

Ninja Maze Challenge 2
Minimum experience: Grades 1+, 2nd year using ScratchJr, 1st quarter or later

At a Glance

Overview and Purpose

Coders will solve four different maze challenges that focus on diagonal movements, then create their own unique mazes that
peers will solve. The purpose of this project is to reinforce understanding of predicting and sequencing a sprite’s movement
using the motion blocks running in parallel.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will use motion blocks running in parallel to guide a

sprite through a maze without touching walls.
Question:

●​ How can we use motion blocks running in parallel to
guide a sprite through a maze without touching
walls?

Statement:
●​ I will be able to explain how a pair of algorithms guides

a sprite through a maze without touching walls.
●​ I will learn how to create mazes that a friend will solve.

Question:
●​ How can a pair of algorithms guide a sprite through a

maze without touching walls?
●​ How can we create mazes that a friend will solve?

Main standard(s): Reinforced standard(s):

1A-AP-10 Develop programs with sequences and simple
loops, to express ideas or address a problem.

●​ Programming is used as a tool to create products that
reflect a wide range of interests. Control structures
specify the order in which instructions are executed
within a program. Sequences are the order of
instructions in a program. For example, if dialogue is
not sequenced correctly when programming a simple
animated story, the story will not make sense. If the
commands to program a robot are not in the correct
order, the robot will not complete the task desired.
Loops allow for the repetition of a sequence of code
multiple times. For example, in a program to show
the life cycle of a butterfly, a loop could be combined
with move commands to allow continual but
controlled movement of the character. (source)

1A-AP-11 Decompose (break down) the steps needed to
solve a problem into a precise sequence of instructions.

●​ Decomposition is the act of breaking down tasks into
simpler tasks. Students could break down the steps

1A-AP-08 Model daily processes by creating and following
algorithms (sets of step-by-step instructions) to complete tasks.

●​ Composition is the combination of smaller tasks into
more complex tasks. Students could create and follow
algorithms for making simple foods, brushing their
teeth, getting ready for school, participating in clean-up
time. (source)

1A-AP-14 Debug (identify and fix) errors in an algorithm or
program that includes sequences and simple loops.

●​ Algorithms or programs may not always work correctly.
Students should be able to use various strategies, such
as changing the sequence of the steps, following the
algorithm in a step-by-step manner, or trial and error to
fix problems in algorithms and programs. (source)

1A-AP-15 Using correct terminology, describe steps taken and
choices made during the iterative process of program
development.

●​ At this stage, students should be able to talk or write
about the goals and expected outcomes of the
programs they create and the choices that they made

https://bootuppd.org/
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

needed to make a peanut butter and jelly sandwich,
to brush their teeth, to draw a shape, to move a
character across the screen, or to solve a level of a
coding app. (source)

when creating programs. This could be done using
coding journals, discussions with a teacher, class
presentations, or blogs. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.1. Plan the development of a computational
artifact using an iterative process that includes
reflection on and modification of the plan, taking into
account key features, time and resource constraints,
and user expectations. (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and

iterative process of improving a computational
artifact. This process includes debugging (identifying
and fixing errors) and comparing actual outcomes to
intended outcomes. Students also respond to the
changing needs and expectations of end users and
improve the performance, reliability, usability, and
accessibility of artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic
process. (p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Algorithms
●​ "Algorithms are designed to be carried out by both

humans and computers. In early grades, students
learn about age-appropriate algorithms from the real
world. As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

Control
●​ "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures. As
they progress, students expand their understanding to
combinations of structures that support complex
execution." (p. 91)

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101

●​ Grade 2 - People follow and create processes as part
of daily life. Many of these processes can be
expressed as algorithms that computers can follow."
(p. 96)

●​ Grade 2 - "Computers follow precise sequences of
instructions that automate tasks. Program execution
can also be nonsequential by repeating patterns of
instructions and using events to initiate instructions."
(p. 96)

Program Development
●​ "Programs are developed through a design process that

is often repeated until the programmer is satisfied with
the solution. In early grades, students learn how and
why people develop programs. As they progress,
students learn about the tradeoffs in program design
associated with complex decisions involving user
constraints, efficiency, ethics, and testing." (p. 91)

●​ Grade 2 - "People develop programs collaboratively and
for a purpose, such as expressing ideas or addressing
problems." (p. 97)

ScratchJr Blocks

Primary blocks Motion, Triggering

Supporting blocks Control, End, Looks, Sound

Vocabulary

Algorithm ●​ A step-by-step process to complete a task. (source)
●​ A formula or set of steps for solving a particular problem. To be an algorithm, a set of rules must

be unambiguous and have a clear stopping point. (source)

Bug ●​ An error in a software program. It may cause a program to unexpectedly quit or behave in an
unintended manner. (source)

●​ The process of finding and correcting errors (bugs) is called debugging. (source)
●​ An error or defect in software or hardware that causes a program to malfunction. Often a bug is

caused by conflicts in software when applications try to run in tandem. According to folklore,
the first computer bug was an actual bug. Discovered in 1945 at Harvard, a moth trapped
between two electrical relays of the Mark II Aiken Relay Calculator caused the whole machine to
shut down. (source)

Debugging ●​ The process of finding and correcting errors (bugs) in programs. (source)
●​ To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (source)

Decompose ●​ To break down into components. (source)

Parallel ●​ Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

●​ The computational concept of making things happen at the same time. (source)

More vocabulary
words from CSTA

●​ Click here for more vocabulary words and definitions created by the Computer Science Teachers
Association

Connections

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=107
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/3k9lPOiHl21kSk5HVLgJa7/8f287dc199ef945c9187430550a9ee56/Control.png
https://images.ctfassets.net/1devtjk7knks/1Nsm1wz0yAwVTI1S7rBx4v/53adf09a58b2cbc392f82ba8530e419f/End.png
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/34nw2pmVYre1tQlVoMR0n5/f4ef1b5561302dd4a85671ada2b0371a/Sounds.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=270
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=270
http://www.webopedia.com/TERM/B/bug.html
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/P/parallel.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
https://csteachers.org/k12standards/glossary/
https://csteachers.org/k12standards/glossary/

Integration Potential subjects: Math, media arts

Example(s): This project could integrate with math lessons by using the grid and counting/adding how
many steps a sprite should move to solve a maze.

Vocations Media artists and designers are frequently asked to create levels or worlds for characters to exist
within. In this project we are asking coders to not only create levels, but to determine the precise
amount of steps to take to navigate within such a space. Such a process relates to basic math. Click
here to visit a website dedicated to exploring potential careers through coding.

Resources

●​ Project files
○​ Video: Downloading project files (1:04)

●​ Sample project images

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

Ensure all devices are
plugged in for charging over
night.

Customizing this project for
your class (10+ minutes):
Remix the project example to
include your own maze
challenges that require
coders to use at least two
sets of motion blocks running
in parallel. Make a copy of
your custom project that
doesn’t include any motion
blocks on the NinjaCat sprite
(this copy will be distributed
to coders to remix).

(10+ minutes) Read through
each part of this lesson plan
and decide which sections
the coders you work with
might be interested in and
capable of engaging with in
the amount of time you have
with them. If using projects
with sound, individual
headphones are very helpful.

●​ BootUp ScratchJr Tips
○​ Videos and tips on ScratchJr from our YouTube channel

●​ BootUp Facilitation Tips
○​ Videos and tips on facilitating coding classes from our YouTube channel

●​ Block Descriptions
○​ A document that describes each of the blocks used in ScratchJr

●​ Interface Guide
○​ A reference guide that introduces the ScratchJr interface

●​ Paint Editor Guide
○​ A reference guide that introduces features in the paint editor

●​ Tips and Hints
○​ Learn even more tips and hints by the creators of the app

●​ Coding as another language (CAL)
○​ A set of curriculum units for K-2 using both ScratchJr and KIBO robotics

●​ ScratchJr in Scratch
○​ If you’re using ScratchJr in Scratch, this playlist provides helpful tips and

resources

https://careerswithstem.com.au/
https://careerswithstem.com.au/
https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://youtu.be/0mfnVV36SiE
https://drive.google.com/open?id=1nvkKyEaiDGW1sfsb8eGLu69kf2RwvS6I
https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://www.youtube.com/playlist?list=PLV4zluvZAlMrwM6kOo-jpdLlk3D_Hibzj
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://drive.google.com/open?id=0B3nMatUGHrRWZ2QyVFExQk1yejg
https://drive.google.com/open?id=0B3nMatUGHrRWbzFZWVV4R1dCSk0
https://drive.google.com/open?id=0B3nMatUGHrRWWVpCaVRadGc5VzA
https://www.scratchjr.org/learn/tips
https://sites.tufts.edu/codingasanotherlanguage/
https://youtube.com/playlist?list=PLV4zluvZAlMoE6P8y0VW4om93BkZqGakQ

Getting Started (5+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to solve and create maze
challenges using code. Display and demonstrate the sample
project (or your own remixed version).

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (0:51)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, it might help to set a time limit for
exploration before discussing the project.

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

2. Discuss (3+ minutes):
Have coders talk with each other about how they might solve
the maze displayed in the example project create a project like
the one demonstrated. If coders are unsure, and the
discussion questions aren’t helping, you can model thought
processes: “I noticed the sprite will need to move around the
walls to get to the goal. Where can the ninja move so it
doesn’t touch a wall? What motion block(s) might be in the
code to make the sprite move in that direction? Where will the
ninja need to go next?” Another approach might be to wonder
out loud by thinking aloud different algorithms and testing
them out, next asking coders “what do you wonder about or
want to try?”

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Practices reinforced:
●​ Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

●​ What would we need to know to solve something like
this in ScratchJr?

●​ What kind of blocks might we use?
○​ How can we use two trigger blocks to make

the ninja move diagonally?
●​ If you were creating your own mazes, what else could

you add or change in a project like this?
●​ What code from our previous projects might we use in

a project like this?
●​ What kind of sprites might we see in a maze

challenge?
○​ What kind of code might they have?

Project Work (60+ minutes; 2+ classes)

Suggested sequence Resources, suggestions, and connections

3. Solve the mazes (32+ minutes): Standards reinforced:

https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://youtu.be/Djfi5mRdYJQ
https://youtu.be/B2sPAmQxiGc
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png

Begin by sharing with everyone the sample project (or your
own remixed version) that does not include any motion blocks
that move the NinjaCat through the maze (use this guide if you
are unsure how to share project files).

Repeat the following for each level.

1 minute prompt
Making sure the motion blocks are removed or hidden from
the example project (or levels you created and shared), display
one of the levels so everyone can see the maze:

●​ Level 1
○​ Answer

●​ Level 2
○​ Answer

●​ Level 3
○​ Answer

●​ Level 4
○​ Answer

5+ minute problem solving and peer-to-peer coaching
Ask coders to see if they can figure out how to make the sprite
navigate through the maze without touching a wall. Facilitate
by walking around and asking guiding questions.

2 minute explanation demonstration
If coders figured out how to navigate through the maze
without touch a wall, have them document in their journal,
share with a partner, or have a volunteer show the class their
code and thought processes that led to the code. Otherwise,
reveal the code and walk through each step of the algorithm.
Repeat this process with the remaining levels.

●​ 1A-AP-10 Develop programs with sequences and
simple loops, to express ideas or address a problem

●​ 1A-AP-11 Decompose (break down) the steps needed
to solve a problem into a precise sequence of
instructions.

●​ 1A-AP-14 Debug (identify and fix) errors in an
algorithm or program that includes sequences and
simple loops.

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Resource: Sharing ScratchJr Projects

Suggested guiding questions:

●​ What kind of blocks do you think you might need to
solve this maze?

●​ Do you see a pattern where we might use a repeat?
●​ Do we need to use one trigger block or more than

one?
○​ What makes you think that?

●​ How could you change the level to make it easier or
harder?

Potential discussion: There is not always one way to solve a
problem with code, so coders may come up with alternative
solutions to your own code. When this occurs, it can open up
an interesting discussion or journal reflection on the
affordances and constraints of such code.

4. Create even more mazes (20+ minutes):
Ask coders to create a new project with a small sprite, a goal,
and at least one level sprite. Use looks blocks to shrink the
sprite that will navigate the maze and to grow the level
sprite(s) to create obstacles to navigate around. Facilitate by
walking around and asking questions and encouraging coders
to not only create at least one new level a peer will solve, but
to test out their mazes to make sure the sprite can vertically,
horizontally, or diagonally navigate through the maze without
touching a wall or obstacle.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and

simple loops, to express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed

to solve a problem into a precise sequence of
instructions.

●​ 1A-AP-14 Debug (identify and fix) errors in an
algorithm or program that includes sequences and
simple loops.

Practices reinforced:
●​ Creating computational artifacts
●​ Program development
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested questions:

●​ How can we make a level easier or harder?
●​ How many sprites will you use for a wall?

a.​ How will a player know if they’ve touched a

https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://www.scratchjr.org/learn/tips/share-projects
https://www.scratchjr.org/learn/tips/share-projects
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://drive.google.com/file/d/1Q21IcWdplrN5gU_7P8HGx7vHl8lG26nu/view?usp=sharing
https://images.ctfassets.net/1devtjk7knks/12hI62guRKBpsFtthvzIa8/9c82b5037096fa49d602679ca0eec528/Level_1__no_code__-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/XE4W6lDCBUpDjVVKs8nl3/03156fb1d9bd3b6a4b709ed5b62a0e4d/Level_1_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/4Vgq5dYnIwoSAyCQnerrW5/c5729769d8b55a4333ee5d27dd334066/Level_2__no_code__-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/3VQpzJ7yaHvJYKOcSYHr6S/058a837b9426bd5e7048e8fbaa773e7e/Level_2_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/1j5Ozr7FjkBiMCTbcTCzCT/89a8a79a67b89a3e94f2c1113f6ffd94/Level_3__no_code__-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/6iK04BbxCSot8zZWWq0vb2/17454b6415a6d09f8f67d01bf9260294/Level_3_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/4GfNqDcA5yuEvW9Nx3GgQw/66082c862f81286882f8b1ed550e2357/Level_4__no_code__-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/5KHpMRsDz5twCo7FSIKW4q/30307b77e1b66a0b60a6759ac35bfc3e/Level_4_-ninja_maze_2.PNG
https://www.scratchjr.org/learn/tips/share-projects
https://drive.google.com/open?id=0B342uiaCLSS3RWlsQXRaSVAta3c
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png

wall?
●​ How many trigger blocks might we need to get code to

run in parallel?
●​ Will we need to use any wait blocks?

5. Solve the new mazes (8+ minutes or until the end of class):
If time permits, repeat the following process until out of time.

1 minute device swapping
Making sure the motion blocks are removed or hidden from
the newly created levels have coders swap devices with a
neighbor to try and solve the newly created mazes.

5+ minute problem solving and peer-to-peer coaching
Ask coders to see if they can figure out how to make the sprite
navigate through the maze without touching a wall. Facilitate
by walking around and asking guiding questions.

1 minute explanation demonstration
If coders figured out how to navigate through the maze
without touch a wall, have them document in their journal,
share with a partner, or have a volunteer show the class their
code and thought processes that led to the code. Otherwise,
have the creator of the project reveal the solution and walk
through each step of the algorithm. If time permits, repeat this
process by having coders remove the solutions (or partial
solutions) and swap their device with another coder to try and
solve another level.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and

simple loops, to express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed

to solve a problem into a precise sequence of
instructions.

●​ 1A-AP-14 Debug (identify and fix) errors in an
algorithm or program that includes sequences and
simple loops.

Practices reinforced:
●​ Communicating about computing
●​ Creating computational artifacts
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested guiding questions:

●​ What kind of blocks do you think you might need to
solve this maze?

●​ Do you see a pattern where we might use a repeat?
●​ Do we need to use one trigger block or more than

one?
○​ What makes you think that?

●​ How could you change the level to make it easier or
harder?

Potential discussion: There is not always one way to solve a
problem with code, so coders may come up with alternative
solutions to your own code. When this occurs, it can open up
an interesting discussion or journal reflection on the
affordances and constraints of such code.

Assessment

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative process of program

development
Practices reinforced:

●​ Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all

The 1-on-1 facilitating during each
project is a form of formative

The reflection and sharing section at the
end of each lesson can be a form of

https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/3k9lPOiHl21kSk5HVLgJa7/8f287dc199ef945c9187430550a9ee56/Control.png
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the
debugging exercises?

●​ Did coders solve or create a
project similar to the project
preview?

○​ Note: The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Can coders accurately predict
how a sprite will move before
running code?

●​ Did coders solve or create a
maze game with at least ##
different levels to navigate
through?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

●​ Did coders use at least ## pages
in their project?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

○​ Can coders explain
when/how the project
will switch pages?

assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the
assessment examples for more
questions.

ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or
different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at
the end for more suggestions.

Extended Learning

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.p8l6f58fzth5

Project Extensions

Suggested extensions Resources, suggestions, and connections

Adding even more (5+ minutes):
If time permits, encourage coders to explore what
else they can create in ScratchJr. Although future
lessons will explore different features and blocks,
early experimentation should be encouraged.

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos. It may help to set a timer for
creation processes outside of using blocks so
coders focus their efforts on coding.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested questions:

●​ What else can you do with ScratchJr?
●​ What do you think the other blocks do?

a.​ Can you make your sprites do ____?
●​ What other sprites might we use in a maze game?
●​ What other sounds might we hear if a sprite touches a wall?

a.​ What about if it touches the goal?
●​ Can you customize how your sprites look?

Similar projects:
Have coders explore the sample projects built into
ScratchJr (or projects from other coders), and ask
them to find code similar to what they worked on
today.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” or “find
three projects that each do one thing you would like to add to your
project.”

Generic questions:

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

●​ How might we change the backdrop of this project?
●​ What other sound or looks blocks might we use in this project?
●​ Can you turn this project into a maze game or challenge?

Differentiation

Less experienced coders More experienced coders

ScratchJr is simple enough that it can be picked up relatively
quickly by less experienced coders. However, for those who
need additional assistance, pair them with another coder who

Because ScratchJr is not inherently difficult, experienced
coders might get bored with simple projects. To help prevent
boredom, ask if they would like to be a “peer helper” and have

https://www.scratchjr.org/learn/tips/sample-projects

feels comfortable working cooperatively on a project. Once
coders appear to get the hang of using ScratchJr, they can
begin to work independently.

them help out their peers when they have a question. If
someone asks for your help, guide them to a peer helper in
order to encourage collaborative learning.

Another approach is to encourage experienced coders to
experiment with their code or give them an individual
challenge or quest to complete within a timeframe.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

For each of the following debugging exercises,
display the code with the bug and ask coders to
predict what the bug is and solve the bug without
running the code. The purpose of this
differentiation in debugging is to encourage coders
to analyze and predict what an algorithm will do
without running the code.

What’s the bug in this code and how can we fix it?

●​ We are not moving up far enough

What’s the bug in this code and how can we fix it?

●​ We need to move right before moving up

What’s the bug in this code and how can we fix it?

●​ We are moving too far to the right after
moving left

What are the bugs in this code and how can we fix
them?

●​ We are not moving down far enough or up
far enough

ScratchJr Debugging List

Standards reinforced:
●​ 1A-AP-14 Debug (identify and fix) errors in an algorithm or

program that includes sequences and simple loops
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms
●​ Control

Display one of the debugging exercises and ask the class what they think
we need to fix in our code to get our project to work correctly. Think out
loud what might be wrong (e.g., did I use the wrong trigger block, did I
forget to repeat something, did I put a block in the wrong place, am I
missing blocks, etc.). Ask the class to talk with a neighbor how we might fix
the code. Have a volunteer come up to try and debug the code (or
demonstrate how). Repeat with each debugging exercise.

Unplugged Lessons and Resources

Standards reinforced:
●​ 1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step instructions) to complete

tasks

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Reflection and Sharing

https://images.ctfassets.net/1devtjk7knks/3odpmFIZSNUXpnFaNmNpzu/7b72ca478ab165e9a51a206b8c7d4c0b/ninja_maze_2_-_Debugging_1.PNG
https://images.ctfassets.net/1devtjk7knks/XE4W6lDCBUpDjVVKs8nl3/03156fb1d9bd3b6a4b709ed5b62a0e4d/Level_1_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/4VzJZ4ziIHUo2U7wvPToIQ/830cc5c9f1fbc08997ab5a149421d0f6/ninja_maze_2_-_Debugging_2.PNG
https://images.ctfassets.net/1devtjk7knks/3VQpzJ7yaHvJYKOcSYHr6S/058a837b9426bd5e7048e8fbaa773e7e/Level_2_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/113iRzqHUWAOlAiOskC7j7/b1b56fdcdd45dfd96bf21fc691a2b1f2/ninja_maze_2_-_Debugging_3.PNG
https://images.ctfassets.net/1devtjk7knks/6iK04BbxCSot8zZWWq0vb2/17454b6415a6d09f8f67d01bf9260294/Level_3_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/6iK04BbxCSot8zZWWq0vb2/17454b6415a6d09f8f67d01bf9260294/Level_3_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/6NoWrCKY00O3PJjyvQhIMs/edb39019fbd5c73fb21550a0fcfff7f4/ninja_maze_2_-_Debugging_4.PNG
https://images.ctfassets.net/1devtjk7knks/6NoWrCKY00O3PJjyvQhIMs/edb39019fbd5c73fb21550a0fcfff7f4/ninja_maze_2_-_Debugging_4.PNG
https://images.ctfassets.net/1devtjk7knks/5KHpMRsDz5twCo7FSIKW4q/30307b77e1b66a0b60a6759ac35bfc3e/Level_4_-ninja_maze_2.PNG
https://images.ctfassets.net/1devtjk7knks/5KHpMRsDz5twCo7FSIKW4q/30307b77e1b66a0b60a6759ac35bfc3e/Level_4_-ninja_maze_2.PNG
https://docs.google.com/document/d/1j8_UMI8aNhQqHSxflkwQJpxRumn6LtQyoKQqVv-mQvI/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://docs.google.com/spreadsheets/d/1GNJVESt7mLrv_-RNjdti1obHLo8awWEhKUQ1w0YXF2A/edit?usp=sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ How did you help other coders with their projects?

○​ What did you learn from other coders today?
●​ What’s a fun algorithm you created or solved today?
●​ What’s something you could create or solve next

time?
●​ What questions do you have about coding?

○​ What was challenging today?
●​ More sample prompts (may need adapting for

younger coders)

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps

taken and choices made during the iterative process of
program development

Practices reinforced:
●​ Communicating about computing
●​ Fostering an inclusive culture

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI

	
	Ninja Maze Challenge 2
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	ScratchJr Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (5+ minutes)
	Project Work (60+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	

