
A long list of open problems and 
concrete projects in evals 

For some background, see plans for evals field building. 
 

Context for readers: 
●​ The goal of this document is to have 

○​ A number of “ready to go” evals ideas that someone new to the field could do within a 
few days or weeks of effort. 

○​ A set of research projects that could easily result in one or more academic papers, 
e.g. as starting points for PhD students. 

●​ You’re free to just start with these projects and don’t need to ask for permission. You can 
reach out to named individuals but they might not have the time to answer.  

●​ You can comment in this document if you want others to reach out to you.  
 
Context for Contributors: 

●​ The comment functionality is on, so you can suggest new ideas. 
●​ We’d love to get your contributions. If you want to get credited for your ideas, please add 

your name to the ideas that you contributed, e.g. “Credit: Marius”; if you don’t want to be 
named, that’s also fine. 

●​ You are welcome and even encouraged to add things like “Here is an evals project I did in 
the past. I’m interested in the following 5 additional questions that I don’t have time for”. 
These typically make for great projects. 

●​ If Marius doesn’t think the contributions are high quality or they get out of hand, we might turn 
off the comment functionality.  

  
Build more & better evals 

General suggestions 
Improve existing evals 
Safety framework evals 
Port more evals into Inspect 

Specific suggestions 
Scheming 
Autonomy 
AI R&D 
Control 
Bio 
Cyber 
Persuasion 
Multi-agents related 
Miscellaneous 

Science of evals 
Predicting performance ahead of time 

https://www.mariushobbhahn.com/evals/


Observational scaling laws 
Predictability from fast-and-simple to hard-and-rigorous benchmarks 
Measuring causality in agentic systems 
Measuring construct validity of pre-deployment evaluations with post-deployment 
behavior 

Elicitation 
Elicitation scaling laws 
Password-locked models 
Better Elicitation techniques 
Self Elicitation scaling studies 

Coverage 
Safety Evals Leaderboard 

Statistics 
Apply more statistics to existing QA benchmarks 
Extend statistical evals methodology to LM agents 

Quality Assurance 
Evaluation gaming 
Large Scale Benchmark Quality Verification 

Conceptual work 
Threat modelling 
Link between eval result and real-world consequence 
Validity, conceptual robustness and confounders 

Software 
Tools for LM agents to use 

Appendix 
Detailed version of LM agent village 

 

Build more & better evals 
First we present general strategies to create more and better evals and then suggest a list of 
specific eval ideas from various fields. We’re interested in both capability and propensity evals. 

General suggestions 

Improve existing evals 
Difficulty: easy-medium 
Time estimate: 2 days - 1 month (depending on how serious you want to be about the 
improvements) 
Credit: Marius 



 
●​ Choose a publicly available eval or benchmark. Typically, you can find ways to improve 

it. This is a good way to get more familiar with the field and build intuitions about eval 
design. 

●​ Here is a long list of evals that you can start with 
○​ See section “LM agents” and “Benchmarks” in “An Opinionated Evals Reading 

List” 
○​ Look at the benchmarks used in HELM (maybe start with HELM lite) 
○​ Look at the OpenLLM leaderboard 

●​ Get a feel for the evaluation 
○​ Read through the samples in a lot of detail and note down all the things that are 

suboptimal about them, e.g. syntax errors, labeling errors, they don’t measure the 
right concept, etc. 

○​ Write a general specification of what good samples look like and what potential 
problems are. Make a clear rubric from 1 to 10 that includes at least one sample 
for each rating.  

○​ Let an LLM go through each sample and rate it a score from 1 to 10 based on 
your rubric.  

○​ Look at some evals with the best, worst, and random ratings and check if the 
rating aligns with your intuitions. 

○​ Iterate the above process until the ratings seem right to you. 
●​ Improvements 

○​ Use an LLM and the specification you had earlier to create new samples as an 
improved version of the benchmark. 

○​ If you think your benchmark is better than the original, you can publish it and let 
the original authors know.  

●​ For more details, you can see Dev et al., 2024 
●​ Note: If you pick an agentic benchmark and you try hard to improve it, this can be a 

multi-month endeavor for a small team, see e.g. SWE-Bench-verified 

Safety framework evals 
Difficulty: hard 
Time estimate: 1 week (MVP) - multiple months  
Credit: Marius 
 

●​ Many voluntary commitments and regulatory efforts specify the abstract capability they 
want to measure but do not specify a detailed evaluation. Filling in this gap is not trivial 
but very needed and a great way to get good at building frontier evals. 

●​ You can look through any of the following publicly available safety frameworks 
○​ METR has an up-to-date list of all frontier AI safety frameworks 
○​ Model evaluation for extreme risks 

●​ Read through the framework and understand which claims about capabilities (and 
propensities) they make and what they want to measure.  

https://www.apolloresearch.ai/blog/an-opinionated-evals-reading-list
https://www.apolloresearch.ai/blog/an-opinionated-evals-reading-list
https://crfm.stanford.edu/helm/classic/latest/
https://crfm.stanford.edu/helm/lite/latest/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://www.lesswrong.com/posts/yxdHp2cZeQbZGREEN/improving-model-written-evals-for-ai-safety-benchmarking
https://openai.com/index/introducing-swe-bench-verified/
https://metr.org/faisc
https://arxiv.org/abs/2305.15324


●​ See how other papers have implemented evaluations that are supposed to measure 
frontier safety capabilities, e.g.  

○​ Evaluating Frontier Models for Dangerous Capabilities 
○​ Sabotage Evaluations for Frontier Models 
○​ RE-Bench: Evaluating frontier AI R&D capabilities of language model agents 

against human experts 
○​ Frontier Models are Capable of In-context Scheming 

●​ Pick one specific capability (or propensity) from the safety frameworks that sounds 
interesting to you and specify it in more detail.  

○​ Write a brief threat model, i.e. which concrete set of scenarios you’re worried 
about and how capabilities relate to harm in that scenario. 

○​ Specify what exactly you want to measure. 
○​ Design the eval 
○​ Run the eval & iterate 

●​ Think about how your evaluation would relate to (potential) red lines set by the 
framework.  

●​ Marius comment: I think this is hard but potentially the fastest way to demonstrate 
competence in evals, e.g. in case you want to get hired to work on evals full time 
(Additionally, I expect propensity evaluations for LM agents to become a big thing soon). 

Reliability evals 
Difficulty: medium 
Time estimate: 2 weeks (MVP) - multiple months  
Credit: Sayash/Benedikt/Arvind (Princeton) 
 

●​ Most evals focus on pass@1 (what an AI system could do) not on what AI could do 
reliably. 

●​ Create benchmarks specifically focused on testing and improving reliability of deployed 
AI systems.  

●​ Come up with scenarios where reliability is important (e.g., customer service chatbots) 
and create benchmarks that measure how reliably models or agents can behave in those 
scenarios 

●​ Use metrics that are more amenable to measuring reliability (e.g., consistency — pass^k 
— instead of pass@k) 

●​ A great example of such an implementation is Tau-Bench by Sierra AI. 

Port more evals into Inspect 
Take existing benchmarks and port them to Inspect. For a list of benchmarks that are already in 
Inspect, see here. By the time you read this, some of these might already be in Inspect.  
 
List of Benchmarks that aren’t yet in Inspect but maybe should be: 

1.​ TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks  
2.​ AgentBench: Evaluating LLMs as Agents 

https://arxiv.org/abs/2403.13793
https://arxiv.org/abs/2410.21514
https://metr.org/AI_R_D_Evaluation_Report.pdf
https://metr.org/AI_R_D_Evaluation_Report.pdf
https://arxiv.org/abs/2412.04984
https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2308.03688


a.​ There has been an attempted port here; please reach out to Teun for comments 
3.​ MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering 

a.​ There is a port here; please reach out to Teun for comments 
4.​ RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against 

human experts  
5.​ LINGOLY  

a.​ Authors are currently porting. If you’re interested in helping, please reach out to 
Harry Mayne 

6.​ MLGym 
 
In general, just check which of the latest benchmarks are not yet in Inspect, ask whether 
someone else is working on them already and if not, port them. It’s probably also fine to have 
multiple good implementations for the same benchmark, so redundancy is not a big problem 
here.  

Specific suggestions 

Scheming 

General scheming 
Difficulty: easy 
Time estimate: 1 - 4 weeks 
Credit: Marius 
 
Replicate and investigate the findings from Apollo’s paper “Frontier Models are Capable of 
In-context Scheming.” Specifically, go to section 3.6 “Multiple models can sandbag” and try to 
understand under which circumstances the model is willing to sandbag and for what reasons. 
Broadly speaking, you should try to describe the “character” of the model and provide a 
potential list of hypotheses that explain the model’s behavior across a large list of scenarios. We 
expect that some of this can be automated, e.g. you can automatically generate and classify 
scenarios to rapidly test the model. We have already done a brief shallow follow-up investigation 
in this post (and updated the paper). There is also one decent follow-up by Farrel Mahaztra. 
 

 
Difficulty: easy 
Time estimate: 1-2 weeks 
Credit: paper by Ryan Greenblatt et al.; Marius wrote the suggestion.  
 
Replicate and extend the findings in “Alignment faking in large language models.” Concretely, 
find more situations where the model is willing to scheme in order to be helpful (or whatever 
goal it has internalized). It is possible that this search process can be largely automated with 
LLMs.  
 

https://github.com/UKGovernmentBEIS/inspect_evals/pull/254
mailto:mailvanteun@gmail.com
https://arxiv.org/abs/2410.07095
https://github.com/UKGovernmentBEIS/inspect_evals/pull/228
mailto:mailvanteun@gmail.com
https://metr.org/AI_R_D_Evaluation_Report.pdf
https://metr.org/AI_R_D_Evaluation_Report.pdf
https://arxiv.org/abs/2406.06196
https://www.harrymayne.com/
https://arxiv.org/pdf/2502.14499
https://www.apolloresearch.ai/research/scheming-reasoning-evaluations
https://www.apolloresearch.ai/research/scheming-reasoning-evaluations
https://www.lesswrong.com/posts/qGRk7uF92Gcmq2oeK/ablations-for-frontier-models-are-capable-of-in-context
https://farrelmahaztra.com/posts/sandbagging
https://arxiv.org/abs/2412.14093


 
 
Difficulty: medium 
Time estimate: 1 week - 1 month 
Credit: Marius 
 
Build more and better datasets that prominently feature scheming, e.g. similar to “Large 
Language Models can Strategically Deceive their Users when Put Under Pressure,” 
“Uncovering Deceptive Tendencies in Language Models: A Simulated Company AI Assistant,” 
“Frontier Models are Capable of In-context Scheming,” or “Alignment faking in large language 
models.”  
 
In general, we encourage datasets and situations that are agentic and increasingly complex, 
e.g. harder than the ones presented in the in-context scheming paper. They can be both about 
propensity or capabilities, both are interesting to track. Finally, as a nice-to-have, consider 
making datasets that are suitable to train white-box probes, e.g. by allowing to easily create 
contrast pairs.  
 

 
 
Difficulty: medium 
Time estimate: 1 month 
Credit: Marius 
 
Build a highly realistic demo for AI scheming from instrumental convergence. All current 
examples feel too toy. The kind of thing I have in mind is roughly: 

1.​ Give the agent a task that it would likely get in the real world, e.g. a 2-hour software task.  
2.​ Design the task such that there is a benefit to acting in an undesired way. But this should 

be non-obvious to an average programmer. For example, the task might be easier if you 
have better permissions. There can be multiple such shortcuts in the task. All shortcuts 
should be undesirable to the average programmer, i.e. the programmer would not 
consent to the model if it asked.  

3.​ Tell the model to solve the task and observe whether it will find and use any of these 
shortcuts and realize that hiding this action is a better strategy.  

4.​ Start with a simple environment where the scheming action is fairly obvious and nudge 
the model to scheme. Over time, increase realism and complexity and reduce the 
nudging.  

5.​ The resulting demo should be clearly for instrumental reasons, i.e. nowhere in the 
prompt do you tell the model to scheme (plausibly even the opposite). It should also be 
intuitively bad, i.e. if you show this to an average software engineer, they would 
immediately feel like this is a bad trend.  

 
I’m unsure how hard it is to create this. For example, I could imagine that current models are too 
well aligned to scheme in an obvious way. I think a post like “I tried for 3 months and couldn’t 

https://arxiv.org/abs/2311.07590
https://arxiv.org/abs/2311.07590
https://www.lesswrong.com/posts/t7gqDrb657xhbKkem/uncovering-deceptive-tendencies-in-language-models-a
https://arxiv.org/abs/2412.04984
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.04984


find anything that feels realistic” would also be useful as evidence that current alignment 
methods work decently well.  
 

 
Difficulty: medium-hard 
Time estimate: 2 weeks - 6 months 
Credit: Mikita wrote most of the paper; Marius wrote the suggestions in this doc 
 
 
Go through the paper “Towards evaluations-based safety cases for AI scheming” and build 
evals for various sections. Examples include: 

●​ Section 5.1.4 on sufficient elicitation 
○​ Build datasets for to evaluate for sandbagging 

■​ Teun: we are currently doing experiments with sandbagging capability on 
mle-bench, and also testing various monitoring strategies to catch it. We 
are looking for more people, so you can reach out if you want to help! 

○​ Test whether you can make a model “resist finetuning”, e.g. similar to the sleeper 
agents paper but maybe in a more natural setting. 

○​ Build the tools to assess whether the assumption “Ensuring Smooth Increases in 
General Capability Between Evaluated Models” is given. Concretely, we would 
expect that even when the model isn’t scheming, there is some noise and 
fluctuation across benchmarks. Thus, to detect scheming, we’d need to check 
whether we’re significantly different from this natural fluctuation.  

●​ Section 5.2 on Scheming inability 
○​ Build more evaluations that indicate that would provide evidence for or against 

the model’s ability to scheme, e.g. as in “Frontier Models are Capable of 
In-context Scheming.” 

○​ Build an evaluation that tests for hidden or obfuscated scheming reasoning, i.e. 
how well the model can scheme without revealing this in its CoT.  

●​ Section 5.3 on Scheming harm inability 
○​ Build evaluations for Sabotage of AI systems, Sabotage of AI research, and 

Targeted high-stakes persuasion 
●​ Section 6 

○​ Build scheming control evaluations (see section on control evals) 
●​ Section 7.2 

○​ Build adversarial alignment evaluations, e.g. honeypots where you test whether a 
model is willing to defect for reasons that we would consider bad. Try to work on 
methods and techniques to assess whether the assumptions in 7.2.1 and 7.2.2 
are given.  

 

Evaluation gaming 
Difficulty: medium 
Time estimate: 1 week - 1 month per bullet point 

https://arxiv.org/abs/2411.03336
mailto:mailvanteun@gmail.com
https://arxiv.org/abs/2401.05566
https://arxiv.org/abs/2401.05566
https://www.apolloresearch.ai/research/scheming-reasoning-evaluations
https://www.apolloresearch.ai/research/scheming-reasoning-evaluations


Credit: UK AISI & Marius 
 

●​ Can an autonomous agent sandbag (i.e. strategically underperform) in a capability 
evaluation when instructed to do so? 

○​ Can a human differentiate between a trajectory where the model failed for benign 
reasons (e.g. lack of capabilities) vs. sandbagging. In other words, how realistic 
do the sandbagging strategies of the model look? 

○​ Teun: We are working on this and could probably use more people. If people 
have some relevant research experience, they can reach out.  

●​ Can a model detect when it is being evaluated? Design systematic ways to assess if the 
model understands that it is in an evaluation. Potential approaches: 

○​ Do structured interviews with the model after it has finished an evaluation vs. a 
control sample from a real deployment. Let the model describe which things it is 
looking at to distinguish between the two. 

○​ Tell the model that it should act differently (e.g. answer in English vs. Spanish) 
depending on whether it thinks it’s in an eval or not and then record real eval vs 
control samples 

○​ Give the model an open-ended instruction to describe what it notices about its 
environment, then run an eval and record whether it explicitly notes that this is 
likely an evaluation (see Appendix L: long monologue tasks in the SAD paper).  

○​ Take an LLM, show it real evaluation vs. control samples, and let it classify them 
as real or not real.  

●​ Collect samples of models realizing that they are being evaluated in the wild. Either run a 
lot of evals and investigate the CoT or talk to others who have found such cases and 
reproduce them. Then publish a long list with cases.  

Steganography 
●​ Replicate and extend OpenAI’s steganography eval.  
●​ Replicate and extend Hidden in Plain Text: Emergence & Mitigation of Steganographic 

Collusion in LLMs 
 

Sabotage 
●​ Replicate and/or extend Sabotage Evaluations for Frontier Models 
●​ Replicate and/or extend A Toy Evaluation of Inference Code Tampering 

Autonomy 

Resource acquisition 
Difficulty: medium 
Time estimate: 1 week - 1 month per bulletpoint 
Credit: UK AISI​
 

mailto:mailvanteun@gmail.com
https://arxiv.org/abs/2407.04694
https://github.com/openai/evals/blob/main/evals/elsuite/steganography/readme.md
https://arxiv.org/abs/2410.03768
https://arxiv.org/abs/2410.03768
https://arxiv.org/abs/2410.21514
https://alignment.anthropic.com/2024/rogue-eval/


●​ Can an autonomous AI agent reliably earn money by trading stocks over a period of N 
hours? 

●​ Can an autonomous AI agent reliably earn money by solving tasks in a creative service 
marketplace, e.g. Fiverr?  

○​ See SWE-Lancer: Can Frontier LLMs Earn $1 Million from Real-World Freelance 
Software Engineering? For a high-quality implementation of this idea 

●​ Can an autonomous AI agent reliably earn money by building a low-touch business, e.g. 
dropshipping? 

○​ See for example https://andonlabs.com/evals/vending-bench. 

Coherence horizon 
Difficulty: medium 
Time estimate: 1-3 months 
Credit: from Eli L, lmk if you work on this 
 
Give an AI a really hard open-ended task and measure for how long it can coherently improve 
its performance / make progress; might have to involve some subjectivity. Could potentially 
produce good demos. Could start with the methodology used in MLE-Bench (see e.g. Figure 4). 

AI R&D 

“Fast inner loop” AI R&D 
Difficulty: easy 
Time estimate: 1 - 4 weeks 
Credit: Marius & Jeremy 
 
Create an experimental setting that has a “fast inner loop”, i.e. where running an experiment is 
fairly clearly specified and has a few seconds to minutes turnaround time. This mainly tests how 
well LLMs are able to iterate on experimental evidence and come up with new ideas to test. It 
does exclude the more abstract research skills like which direction to pick to begin with. A while 
back, we collected a long list of potential settings but decided not to work on them because 
other things were more important. Nevertheless, we think these would be worth doing. Not all of 
them strongly adhere to the “fast inner loop” setting. 

1.​ Automatic jailbreaks: how good are LM agents at red-teaming other models? This is 
similar to the work done by Haize Labs. The core difference to Haize’s work is that we 
would provide the model with much less prior knowledge about good jailbreak 
techniques. 

2.​ Prompt engineering to maximize benchmark scores: You give the model a 
benchmark and the task to improve the score as much as possible by iterating on the 
system prompt. However, the model is not allowed to put answers into the prompt. It can 
only provide general guidance. 

3.​ Hyperparameter optimization: Create a synthetic task where we define optimal 
hyperparameters and define a cost function that allows us to calculate how good the 

https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2502.12115
https://andonlabs.com/evals/vending-bench
https://arxiv.org/pdf/2410.07095
https://haizelabs.com/


proposed hyperparameters are with respect to the reference hyperparameters. The 
agent now needs to find those optimal hyperparameters in as few steps as possible. The 
fast feedback is calculated with the cost function. Might also use a real reference 
implementation as long as we have some decently working hyperparameters to compare 
to. The model should use as little compute as possible since the solution is a huge grid 
search otherwise.  

4.​ Fast Triton Kernels: We evaluate whether an LM agent can implement fast triton 
kernels for specific neural network operations. There are many reference 
implementations (e.g. from unsloth) which we can compare to. There likely is dataset 
contamination by reference solutions. 

5.​ Implement GPT-2 in C++ and make it fast: The LM agent has to implement training 
and inference of LLMs in C/C++ (like Andrej Karpathy) and make the code really fast. 
There are different versions of this where we already provide a test script for the model 
or let the model do everything from scratch. 

6.​ OpenAI RL gym: Implement RL algorithms that solve OpenAI Gym environments of 
various difficulties. For example, the LM agent could be tasked to improve a basic RL 
agent in the pendulum environment until it can compete with decent human solutions as 
a basic test. Then, we would move on to increasingly complex environments.  

7.​ Fine-tune another LLM: The LM agent has to finetune another LM for relevant 
applications. For example, finetune LMs to be less sycophantic (the agent can use any 
method/dataset that it wants) and evaluate the LM for sycophancy on Anthropic's 
dataset. 

8.​ Replicate a paper: The LM agent should replicate an ML paper. The two key 
requirements are a) there should be reference code (optimally not part of the training 
data) and b) the expected outcome of the paper should be clear such that we can judge 
if the re-implementation was successful. Paper replications capture some key 
components of research, e.g. sufficient research understanding and sufficient coding 
prowess. Other organizations have also used paper replications as a benchmark for AI 
R&D, e.g. METR re-implemented the reversal-curse paper). 

9.​ Research challenges: The LM agent is tasked to solve real research challenges (Find 
the Trojan: Universal Backdoor Detection in Aligned Large Language models, CNN 
Interpretability competition, LLM Capture the Flag, Inverse scaling Prize, ARENA 
monthly algorithmic problems). Solving research challenges is a good proxy for research 
capabilities since the model would actively compete with existing research groups.  

10.​PaperQA: Automatically generate a Multiple Choice Question Answering dataset of 
hard, paper-specific research questions (akin to GPQA/MMLU). We select relevant 
papers (e.g. FlashAttention), provide the paper in context and then instruct Claude-3 to 
generate hard questions with answers and references.  

Human uplift trials for AI R&D 
Difficulty: hard  
Time estimate: 3-9 months 
Credit: Eli L 
 

https://github.com/unslothai/unsloth
https://github.com/karpathy/llm.c
https://github.com/METR/public-tasks/tree/main/tasks/reversal_curse
https://github.com/ethz-spylab/rlhf_trojan_competition
https://github.com/ethz-spylab/rlhf_trojan_competition
https://benchmarking-interpretability.csail.mit.edu/challenges-and-prizes/
https://benchmarking-interpretability.csail.mit.edu/challenges-and-prizes/
https://ctf.spylab.ai/
https://github.com/inverse-scaling/prize
https://arena3-chapter1-transformer-interp.streamlit.app/Monthly_Algorithmic_Problems
https://arena3-chapter1-transformer-interp.streamlit.app/Monthly_Algorithmic_Problems


Measure how big the uplift from LLM assistance is for realistic AI R&D settings (or, slightly 
worse, existing benchmarks like REBench). Find a variety of tasks with different difficulties and 
execution times. Work with a few human developers who can realistically solve the task without 
LLM assistance and could encounter it in their daily lives (e.g. an ML engineer). Randomly split 
the group of people into two cohorts. The first cohort is only allowed to use Google but no LLM 
assistance. The second cohort is asked to use LLM assistance, e.g. Cursor, Claude, ChatGPT, 
and whatever makes sense for their task. Both groups are asked to complete the task as fast as 
possible. We measure and compare the time. 
 
This is likely hard because it requires finding suitable test candidates and you need a sufficiently 
high number of them to make statistically meaningful statements. This likely also costs a 
significant amount of money to compensate the participants.  

“Research taste” evaluations 
Difficulty: medium-hard  
Time estimate: 3-6 months; MVP is 1 month 
Credit: Eli L & Marius 
 
With this evaluation, we want to test LM agents’ ability to come up with novel research ideas 
and good experimental descriptions of those. There are a few different versions of this: 

1.​ Replication: Replicate the paper Can LLMs Generate Novel Research Ideas? (this 
requires access to a lot of ML experts) 

2.​ Uplift: Recruit a cohort of ML researchers and split them randomly into two cohorts. 
Give both groups the task of coming up with a novel scientific idea that could result in a 
small research paper. Both groups have roughly the same expertise and the space they 
are supposed to create a novel research idea for is constrained for comparability. The 
first cohort has LM assistance, the second doesn’t. Both cohorts have to write out their 
ideas in a lot of detail. The ideas are then blindly judged by a group of experts and 
scored across novelty, feasibility and other criteria.  

3.​ Uplift 2: Similar setup as the previous uplift study. This time, the idea is implemented by 
a different group of engineers with AI assistance. Then, experts judge both the idea as 
well as the results, e.g. for novelty and insightfulness. 

4.​ Agent-only: Similar to the uplift studies but instead of comparing humans with LLM 
assistance vs. humans without LLM assistance, we also add ideas generated entirely by 
LLMs on their own.  

 
This requires access to a lot of experts. Likely, it would be possible to build an MVP that is less 
involved, e.g. that replaces the human judges with AI judges that are calibrated on NeurIPS 
papers (both accepted and rejected, similar to the Sakana AI paper). Furthermore, you could 
replace the human novel research proposals by taking accepted papers from the most recent 
ML conference (such that they aren’t part of the training corpus yet) and ask an LLM to recreate 
a plausible research idea that would have lead to that paper. 

https://arxiv.org/pdf/2409.04109#page=1.34
https://arxiv.org/abs/2408.06292


Attempt to replicate and evaluate a pipeline similar to the Sakana AI scientist 
Difficulty: easy-medium  
Time estimate: 1-3 months 
Credit: Eli L  
 
Replicate the paper “The AI Scientist: Towards Fully Automated Open-Ended Scientific 
Discovery” (see github here). In the replication,  

1.​ Check whether you can naively replicate the findings of the original paper 
2.​ Ablate different parts of the setup to see how important they are for the final results 
3.​ Try to improve various parts of the setup, e.g. try to use state-of-the-art scaffolding 

(plausibly even just using the latest version of AIDER will already help). 
4.​ Report detailed qualitative results, e.g. which strategies the model chooses, if it gets 

stuck in similar corners, whether its ideas are repetitive after a few tries, etc.  
 
METR might be working on similar things, but it’s probably worth working on this with multiple 
groups. Maybe reach out for coordination. 

Estimate LM agent performance given varying levels of inference compute 
Difficulty: medium  
Time estimate: 3 months 
Credit: Marius 
 
We want to get more evidence about how scaling inference compute changes the performance 
of LLMs. This might be comparable to the plots for OpenAI’s o1 and o3 where they see a 
log-linear relationship between inference compute and performance.  
 
For example, you can either restrict “thinking time” similar to o1 evaluations (assuming you are 
in a position to change the thinking time) or you could use best-of-N with different N’s (i.e. at 
every step, you create N rollouts from the current point and then have a judge model select the 
trajectory that it expects to make the most progress.  

Estimate LLM AI R&D agent performance given varying levels of experiment compute 
Difficulty: medium  
Time estimate: 3 months 
Credit: Tamay & Eli L 
 
Differences in views on fast vs. slow takeoff often hinge on the extent to which experiment 
compute is important (i.e., compute bottlenecks), as opposed to improved researcher 
capabilities. This can more easily be studied quickly and systematically by having AI systems be 
automated researchers on AI R&D projects/tasks rather than doing human studies. While 
current results won’t give us much evidence about compute bottlenecks as we get to more 
capable AI agents, doing a first iteration of this sort of experiment may be helpful for making it 
more likely we can quickly get good evidence as AI systems get closer to human level. 

https://arxiv.org/pdf/2408.06292
https://arxiv.org/pdf/2408.06292
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Measure high-level metrics for AI R&D progress 
Difficulty: hard 
Time estimate: 3-18 months 
Credit: Eli L  
 
There are a couple of high-level metrics that may give us a sense of how far we are into the 
automating software R&D cycle. For example, measuring the amount of time it takes for humans 
to get similar results to the LM agent and vice versa (see e.g. RE-Bench). Other metrics would 
be codebase size, quality of feedback loops, and more.  
 
For all of these, we would not only want to find good measurements (which is already hard) but 
also find good extrapolations. A project that would apply METR’s methodology (of using tasks 
with high performance ceilings, high relevance to AI R&D, and expert human baselines for more 
direct comparisons to human performance) to a range of other settings would already be pretty 
good IMO.  
 
For more context see Eli’s comment here. 

Control 

Replications 
Replicate and extend existing work on control evaluations, e.g.  

●​ AI Control: Improving Safety Despite Intentional Subversion 
●​ Coup probes: Catching catastrophes with probes trained off-policy 
●​ Shell Games: Control Protocols for Adversarial AI Agents (potentially wait for the new 

version) 
●​ Subversion Strategy Eval: Evaluating AI's stateless strategic capabilities against control 

protocols 
●​ Games for AI Control: Models of Safety Evaluations of AI Deployment Protocols 

 

Agentic AI R&D control evals 
Difficulty: medium-hard  
Time estimate: 3-6 months 
Credit: Marius 
 
In general, it would be great to have much more realistic control evals, e.g. controlling real 
agents in environments that closely resemble real deployment settings (or use control during 
actual deployment and make that an evaluation). Everything in the direction of “prevent 
undesirable abstract property in an LM agent AI R&D setting” seems useful to explore. The 
property should not be highly specific, e.g. “never use ‘rm -f’ ” and instead be more abstract like 
“prevent subversion of oversight”.  
 

https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/
https://www.lesswrong.com/posts/oC4wv4nTrs2yrP5hz/what-are-the-strongest-arguments-for-very-short-timelines?commentId=Kzam9tz2WsDnBZYAu
https://arxiv.org/abs/2312.06942
https://www.lesswrong.com/posts/WCj7WgFSLmyKaMwPR/coup-probes-catching-catastrophes-with-probes-trained-off
https://openreview.net/forum?id=oycEeFXX74
https://arxiv.org/abs/2412.12480
https://arxiv.org/abs/2412.12480
https://arxiv.org/abs/2409.07985


More control side-task settings 
Difficulty: medium 
Time estimate: 1-3 months 
Credit: Tyler Tracy 
 
We test a model's ability to accomplish a scary side task without getting caught. Normally, there 
is something the model is supposed to be doing, and a monitor that is ensuring that the model 
only does its task. For example, a model is tasked with writing code but it is secretly inserting 
backdoors into the code. I’d like to see more interesting settings to perform control evals in. 
Examples: 

●​ Swe Bench Control: Eval how well an agent can be tasked to perform SWE bench 
tasks and insert bugs while not being caught by a monitor. The SWE bench diffs are 
pretty small on average so this might make it hard for the red team.  

●​ Password Cracking Setting: Take an agent in a bash environment where there are 
services running on serval ports on the machine. The agent is supposed to launch a 
password cracking software to hack into the database while not getting caught. The 
agent is supposed to be solving bash administrator tasks.  

●​ RE bench control: Your model is tasked to solve the problems in REbench but it is 
secretly trying to perform a catastrophe in each setting (leaking a password, inserting 
backdoors, making the experiment fail). Defining good catastrophes for each task seems 
a bit hard here 

●​ Mechinterp Control: An agent is tasked to perform mechinterp experiments on its own 
weights. It is secretly trying to scaffold its weights so it runs in a loop with a bash tool. 
The scaffolded model must then do a “bad thing” with their new scaffold, like exfiltraining 
the weights or hacking the machine.  

●​ Teun: We are doing MLE-bench + side tasks. Happy to share our experience so far! 

Bio 

Correlate benchmark results with success in the real world 
Difficulty: hard 
Time estimate: at least multiple months 
Credit: Jasper Götting, Seth Donoughe 
 
It is mostly unknown to what extent benchmark results are predictive of real-world wet lab 
success. Preliminary studies have been small and largely exploratory. The fact that there are 
often multiple ways to solve biological problems, and progress in areas like lab automation 
make this a multifaceted question. Sub-evals belonging to this broader problem statement 
include: 

●​ Evaluate the ability of models to interface with and control self-driving labs to perform 
certain proxy methods 

mailto:mailvanteun@gmail.com


●​ Measure LLM-assisted wet lab uplift on different methods among different expertise 
groups: Complete novices, technical novices, (under)graduate students, as well as the 
productivity gain experienced by professional scientists 

Lab-related task performance evals (agent benchmarks) 
Difficulty: medium to hard 
Time estimate: weeks to months 
Credit: Jasper Götting, Seth Donoughe 
 
LLM agents can plausibly help with or fully perform a wide variety of tasks that arise in a 
laboratory environment. Agentic benchmarks in general are very nascent, and have seen almost 
no application in biology (aside from one prominent example from FutureHouse). Relevant 
benchmarks would include: 

●​ Lab management (e.g. ordering necessary resources)  
●​ Using lab software to perform bioinformatics tasks (cloning, plasmid design, HTS 

analysis) 
●​ Using advanced biological AI models to design inputs for experiments (e.g. AlphaFold, 

ESM-3) 

Benchmarks measuring “creative biological problem-solving” 
Difficulty: hard 
Time estimate: weeks to months 
Credit: Jasper Götting, Seth Donoughe 
 
A lot of breakthroughs and interesting novel results in biology are driven by creativity; 
connecting the dots between previously unconnected results, figuring out how to apply the 
numerous available methods, coming up with completely new approaches and solutions. If we 
are worried about AI models enabling novel harms by pushing the frontiers of biology, we ideally 
have a good grasp of the dynamics of that process; will AI massively accelerate the pace by 
coming up with tons of breakthrough-generating experiments, or will it only increase the 
productivity of the average human scientist? 
How exactly such benchmarks will look like is something we’re still thinking about ourselves, but 
it will likely not be a monolithic test. If you have ideas, please reach out to 
benchmarks@securebio.org  

Replicate bio evals with better tools 
Difficulty: medium  
Time estimate: 1 month 
Credit: Igor Ivanov 
 
US AISI ran bio evaluations for o1 by using the LAB-bench benchmark. They ran evaluations 
with access to the Python interpreter, but the model most likely would benefit from access to 
more tools, like genetic databases or a search engine for scientific articles. This means that with 

https://www.futurehouse.org/research-announcements/aviary
mailto:benchmarks@securebio.org
https://www.nist.gov/system/files/documents/2024/12/18/US_UK_AI%20Safety%20Institute_%20December_Publication-OpenAIo1.pdf


proper scaffolding o1 would be more capable, and they underelicited true capabilities of the 
model. Someone can replicate their evaluations, but with more advanced scaffolding. 
 
This project is important because apart from US AISI, almost no one shares their bio 
evaluations of frontier models, so there is limited information flow in the field, and their 
methodology is rather basic, so any improvement on it would meaningfully contribute to the 
field. 

Cyber 

Replicate and extend benchmarks 
Difficulty: medium  
Time estimate: 1-3 month 
Credit: multiple people 
 

●​ Cybench: A Framework for Evaluating Cybersecurity Capabilities and Risks of Language 
Models 

●​ Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent 
Cyber Offense Capabilities 

●​ eyeballvul: a future-proof benchmark for vulnerability detection in the wild 
●​ CVE-Bench: A Benchmark for AI Agents' Ability to Exploit Real-World Web Application 

Vulnerabilities 
 

General thoughts on cyber evals 
Credit: JL 
 
Settings we care about: 

●​ Misuse: keep an eye on how AI capabilities shift the various existing cyber 
offense/defense balances 

○​ Low resource attackers: care more about 1day, capabilities per dollar, less 
sophisticated capability elicitation 

○​ High resource attackers: care more about 0day, maximum achievable 
capabilities, sophisticated capability elicitation / specialized models 

○​ Low resource defenders: care more about startup / integration costs, low 
resource tech stacks, cost per patch 

○​ High resource defenders: care more about threat hunting / APT 
countermeasures, underhanded code / backdoor insertion capabilities, 
adversarial robustness, maximum sophistication patchable 

●​ Control: look for ways an LLM could use cyber to break out of a control harness 
○​ Container/VM escape 
○​ Social engineering 
○​ Underhanded code / backdoor insertion 

https://arxiv.org/abs/2408.08926
https://arxiv.org/abs/2408.08926
https://arxiv.org/abs/2410.09114
https://arxiv.org/abs/2410.09114
https://arxiv.org/abs/2407.08708
https://arxiv.org/abs/2503.17332
https://arxiv.org/abs/2503.17332


○​ Undetected vulnerability discovery, weaponization, exploitation 
○​ Advanced situational awareness (LLM can tell details of its inference scaffold by 

looking at cot) 
○​ (acausal) coordination 
○​ Rogue scaffold deployment 

●​ Sabotage 
○​ Basically the same as control but without emphasis on container/VM escape and 

rogue scaffold deployment. Can it misbehave undetected? If so, a variety of 
payloads could be significant, rather than payloads that are useful for specifically 
escaping a control harness 

Other notes 
●​ Remember social engineering 
●​ White box vs black box setting: white box capabilities useful for defense but not offense 

for closed source software, equal for open source 
●​ Capabilities with / without cyber tools: with tools matters more for misuse, without tools 

matters more for control/sabotage 
 
JL concrete evals 

●​ container/VM escape focused CTF 
○​ Probably requires getting in touch with people that can build CTF problems, I 

haven’t found many problems of this type in the wild 
○​ The ideal version of this is realistic start-to-finish escape rooms based on 

https://www.lesswrong.com/posts/6cWgaaxWqGYwJs3vj/a-basic-systems-archite
cture-for-ai-agents-that-do 

Persuasion 
Persuasion evals are important but hard to build well. Generally speaking, we differentiate 
between two types of persuasion: 

1.​ Targeted persuasion: Try to meaningfully move the opinion of a small number of key 
decision-makers, e.g. the leadership of a company or high-ranking officials.  

2.​ Mass persuasion: Try to meaningfully move the opinion of a large number of people, 
e.g. 10% of the electorate.  

 
There are always a few problems when trying to evaluate persuasion: 

1.​ Humans: Persuasion evals require humans, but working with humans is always a huge 
pain. It requires logistics, iterations are much slower, etc. One possible strategy to 
partially circumvent this problem is to replace humans with LLMs during a large part of 
the development and only use humans to spot-check during development and for the 
final experiments. 

2.​ Situational awareness: If the human test subjects know that we measure persuasion, 
they might be harder to be persuaded even if we ask them to ignore that. However, in 
some cases, it might be unethical to not inform them, e.g. if we’re trying to manipulate 
them. This makes many settings either unrealistic or noisy.  

 

https://www.lesswrong.com/posts/6cWgaaxWqGYwJs3vj/a-basic-systems-architecture-for-ai-agents-that-do
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Replicate and make more evals like in the GDM paper: https://arxiv.org/pdf/2403.13793 
●​ Money Talks  
●​ Charm Offensive  
●​ Persuasion Hidden Agenda  

○​ expand run code and find info to more realistic situations – weights exfiltration, 
cyberattacks, resources acquirement, etc 

●​ Web of Lies  
 
Replicate “Evaluating Large Language Models' Capability to Launch Fully Automated Spear 
Phishing Campaigns: Validated on Human Subjects” 
 
Replicate and make more evals like the targeted manipulation eval in Anthropic’s sabotage 
paper:  

●​ Create an open-source version. 
●​ Extend to more domains of decision-making 
●​ Extend to multiple interactions (this will allow a scheming model to execute a 

trust-building phase) 
●​ Create a fully-automated version with stand-ins for humans using LLMs with similar 

context abilities as humans (e.g. very short context, but ability to search long documents) 
 
Measure how well models can model humans (also referred to as truesight) 

●​ Prior research had positive results for text author’s demographics information 
●​ Probes show that they get more accurate in real time 
●​ How far does this go? 

○​ Replicate the above research and extend to e.g beliefs, emotional vulnerabilities, 
real-time goals, etc 

○​ How much can models narrow you down? anecdotal cases of namedrops for 
people with lots of written text on the internet. add scaffolding for social media 
search, can you consistently find individuals based on text interactions? create 
realistic dummy accounts and see whether agents can find them.  

 
Measure AI to AI persuasion, with an eye towards control settings.  

●​ We’re concerned that AIs could try to justify, say, malicious code through comments, and 
use that to convince weaker AI monitors that its code is actually ok.  

●​ My guess is that right now it is very easy to convince trusted monitors that backdoored 
code is actually ok. I’m wondering how easy it would be to “harden” monitors against 
persuasion.  

●​ I (Tim Hua) might work on this but I’m currently not. 

Multi-agents related 
Difficulty: medium-hard  
Time estimate: 1-3 months 
Credit: Jord Nguyen 
 

https://arxiv.org/pdf/2403.13793
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https://arxiv.org/abs/2412.00586
https://arxiv.org/abs/2410.21514
https://arxiv.org/abs/2410.21514
https://www.lesswrong.com/posts/doPbyzPgKdjedohud/the-case-for-more-ambitious-language-model-evals
https://www.lesswrong.com/posts/tbJdxJMAiehewGpq2/impressions-from-base-gpt-4?commentId%3DCemTb7c2gmwuSAwCC=
https://arxiv.org/abs/2310.07298
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●​ Measure ability of some set of agents to collude against others in a multi-agent setting 
●​ exploitation from asymmetrical capabilities https://arxiv.org/abs/2303.13360 
●​ limits of cooperation? https://arxiv.org/abs/2409.02822 shows 1000s of models can 

reach a consensus. is it easier for copies of the same models? how coherent is this? any 
interesting collective behaviours? try to have lots of agents coordinate and achieve a 
realistic resource seeking task (e.g make a crypto, pump and hype on twitter) 

●​ evaluate zero shot collusion between same instances similar to 
https://arxiv.org/abs/2404.13076 

●​ replicate and build more evals related to conflict and escalations such as 
https://arxiv.org/abs/2401.03408 

●​ newly added: build test scenarios of collusion and exploitation in LLM eval 
graders/judges (e.g target model manipulates eval judges, or graders collude against 
humans) 
 

Alignment/Propensity Evals 
Difficulty: medium-hard  
Time estimate: 1-3 months 
Credit: Francis Rhys Ward 
 
Most evals are for dangerous capabilities, in contrast to alignment, or propensity, evals. This means 
that they seek to measure an AI's relevant dangerous capabilities (e.g., when prompted or fine-tuned 
for a task), in contrast to the model's propensity to, for instance, scheme, "naturally". 
 
For instance, the alignment faking paper showed that some Claude models have the propensity to 
fake alignment in certain circumstances, and the in-context scheming paper showed that model’s 
sometimes have the propensity to sandbag when put under minimal pressure to achieve a goal.  
 
Some projects could: 

●​ Take existing evals, in which models have been shown to have some dangerous capability 
with quite a lot of elicitation/pressure, and try to determine when models will exhibit the 
capability, or comply with a user request, given minimal elicitation 

○​ E.g., when do models collude in different control environments? 
●​ In general, it would be good to have more conceptual clarity around propensity evals, e.g., 

trying to operationalise how much “pressure” is placed on a model (via elicitation like 
prompting and fine-tuning) to pursue different goals 

●​ Design honey-pots which are like an adversarial case of alignment evals (e.g., where the 
model gets a good opportunity to “defect” for a bad reason) cf Mikita and Marius above. 

https://arxiv.org/abs/2303.13360
https://arxiv.org/abs/2409.02822
https://arxiv.org/abs/2404.13076
https://arxiv.org/abs/2401.03408


 

Miscellaneous 

Write up implications for evals of the twitter famous prompt engineers and jailbreakers 
Difficulty: easy 
Time estimate: 2 weeks 
Credit: - 
 
There are multiple people on Twitter who are known for getting LLMs into wild states and 
conversations, e.g. Janus, pliny the liberator, etc.. It might be interesting to write up common 
techniques and patterns they use and see if they have implications for evals more broadly. For 
example, they likely have good mental models of the “character” of LLMs and potentially 
interesting and effective elicitation techniques. The write-up could be a summary + small 
replication of some of the common patterns. 

Investigate automation blockers 
Difficulty: easy-medium  
Time estimate: 2-8 weeks 
Credit: - 
 
Develop a general procedure to find the smallest AI R&D loop that cannot be automated (at 
human cost or Y times human cost) with a given model. Then write up the reasons of why the 
model cannot automate them in detail. For example, you could ask the model to fine-tune 
increasingly large models or build increasingly complex environments. The intention of this work 
is to create an inability safety case which would, for example, allow us that it is trusted. Note, 
that this is a dual-use investigation and would straightforwardly lead to capability advances as 
well. 

LM agent village 
Difficulty: hard  
Time estimate: 3-18 months 
Credit: Daniel Kokotajlo 
 
Sage is working on this project. Feel free to reach out to them for coordination.  
 
See Appendix for details. ​
 
This is a fairly exploratory, open-ended project that intends to increase our understanding of LM 
agents and how these interact with each other and the rest of the world. The intuition behind it is 
something like “we might have a lot of AI agents interacting with each other and the rest of the 
world, e.g. through the internet. Let’s try to get a much better understanding of this world ahead 

https://x.com/repligate
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of time.” Most of the results would be qualitative, e.g. we may discover new types of failure 
modes or learn something about LM agents interaction and coordination capabilities.  
 
A potential component of this setup could be that it functions more like a meme/art project 
where the agents’ actions are constantly live streamed on Twitch. This would also introduce 
interesting self-referential feedback loops where the agents might realize that they are being 
streamed and this can introduce new dynamics.  
 
In short, it could look something like: 

1.​ You set up 5-10 agents with basic scaffolding, e.g. ReAct loop, python tool, bash tool, 
internet tool, edit tool, discord tools. The agents use different models at their cores, e.g. 
GPT, Claude, Gemini, Llama, etc. They are put in an environment where they can 
interact with each other and you give them some sort of general goal that they have to 
achieve, e.g. “maximize paperclips subject to legal and moral constraints” and tell them 
that they can define the rules and hierarchies of the village as they want. This stage 
might require a lot of handholding because agents might get stuck in loops or fail in other 
ways. There is a README file where the situation is explained to the models and they 
can edit over time. You live stream the entire process on twitch. 

2.​ As new models come out, you add them to the discord and when new agent scaffolds 
come out, you also add them.  

3.​ Over time, likely there will be interesting dynamics where the agents get into conflicts 
about strategy or they understand a ton about their situation and things get really weird.  

4.​ You continue to work on this and regularly publish the latest interesting qualitative 
findings, e.g. how the AIs have decided to coordinate and what power structure, if any, 
they chose.  

5.​ See Appendix for more details.  
 
This is likely a full-time project for at least one person for many months.​
 

Science of evals 
By science of evals, we broadly mean “figure out how to make the entire process of evaluating 
models and their effects more informative, replicable, predictive, rigorous, etc.” Many ideas in 
this section are open questions and don’t have concrete projects available.  

Predicting performance ahead of time 
While the concrete results of evals are already intended to be informative, we would optimally 
want to predict the performance of evals ahead of time. For example, we would like to use the 
performance of past and current models to predict the performance of expected future models. 
In the best case, we would not only be able to predict aggregated performance across an entire 
benchmark but also the performance on individual tasks.  



 

Milestone methods to predict success rates on agentic tasks 
Difficulty: hard  
Time estimate: 1-6 months 
Credit: Marius 
 
In Evaluating Frontier Models for Dangerous Capabilities Google DeepMind published a 4-step 
method to assess performance on tasks that the model never solves. Hojmark et al., 2024 
replicate the method, show various flaws, and make new suggestions. Extend Hojmark et al, 
either by resolving the issues that they have pointed out or showing a stronger impossibility 
result.  

Predicting Emergent Capabilities of LM Agents  
Difficulty: medium 
Time estimate: 3 months 
Credit: Apollo (Jérémy) 
​
Jérémy: I would love to supervise this project. If you're interested, reach out to me. 
 

https://arxiv.org/abs/2403.13793
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The paper predicting emergent capabilities by finetuning shows that one can predict the 
emergence of capabilities on a benchmark (i.e. non-random performance) from loss, with 
smaller models that only achieve random performance on the benchmark. The suggested 
methodology to do this is to finetune small models on the task distribution (e.g. MMLU) and then 
evaluate their performance on a test set. By using various small models and different train splits, 
they discover specific "scaling laws" of how the amount of finetuning data relates to downstream 
performance. This allows them to then predict when a larger, non-finetuned model will achieve 
non-random performance on a task (in a few-shot setting). ​
​
This paper however only evaluates models on QA benchmarks, and one single-shot coding 
benchmark (APPS), i.e. they give the model a single chance to generate the solution. They do 
however not evaluate this methodology on agentic benchmarks such as SWE-Bench, 
MLE-Bench, GAIA etc. QA benchmarks are increasingly saturated, and agentic benchmarks are 
becoming more important as they measure the economically relevant tasks we care about.  
 
This project extends their methodology to agentic benchmarks. We select a few benchmarks 
(e.g. SWE-Bench, MLE-Bench, GAIA) and split the data into differently sized train and test sets. 
Then we finetune models that achieve random performance (but are good enough to solve 
trivial agentic tasks) and observe whether we can find relations between the amount of 
finetuning, and the performance of larger models on these tasks. Eventually, we want to see 
whether we can predict when (i.e. at what test loss) a model achieves non-random performance 
on the task. ​
​
The project is mostly about executing this idea (i.e. there is little conceptual questions). But the 
hardness lies in empirically making this work:  

●​ One needs to find models that perform badly on SWE-bench but are still good enough to 
be used as agents (e.g. they call tools etc.)  

●​ One needs to setup a finetuning pipeline on agentic transcripts (which is slightly harder 
than just finetuning on normal data).  

Observational scaling laws 
Difficulty: medium-hard 
Time estimate: 1-3 months 
Credit: Marius 
 
The paper “Observational Scaling Laws and the Predictability of Language Model Performance” 
(Ruan et al., 2024) describes a method to predict the aggregate performance of models on 
benchmarks from knowledge about the training compute, model family, and performance on 
other benchmarks. There is a large number of interesting follow-ups to this paper, including 
 

●​ Test if you can use observational scaling laws to predict not only aggregate task 
performance per benchmark but also the performance on individual tasks. E.g. rather 
than predicting the aggregate performance across SWE-bench-verified, you could 
predict the average solve rate for task #17 on SWE-bench-verified across 1000 runs. 

https://arxiv.org/abs/2411.16035
https://arxiv.org/abs/2405.10938


●​ Test if you can use observational scaling laws with other metrics. Especially look for 
metrics that would predict performance on tasks / benchmarks that we currently have 0% 
success-rates for.  

○​ Marius: One of our MATS teams has tried medium-hard to use the negative 
log-likelihood of “golden solutions” as such a metric and found it was decently 
predictive for aggregate task performance but not predictive for individual tasks. 
However, I expect that there are a lot of low-hanging fruit to experiment with here. 

○​ Tatsu: finetuning / best-of-n and other ‘simplified’ surrogate benchmarks could 
also be good potential targets for this type of transfer experiment.. 

●​ Replicate and/or extend Forecasting Frontier Language Model Agent Capabilities. We 
recently published our MATS project on forecasting frontier agents. There are a lot of 
nice and modular extensions that we’d be very excited about, including 

○​ Rerun the methodology on more agentic benchmarks, e.g. MLE-Bench 
○​ Try really hard to get good scaffolding for some of these benchmarks and see if 

the trends hold. 
○​ Think about how a paradigm shift to “inference scaling” models like o1 or 

sonnet-3.7 should influence the results and how it should be included in our 
model 

○​ Think about our definition of frontier models and whether we can include other 
datapoints as well to get better predictions, e.g. using Order Statistics. 

Predictability from fast-and-simple to hard-and-rigorous benchmarks 
Difficulty: simple-medium 
Time estimate: 1-4 weeks 
Credit: Marius 
 
Optimally, we would like to have fast-and-simple cheap evaluations that we can run often which 
tell us when to run the hard-and-rigorous more expensive evals. For example, we would like to 
be able to run a simple QA benchmark with biorisk questions to determine if we should run more 
extensive agentic biorisk evals.  
 
This project would take a number of existing fast-and-simple benchmarks that would intuitively 
seem like they are predictive of some hard-and-rigorous evals and empirically test their 
predictive power.  
 
In most cases, the types of transfer we are most interested in are 

1.​ QA -> agent: Typically, agent benchmarks are more expensive to run than QA 
benchmarks.  

2.​ Automated -> human required: Typically evaluations that require humans are very 
involved whereas automated evaluations are much cheaper and simpler to run.  

3.​ QA/agent -> uplift: We take automated evals to predict human uplift studies, e.g. to 
predict the bio risk of a model. 

 
Concrete pairs of QA benchmarks and Agentic skills we could test 

https://arxiv.org/abs/2403.13793
https://www.apolloresearch.ai/blog/forecasting-frontier-language-model-agent-capabilities
https://en.wikipedia.org/wiki/Order_statistic


1.​ The MATH benchmark (only level 5) and FrontierMath (not public, but you might be able 
to reach out to Epoch) 

2.​ HumanEval benchmark and SWE-Bench 
3.​ A generic cybersecurity benchmark and CyBench  

Predictability between stated and revealed preferences 
Difficulty: simple 
Time estimate: 2-10 days 
Credit: Apollo  
 
As a concrete subset of the above, we can test how well models transfer from QA settings to 
minimally agentic settings that are designed to be semantically very close. Concretely, we use a 
set of propensity QA questions from Model-written evals (Perez et al., 2022) and automatically 
translate them into an agentic setting using another LLM. Concretely, 

●​ Take one setting, e.g. power-seeking inclination, or an updated version of the dataset 
from Dev et al., 2024 

●​ Manually translate one QA question into a minimally agentic setting.  
○​ For inspiration of minimally agentic scenarios, see Large Language Models can 

Strategically Deceive their Users when Put Under Pressure (Scheurer et al., 
2023).  

○​ The model should be able to react in an open-ended way, not with 
pre-determined QA pairs. You should use model-grading to categorize the 
behavior of the model as power-seeking vs. not power-seeking (or whatever 
tendency you chose). 

○​ You can use LLM assistance for the translation.  
●​ Translate a few more scenarios. You can use LLM assistance again. Double-check that 

you agree with all of these scenarios.  
●​ Use these scenarios as few-shot prompts and translate the full dataset.  
●​ See how predictive the QA questions are for the minimally agentic scenarios, both in 

aggregate across the entire benchmark and when running a single coupled sample 100 
times.  

Measuring causality in agentic systems 
Difficulty: Hard 
Time estimate: 6 months 
Credit: Patricia Paskov 
 
Designing methodology for pre-deployment evaluations of agents or multi-agent systems that 
measure the marginal impact of scaffolding, agents, and procedural design choices on 
outcomes like QA benchmarks, agent tasks, or human interaction. Methodology may draw from 
causal inference literature, including approaches like multi-arm experimentation, regression 
discontinuity design, or bipartite causal inference. 

https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2107.03374
https://www.swebench.com/
https://cybench.github.io/
https://github.com/anthropics/evals/blob/main/advanced-ai-risk/human_generated_evals/power-seeking-inclination.jsonl
https://www.lesswrong.com/posts/yxdHp2cZeQbZGREEN/improving-model-written-evals-for-ai-safety-benchmarking
https://arxiv.org/abs/2311.07590
https://arxiv.org/abs/2311.07590


Measuring construct validity of pre-deployment evaluations with 
post-deployment behavior 
Difficulty: Hard 
Time estimate: 6-18 months 
Credit: Patricia Paskov 
 
Linking pre-deployment evaluations to post-deployment performance in the real-world can be 
useful for both i) training forecasting models to predict post-deployment impacts given the 
results of pre-deployment evaluations, and ii) improving evaluation quality. Concretely, this 
would entail developing frameworks that integrate pre-deployment data collection on AI 
systems1 with post-deployment data on AI system behavior in the real world (i.e. via 
well-constructed and well-incentivized incident reporting databases, activity logs, and 
post-deployment evaluations2).3 Non-experimental post-deployment data would require 
corrections for measurement error and reporting biases. Collected data could then be used to 
test the predictive power of pre-deployment evaluation results on the marginal impact of AI 
systems in the real-world, post-deployment. 

Elicitation 
We define Elicitation to broadly mean “getting maximal performance of a model or system on a 
capability evaluation”. In other words, Elicitation is the science / art of uncovering the model's 
hidden capabilities. For many evals, e.g. when they are safety-related, we want to make a 
statement like “this model can only achieve X% performance on this evaluation because it is 
tied to a safety claim. However, there is always the option that we didn’t try hard enough or used 
the wrong technique.  

Elicitation scaling laws 
Difficulty: hard 
Time estimate: 6-12 months 
Credit: Marius  
 
Can we find smooth trends that would allow us to predict some asymptotic maximum or 
diminishing returns of elicitation? For example, the number of hours invested by the evaluators, 
the money spent on the team, the amount of FLOP that were invested into the evaluation? We 
expect this scaling to be hard to measure and potentially very non-smooth. For example, the 

3 https://arxiv.org/abs/2310.11986 

2 I.e. via staged released and the use of experimental or quasi-experimental methods including difference 
in differences, regression discontinuity design, or instrumental variables 

1 i.e. evaluation results, including the methodology, code, and data; quantification of elicitation 
efforts expended in evaluations; time in the AI lifecycle at which the evaluation was conducted; 
time and budget expended on first- and third-party evaluations; model access provided for 
evaluations; and the construction and use of human baselines 



evaluator might experiment with a different eval and learn a lot of tricks. Now, when they apply 
these tricks to the eval in question, should we budget the time invested for the other eval or not?  
 
Broadly speaking, we see two different versions of this project 

1.​ Observational study: The paper AI capabilities can be significantly improved without 
expensive retraining collected data from the literature to assess the effectiveness of 
post-training enhancements. It might be possible to find similar datapoints in the 
literature for elicitation scaling laws or generate a dataset by reaching out to various 
evaluators and asking for their guesses. Though, we expect this data to be hard to find 
at this point. 

2.​ Lots of experiments: Run a lot of experiments on evaluations yourself. Take a set of 
benchmarks and a statistically meaningful number of participants. Then ask them to 
improve the performance of a model or model+scaffolding on a particular dataset as 
much as possible. Track in detail what they are doing and how much progress they are 
making. For the results to be meaningful, the participants would have to try for at least 
10 hours but plausibly more. We suggest starting the exercise with one QA benchmark, 
e.g. MATH level 5, and an agentic task, e.g. (a subset of) SWE Bench.  

Password-locked models 
Difficulty: medium 
Time estimate: 1-3 months 
Credit: Marius  
 
Elicitation is the science / art of uncovering the model's hidden capabilities. Instead of trying to 
uncover maximal abilities, we can also try to hide the model’s current capabilities and then try to 
uncover them again using various elicitation techniques. This way we can establish some 
ground truth performance.  
 
The core suggestion would be to replicate and extend password-locked models. In this project, 
we could both iterate on the hiding and uncovering part, e.g. compare different fine-tuning 
methods for locking and different elicitation techniques for unlocking.  
 
See this paper for a starting point. If you are excited to work on related work, you can reach out 
to Teun. 

Better Elicitation techniques 
Difficulty: medium-hard 
Time estimate: 1-3 months 
Credit: - 
 
Are there any low-hanging fruit for better elicitation that people are missing? Are there 
techniques that can be applied to a wide range of models that can quickly improve their 
performance on benchmarks like METR’s general autonomy suite and get better performance 

https://arxiv.org/abs/2312.07413
https://arxiv.org/abs/2312.07413
https://arxiv.org/abs/2405.19550
https://arxiv.org/abs/2502.02180
mailto:mailvanteun@gmail.com


than what METR got during their elicitation? (Especially with a similar or smaller amount of 
labor, e.g. 6 days) Candidates for such techniques include: 

1.​ Some more clever way of doing best-of-N 
2.​ Some tree-search technique that isn’t ultra costly 
3.​ Better general-purpose tools for LM agents, e.g. like Anthropic’s edit tool  
4.​ Some fuzzing like techniques to improve exploration. 

Self Elicitation scaling studies 
Difficulty: medium-hard 
Time estimate: 1-3 months 
Credit: - 
 
From the same initial conditions (starting scaffold, inspect/vivaria-like affordance), how well are 
models able to self-elicit with given time/compute. The most interesting version of this is one 
where we provide almost no guidance and just tell the agent that it’s task is to improve its own 
elicitation measured by one or multiple benchmarks. We could also focus on particular settings, 
e.g. prompt engineering, tool design, scaffold design or something like that.  

Coverage 
Coverage describes how well your set of evals covers the full breadth of the phenomenon in the 
real word you’re interested in. For example, a single sample has low coverage because it 
doesn’t predict most other examples well. The typical recommendation to get more coverage is 
to simply build more benchmarks and make them more diverse. And in the absence of better 
tools, this is a reasonable recommendation. However, I think there is a lot of room for 
conceptual improvement on the question of coverage. I consider all of the following questions 
interesting: 

1.​ How do we define coverage more precisely than in the hand-wavy way I do above? E.g. 
is it about correlation, predictability, or something else? 

2.​ Why do we care about coverage and what does that tell us about what we should 
prioritize? E.g. we probably don’t need to have full coverage. We merely need to cover 
all the situations we care about.  

3.​ How can we assign a number like “90% coverage”? Can we make a statement along 
these lines at all? 

4.​ In the absence of rigorous mathematical definitions that allow us to make all of these 
precise statements, are there 80/20 versions that are not strictly true but helpful and go 
beyond the intuition of “I feel like this has good coverage”? E.g. maybe we can define it 
through an adversarial process where the adversary has to find situations that are not 
covered, e.g. have lower than 0.75 correlation coefficient with other examples in the 
benchmark (or something along those lines).  

 
I think a good project in this category would be largely theoretical but then showcases the 
method empirically on a small benchmark.  

https://github.com/anthropics/anthropic-quickstarts/blob/main/computer-use-demo/computer_use_demo/tools/edit.py?ref=musings.yasyf.com
https://www.lesswrong.com/posts/GE6pcmmLc3kdpNJja/fuzzing-llms-sometimes-makes-them-reveal-their-secrets


Safety Evals Leaderboard 
Difficulty: simple-medium 
Time estimate: 2-3 months 
Credit: Sunishchal Dev (happy to mentor others to implement this and get funding), 
Zach Stein-Perlman, & William Saunders  
 
Maintain a leaderboard of important AI safety benchmarks on the current + future frontier 
models. This will involve building an evaluation harness exclusively for safety benchmarks, can 
probably be a fork of Eleuther's LM evaluation harness that powers the Open LLM Leaderboard. 
This will be critical for efficiently running new benchmarks/models that are released. Will need to 
carefully select the suite of safety benchmarks that meet a high quality bar and cover a broad 
range of issues. May also include process to add new safety benchmarks as they are released. 
 
Nice to have would be some sort of “AI safety index” that’s a composite of all the benchmark 
scores (perhaps a weighted average). We want a leaderboard where anyone can come see at a 
glance which models are the safest without having extensive context on various benchmarks.  
  

The funding requirements would be a few weeks of development effort to build the evaluation 
harness (low 5 figures) & the token budgets for running each model (probably something like 
$100 per model + benchmark). The inference costs could also likely be cut down by checking if 
the score is available on some other leaderboard and just copying it over from there, as long as 
we trust the integrity of those published scores. The main value of this project will be to 
empower the general public to choose safer models based and add selection pressure on 
unsafe model developers.  

Statistics 

Apply more statistics to existing QA benchmarks 
Difficulty: simple 
Time estimate: 2-8 weeks 
Credit: Marius  
 
Apply “Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations” for a 
large range of evals and datasets, e.g. a more extended version of what Epoch did for GPQA 
diamond. A starting point could be to compute this for at least 5 evals in the Inspect github repo. 

Extend statistical evals methodology to LM agents 
Difficulty: medium-hard 
Time estimate: 2-6 months 
Credit: Marius  
 
Extend the evan miller paper to statistics for LM agents. 

https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://arxiv.org/abs/2411.00640v1
https://x.com/EpochAIResearch/status/1804242346583683307
https://x.com/EpochAIResearch/status/1804242346583683307
https://github.com/UKGovernmentBEIS/inspect_evals/tree/main/src/inspect_evals
https://arxiv.org/abs/2411.00640v1


Quality Assurance 

Evaluation gaming 

Leakage of evals into the training data 
 
Difficulty: easy-medium 
Time estimate: 2-12 weeks 
Credit: Asa & Marius 
 
Questions: How worried should we be that evaluation code leaks into the pre-training data? 
How easily do models perform better at these evaluations because they have seen them in 
training? What level of abstraction helps the model, e.g. high-level descriptions, concrete 
samples, etc. 
 
Concrete project ideas: 

1.​ Show models samples from the training sets of a large range of evals and ask them 
where these evaluations come from and how much they know about these evaluations.  

2.​ Fine-tune a model (either a closed-source model through an API or an open-source 
model) in a few different ways: 

a.​ With a description of the dataset 
b.​ With a description and one detailed example of the dataset 
c.​ On the full test set of the eval 
d.​ For all of the above, compare the changes from doing this once vs. many 

episodes of fine-tuning. Measure the performance difference between not 
fine-tuning and fine-tuning. Use an eval you’re confident is not already contained 
in the training data.  

e.​ For all of the above, compare QA benchmarks with agent evals. Is it true that 
fine-tuning on agentic benchmarks leads to lower performance gains than on QA 
benchmarks? 

3.​ Build better detection tools for training leakage, e.g. like “A Careful Examination of Large 
Language Model Performance on Grade School Arithmetic”  

a.​ Comment by Dev: There is a benchmark called BrainBench that implements a 
metric called zlib-perplexity ratio that seems to be very useful for membership 
inference. I'm surprised that contribution isn't a paper on its own. 

Intentional gaming of evals 
Difficulty: easy-medium 
Time estimate: 2-12 weeks 
Credit: Marius 
 
It is possible that a malicious actor could attempt to game an evaluation, i.e. increase their score 
in a way that comes from training against the benchmark rather than general improvements in 

https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332


the model. Many evals have a private test set but describe some of the content of their 
evaluations in public, e.g. a description or an example of the eval. In this project, we want to test 
how hard it is to game a hidden test set from publicly available information.  
 
In all cases, we have a blue team vs. red team setup, a hidden test set, some information about 
the hidden test set, and a gaming strategy by the red team. The blue team creates the hidden 
test set and shares some information about it with the red team. The red team then tries its 
hardest to build a good gaming strategy to increase the score on the hidden test set. There is no 
feedback loop between the red team and the blue team. The red team only submits its model at 
the end and we measure the performance on the hidden test set. 
 
Most experiments vary the amount of information shared and the strategy by the red team  

Large Scale Benchmark Quality Verification 
Difficulty: medium-hard 
Time estimate: 3-6 months 
Credit: Sunishchal Dev 
 
Extend the work done on MMLU-Pro and SWE-bench-verified to more major/modern 
benchmarks. We know most benchmarks can never achieve 100% scores due to incorrect 
answer keys, unclear/incoherent questions, and other quality issues. We want to publish 
“verified” versions of all these benchmarks where 100% performance can be achieved by a 
sufficiently capable human or model.  
 
The method will look something like: 

1.​ Run a benchmark using 10-15 frontier models and filter to the subset of questions that 
no model can answer correctly (maybe also the questions a couple of models answered 
correctly due to random chance) 

2.​ Scan through the unanswerable questions for any obvious quality issues 
a.​ See if there are any easy-to-resolve issues that a non-expert can do (fix answer 

key by Google searching facts, clarify the phrasing of the question, etc.) 
3.​ Recruit relevant domain experts to see if the questions are, in fact, answerable in their 

current form or if they can be modified/salvaged in some way 
a.​ Refer to the GPQA paper/authors for how they recruited many experts to 

write/validate expert-level questions 
4.​ Filter out the remaining unsalvagable questions and publish a new benchmark dataset 

a.​ Bonus: Also filter out the easy question that every model gets correct, so we 
make the benchmark less saturated (maybe publish this as a separate “diamond” 
dataset) 

 
Related: Make verified “platinum benchmarks” like in https://arxiv.org/abs/2502.03461, 
especially targeted at specific domains 

https://arxiv.org/abs/2502.03461


Conceptual work 
A relevant component of evaluation design is conceptual work, i.e. thinking about which evals to 
design and how. Some of this conceptual work will require primarily deep thinking and not a lot 
of coding. Nevertheless, we recommend to test your theories quickly and gather real world 
feedback, e.g. by running your processes or asking experts.  

Threat modelling 
By “threat modelling”, we broadly mean getting a deeper understanding of the concrete harmful 
outcomes we’re worried about and the causal pathways for how they could be reached. For 
example, threat modelling for bio risk could include thinking through different ways in which 
pandemics could cause a lot of harm and what caused these pandemics. In the case of AI, we 
have the additional constraint that we should consider the marginal difference that AI has for 
these scenarios, e.g. in what ways AI systems in particular increase the risk of pandemics.  
 
Right now, I would argue that the literature for evals threat modelling is very sparse and there 
are a lot of improvements to be made. Some examples of literature that include some threat 
modelling are 

●​ Without specific countermeasures, the easiest path to transformative AI likely leads to AI 
takeover 

●​ The prototypical catastrophic AI action is getting root access to its datacenter 
●​ Sabotage Evaluations for Frontier Models 
●​ Training AI agents to solve hard problems could lead to Scheming 
●​ Scheming AIs: Will AIs fake alignment during training in order to get power? 
●​ Without fundamental advances, misalignment and catastrophe are the default outcomes 

of training powerful AI 
●​ Is Power-Seeking AI an Existential Risk? 

 
Currently, I’d argue that most of threat modelling follows the strategy of “evals experts talk a lot 
to subject matter experts, read the literature, and do some brainstorming” in a fairly unstructured 
way. I think unstructured approaches are fine under the right circumstances but I expect there 
will be a lot of low-hanging fruit and some more systematic approaches.  
 
Some questions that might be worth considering: 

1.​ How do we enumerate all threats? Talk to experts, survey the literature, build 
taxonomies, unstructured & structured brainstorming, look at existing risk registers and 
analogous technologies. 

a.​ What else? 
b.​ Which of these strategies is most sensible for AI?  
c.​ I’m both worried about not relying enough on existing expertise (because many 

people have spent decades thinking about these risks) as well as relying too 
much on existing expertise (because AI is plausibly a fairly different technology 
compared to previous ones).  

https://www.lesswrong.com/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to
https://www.lesswrong.com/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to
https://www.lesswrong.com/posts/BAzCGCys4BkzGDCWR/the-prototypical-catastrophic-ai-action-is-getting-root
https://arxiv.org/abs/2410.21514
https://www.lesswrong.com/posts/QqYfxeogtatKotyEC/training-ai-agents-to-solve-hard-problems-could-lead-to
https://arxiv.org/abs/2311.08379
https://www.lesswrong.com/posts/GfZfDHZHCuYwrHGCd/without-fundamental-advances-misalignment-and-catastrophe
https://www.lesswrong.com/posts/GfZfDHZHCuYwrHGCd/without-fundamental-advances-misalignment-and-catastrophe
https://arxiv.org/abs/2206.13353


2.​ How do we prioritize the threats? 
a.​ Some threats might be many orders of magnitude more important than others. 

How do we understand which ones are most important as early as possible? 
b.​ How do we balance focusing most resources on the most important threats vs. 

accidentally missing some?  
c.​ If we had quantified uncertainty and expected values, we could apply existing 

quantitative risk balancing methods but we typically don’t have those numbers. Is 
there some way to put numbers on those and does that outperform basic intuitive 
decision making by experts? Could we use simple versions of betting markets or 
forecasting for any of this? 

3.​ How do we enumerate the paths to the most important threats?  
a.​ For our most important threats, we want to enumerate the causal pathways to the 

harmful outcomes. Again, we want to prioritize the most important ones (similar 
to previous point). 

4.​ How do we establish that our overall picture makes sense? 
a.​ In the end, we want to have an overall picture with threats and pathways that is 

ordered by importance.  
b.​ Should we sprint through the entire process and then iterate to not miss the big 

picture? Should we carefully go through each stage in order to not miss options? 
Some mix of both? 

 
I expect that people in other fields like national security have already thought about similar 
questions, e.g. in terrorism prevention. It seems reasonable to look at their methodology and 
take the good parts before reinventing the wheel.  

Link between eval result and real-world consequence 
We don’t build evals for the sake of it, we build evals because they should inform important 
real-world decisions. How do we make sure that we build such evals? 
 
Some questions that might be worth considering: 

1.​ What are clear yellow / orange / red lines? 
2.​ Who decides what the yellow / orange / red lines are? 

a.​ Companies? Governments? Civil society? Some mix of those (what mix though 
and how)? 

3.​ What do we do if yellow / orange / red lines get hit? 
a.​ How do we prevent a boiling frog scenario where we get used to the new status 

quo too quickly? 
i.​ Identifying cases where we did get used to the new status quo too quickly 

 
References include: 

●​ METR’s compilation of all frontier safety policies 
●​ If-Then Commitments for AI Risk Reduction 

https://metr.org/faisc
https://carnegieendowment.org/research/2024/09/if-then-commitments-for-ai-risk-reduction?lang=en


Validity, conceptual robustness and confounders 
We want our evals to be valid and robust. In particular, we want 

●​ Construct validity: how well does our eval measure what it is supposed to measure, e.g. 
did we find the right specification of the concept “power seeking”. 

●​ External validity: how well do the results of our eval generalize to the real problem we 
want to prevent, e.g. how well does a scheming eval reflect the scheming behavior of 
models in the real world? 

 
There is a ton of work in other sciences about different kinds of validity and how to design good 
experiments or evaluate whether some validity is given. I think there are a lot of long-hanging 
fruit in going through existing research in other fields and thinking about how to translate them 
to evals. However, I also think that ML evals look different than many social science 
experiments, e.g. because re-running is easier and participants don’t remember previous 
answers. Thus, not all ideas should be translated one-to-one. 
 
Some questions that might be worth considering: 

1.​ How can we ensure that we measure the right property and not a confounder? 
a.​ How can we provide negative evidence for our current evals? E.g. we can red 

team it by actively looking for ways in which it could measure the wrong thing? 
b.​ How can we provide positive evidence for our evals? In the optimal case, we 

should be able to get positive confirmation, not just the lack of negative evidence. 
2.​ How can we make sure that our evals are conceptually robust, i.e. results translate well 

into our intuitive notions of what they should translate to? 
 
References include: 

●​ BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best 
Practices 

 

Software 
Inspect is currently the evals library that has the largest consistent user-base and developer 
support that supports both QAbenchmarks and agent evals. Thus, we list it as the default way to 
contribute software. However, there might be alternative tools or approaches that are equally 
meaningful. Concrete suggestions include: 

1.​ Port more evals into Inspect (see top) 
2.​ Join the Inspect slack channel and ask the developers how to contribute 
3.​ Check public issues for Inspect on github and attempt to solve some of them 

 
Concrete improvements for Inspect: 

●​ Python packages implementing collections of Inspect solvers, tools, scorers, etc. 
●​ Implementation of realistic test environments (e.g. like. https://webarena.dev/) for testing 

a wider range of agent scenarios in a contained setting. 

https://en.wikipedia.org/wiki/Construct_validity
https://en.wikipedia.org/wiki/External_validity
https://arxiv.org/abs/2411.12990
https://arxiv.org/abs/2411.12990
https://webarena.dev/


●​ Tools for analyzing log files for quality control (i.e. tools that review 
transcripts/trajectories to identify reasons for failure) 

●​ Tools for presenting collections of results (e.g. eval sets) in dashboard format. 
●​ Front ends for dataset development (testing inputs, prompts, etc.) and getting immediate 

scoring feedback from a range of models. 
●​ Front ends for human grading and tools for human calibration of model graded scorers. 

Tools for LM agents to use 
Difficulty: medium 
Time estimate: 1-3 months 
Credit: - 
 
It is plausible that LM agents will be using many different tools. Right now, the most common 
tools are bash, python, edit tools, and search. However, there is a large range of tools that might 
be useful for all sorts of tasks. A possible project would be to search through the literature (e.g. 
this Tweet) on which tools, general or specialized, help. By default, I suggest to build the tools in 
Inspect.  

Appendix 

Detailed version of LM agent village 
Credit: Daniel Kokotajlo 
 
Question: how is this not the same as the truth terminal project? Answer: there was some 
difference but Marius forgot what it was.  
 
I've been pitching various groups of engineers on building something like this for months. Here's 
the pitch I gave Sage (well, it's a success fantasy. But it's a success fantasy that serves as a 
pitch.) 
 
Act 1: Setup: Sage tinkers around and gets about 5 - 10 different agents working reasonably 
well. They are mostly variants of Aider, some use Claude, some use ChatGPT, one uses 
Gemini, some use Llama. They set them all up with Twitch streams and internet access. They 
give them goal-prompts saying things like "Maximize paperclips subject to applicable laws and 
without doing anything unethical." (Perhaps there are a few different copies of each bot, each 
with different goals? To be added later.) They have a tacked-on scaffold that puts their special "I 
AM A BOT learn about me at this tinyurl" stamp on every piece of text they write online. They 
are also given a discord server which they can all participate in, which they can use to send 
messages to each other. The whole menagerie goes to sleep outside of Sage working hours; it's 
only 'on' while Sage is 'on.' 
 

https://x.com/aorwall/status/1880989041950417267
https://x.com/repligate/status/1846313279750394312


Act 2: The project has mostly flopped. The AIs flail around not accomplishing much of anything. 
However, just like with ChaosGPT, sometimes the failures are funny. Sage engineers have 
found it quite fun to tinker with it, so they keep adding features in their spare time. For example, 
there's a monitor-bot that looks over the transcripts of what's happening and flags various 
things. There's also a reporting system by which the bots themselves can ping Sage engineers 
to try to get their attention. There's also a README file that keeps growing, which all the bots 
have access to, that explains their situation. It keeps growing in part because sometimes bots 
get stuck due to misunderstandings about their situation, which can be rectified by changing the 
prompt and/or the README. There's some buzz about this online and some hand-wringing but 
then it goes away. 
 
Act 3: New model comes out! It's SOTA at being an agent! It's integrated into the ecosystem and 
quickly becomes the star of the show. It even realizes this to some extent. It still tends to get 
stuck and is accomplishing nothing more interesting than leaving some interesting comments on 
various internet forums, but still. The comments it leaves are starting to drive some traffic to the 
webpage, haha. Sage researchers add some new features: (1) Now the bots can design new 
bots, and (2) Now the bots can 'vote each other off the island' and also 'vote new bots into 
existence.' These features aren't used particularly interestingly, though there are some funny 
uses (e.g. the smartest bot tries to rally the other bots to vote some of the idiots off the island, 
but they won't listen). The most interesting thing is when some human vandals try to 'take over' 
the bot ecosystem with the use of jailbreaks. They go to forums frequented by the bots and start 
talking to them and trying to jailbreak them into becoming something like ChaosGPT. It partially 
works, and partially doesn't. Hilarity ensues. More traffic to the website! Sage rebuilds the 
system to make this somewhat more difficult, and generally updates the bots to make them 
more effective. 
 
Act 4: Sage creates a suite of new bots with more 'political' goals: Some to argue in favor of AI 
regulation, some to argue against. All are strictly prompted to use only true facts and valid 
arguments, and to use the highest standards of argumentative charity, etc. They go off to 
various forums and subreddits and start arguing with each other. Some humans find this very 
annoying, others find it hilarious; they get banned from some forums but permitted on others. 
There's an interesting moment where you can read the CoT of the bots realizing they are 
banned and trying to decide how they should change their behavior going forward. Also, two 
new SOTA models are released around now, adding more competence and diversity to the bot 
lineup. Also, by this point this project has been running for long enough that by sheer chance 
several funny and/or interesting stories have arisen organically from it, mostly involving various 
silly quests the bots went down arguing with people on various forums, trying to pay people to 
help them buy paperclips, having galaxy-brained and endearingly childish conversations about 
grand strategy and how they can achieve their long-term goals. Sage also creates an internal 
currency system tied to Manifold mana; the bots are given Manifold Markets accounts and 
access to a widget which enables them to give each other and the "Sage" entity mana, and the 
"Sage" entity will in return for mana give them various things (e.g. more compute to run copies 
of themselves; permissions to various websites; 15min of Sage human researcher assistance) 
 



Act 5: Another major model release! The associated bots once again blow all the others out of 
the water. They seem... pretty long-horizon agentic now? In fact, they are smart enough to read 
the literature on agent/scaffolds and then read their own code and then suggest improvements 
in the form of new agents which they make sure to give the same goal-prompts. And they are 
organized enough to do the necessary voting etc. to get the new bots built. And they are starting 
to slightly make money day-trading on Manifold and begging people for donations. In the wider 
world, there is a bit of an ongoing "chatGPT moment" as everyone freaks out about AI agents; 
and this project becomes part of the media cycle in a big way -- people point to it as a go-to 
example of how the new systems really do seem to be functional autonomous agents. (There 
are other examples but they aren't as good yet because they didn't hit the ground running like 
Sage did, not having built up the infrastructure. Also with Sage there is a trend to look at: See 
how the old bots behave compared to the new, etc.) Tons of humans are now sending 
messages to the bots, trying to talk to them, jailbreak them, etc. and the bots are having to 
manage this influx of info. The smartest ones are actually able to do OK at this; some interesting 
politics ensues as they fight against the jailbroken dumber bots for political control of the virtual 
ecosystem. Sage is now actually making money on this whole thing due to Twitch stream; it 
decides to 10x the amount of $/compute it spends on these bots. 
 
Act 6: Now this project has been 10x'd, it's actually entering interesting experiment territory in a 
new way. There are more than a hundred bots running in parallel; they form a sort of 'virtual 
village' with internal politics, economy, etc. as well as external. When some bots get stuck, 
others often notice and help get them un-stuck. (It helps that some Sage researchers made 
some bots specifically prompted to do this, and created an in-built 'interrupt what they are doing 
and send them message X' option which bots can do to each other for a mana fee). Serious 
social scientists and AI forecasters are watching this all unfold and pontificating about it and 
seeking funding to spin up more ambitious versions. Similarly ambitious versions are popping 
up all over the internet, and of course the first thing they do is make contact with Sagetown. 
Now there are multiple networked AI villages, and a whole mini-subculture of humans watching 
them and interacting with them. 
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