) **Definition:** Computer Science is the study of computers, their components, software, and how to use them to solve problems efficiently.

(b) Branches:

1. **Software Engineering** – Developing software applications.
2. **Artificial Intelligence** – Designing machines that can simulate human intelligence.

(c) Importance in Daily Life:

1. Facilitates communication (emails, messaging, video calls).
2. Simplifies business operations (accounting, stock management).
3. Supports education (e-learning, simulations, research).
4. Aids in problem solving and decision making.

4. Computer System and Components

(a) Definition: A computer system is a combination of hardware, software, and users working together to process data into meaningful information.

(b) Four Basic Components and Functions:

1. **Input Devices** – Accept data from users (e.g., keyboard).
2. **Processing Unit (CPU)** – Processes and executes instructions.
3. **Output Devices** – Displays results of processing (e.g., monitor).
4. **Storage Devices** – Stores data permanently or temporarily (e.g., hard disk, USB).

5. Hardware vs Software

(a) Differences:

Hardware	Software
Physical and tangible components	Non-physical programs and instructions
Can be touched	Cannot be touched

Examples: Monitor, Printer

Examples: Microsoft Word, Operating System

(b) Examples:

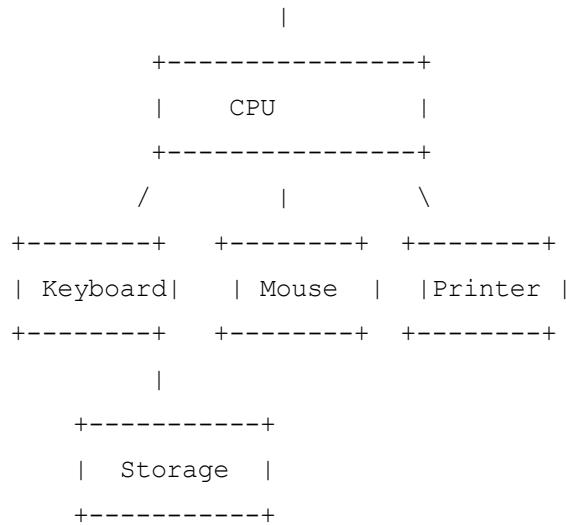
- **Application software:** Microsoft Word, Excel
- **System software:** Windows OS, Linux

6. Troubleshooting

(a) Definition: Troubleshooting is the process of identifying, diagnosing, and fixing problems in a computer system.

(b) Common Computer Problems:


1. Computer not starting (power failure or hardware issue)
2. Software crashes or errors
3. Virus or malware infections
4. Slow system performance


7. Preventive Maintenance Practices

(a) Practices:

1. Regularly updating antivirus and software to prevent infections.
2. Cleaning hardware components (keyboard, monitor, CPU) to prevent dust accumulation.
3. Performing regular backups to prevent data loss.

(b) Computer System Diagram:

8. Algorithms

(a) **Definition:** An algorithm is a step-by-step procedure or set of instructions for solving a problem or performing a task.

(b) Characteristics of a Good Algorithm:

1. **Finiteness** – Must terminate after a finite number of steps.
2. **Definiteness** – Each step must be clear and unambiguous.
3. **Input** – Takes zero or more inputs.
4. **Output** – Produces at least one output.

SECTION C (15 Marks)

9. Importance of Proper Maintenance and Troubleshooting

- Ensures computers operate efficiently and reliably.
- Reduces the risk of hardware failure and data loss.
- Minimizes downtime in schools and offices.
- Extends the lifespan of computer equipment.

- Enhances user productivity by preventing unexpected system crashes.

10. Basic Principles of Computer Science

- **Algorithmic thinking** – Solving problems using step-by-step procedures.
- **Logical reasoning** – Making decisions based on logical analysis.
- **Abstraction** – Focusing on essential information while ignoring irrelevant details.
- **Modularity** – Dividing complex problems into smaller, manageable modules.

Application in Problem Solving and Programming:

- Algorithms guide program development.
- Logical reasoning ensures correct outputs.
- Abstraction simplifies complex programs.
- Modularity improves code maintenance and reusability.

 END OF ANSWERS