
Functions (Definitions)
Date: Sep 9, 2024

Defining Functions

Functions essentially give a name to a block of
code.

We can reuse the code in a function by calling it
and this helps us avoid duplicating code! Why
does this matter? If we need to update
something in this code, we only need to update
it once!

A function should perform some specific task!

Let’s take a look at this code and figure out what
it is doing.

(1) Looks like it is asking the user to set a
password.

(2) It iterates through the chosen password
character by character to make sure that the
password contains:

●​ capital letter
●​ special character
●​ number

(3) Tells the user if the password is “good” or
“bad” depending on if it contains ALL of those
characters.

If we use ANOTHER while loop, then the code
kinda is hard to read!!

●​ Lots of levels of indentation!
●​ Nested while loops!

If we are repeating code over and over again,
let’s use a function to reuse this code!

This not only helps us make the code easier to
read, but also makes it more MODULAR! Put
blocks of code into different modules/parts!

If we put the logic that checks if the password is
“good” in a function, then the code looks like
this!

This looks so much simpler and cleaner! The
function can handle the task to iterate through
the characters and make sure all the conditions
are satisfied!

If we used the function in our nested while loop
example, we get rid of the nested loops!

We can put the logic that does one of the while
loops in a function so we no longer add all these
layers of indentation to our code!

How do we define a function in Python?

If you want to define/create a function, you need
to use the def keyword!

Then that is followed by the name you want to
give the function that is descriptive to what the
function is doing!

Then give variable names to the parameters that
you will need as input values/data in order for
the function to do its job!

The return statement will tell you what
values/data this function returns/outputs!

Keep in mind that return is also a keyword in
Python!

The function stops running once the computer
sees the return statement EVEN IF there is
more code after the return!

Note that functions CAN have MULTIPLE
return statements! BUT only ONE will ever run!

Once one is reached in the program, the
function will stop!

Let’s go back to our code and put it in a function!

Note: The parameter/argument that this function
needs is a password! Because the point of this
function is to check if a password is “good”! That
variable is used in this function which stores the
value that would be passed in the function when
it is called!

Notice that this function has two return
statements!

We can actually write this multiple ways (see the
colab)!

Remember how variables store data and store a
specific value? They give a name to a value.

Similarly, functions store code. They give name
to a block of code/set of instructions for the
computer that does a specific task.

In this first example, we are defining a function
that returns True if the argument passed into
the function is an even number.

Note: The lines of code after the return
statement WILL NOT RUN because once you hit
the return in a function, the function stops.

is_even(10) returns True
is_even(5) returns None

In the second example, is_even(5) returns
False!

Let’s say we want to write a function that takes a
number as input and outputs the absolute value
of this number.

Remember you need:

●​ Name: The keyword def to tell the
computer you are defining a function
followed by the name you want to give it!

●​ Parameters: Specify parameters needed
for the function to do its job!

●​ Return: A return statement if you want
this function to have an output!

This function probably needs to take in a
number as a parameter to calculate the absolute
value of it and it also probably wants to return
that value as an output.

Let’s say we have this line of code:

result = abs(-8)

We know that we are calling this function and
passing in the argument of -8 as the input data!

Then when we go into the function and run the
code there, we are creating a variable num that

stores the number -8! Then we use this variable
to run the code in the function!

So it looks like answer = 8 because answer =
-num!

We return the answer so then the output of this
function is the integer 8 which means result
stores this 8!

Similarly we do this same process for the next
line of code:

other_result = abs(2)

So after calling the function and running the
code in the function, other_result = 2!

So what exactly is the difference between an
argument and a parameter?

The data/input you pass into the function call are
the arguments.

You can think of arguments as the actual values
passed to the function when it's called.

The variables (in the function definition) that
store this data/input value that is then used
inside the function code are the parameters.

You can think of parameters as the variables
listed within the parentheses in a function's
definition that establishes the kind of input the
function expects. They act as placeholders for
the values the function will work with. The
function's code uses these parameter names to
refer to the values it receives.

We added one more common confusion to this
list.

Note that calling a function is not the same thing
as defining a function. The main key difference is
the def keyword.

Functions allow us to take a block of code that
does some specific task and REUSE IT!

We can give this block of code a name and then
define it using the def keyword.

Remember when defining a function, you also
need to specify the parameters needed for this
function to do its job.

When you call the function, you need to pass in
the arguments you want as input data/values.

If there is a return statement in the function
definition, then the output/return value should
be stored in a variable when you call the
function!

TODOs
​ HW 3 - While Loops & Strings

○​ Due Wednesday @ 11:59pm! Sep 11, 2024

​ Project 1 (pt. 3) - Blackjack!
○​ Due Sunday @ 11:59pm! Sep 15, 2024

​ Midterm Exam 1 – COMING SOON
○​ Next Wednesday on ! Sep 18, 2024

​ STEP Internship @ Google

○​ Applications open and close on !! Sep 30, 2024 Oct 25, 2024
○​ For 1st year and 2nd year students, applications will be available at

g.co/jobs/step!
○​ All of the available intern opportunities can be found at google.com/students!

http://g.co/jobs/step
http://google.com/students

	Defining Functions
	How do we define a function in Python?
	

	TODOs

