MAVIS Documentation and User Manual

Welcome to MAVIS

MAVIS is a versatile flight simulation tool for simulating the physics of air vehicles. It is a
stand-alone physics simulation package designed to interface with other stand-alone graphics
and controls software. The physics is flexible enough to model a large range of aircraft
configurations including fixed-wing aircraft, rotorcraft, rockets, and many other geometries.

Select the “Show document outline” = icon on the left to view a Table of Contents.

1. Installation

A. From an Executable

An executable for Windows or Mac can be requested by sending an email to
doug.hunsaker@usu.edu.

The executable will be distributed in a zipped folder that includes the executable along with two
additional folders. One folder is a test directory that contains test cases outlined in Testing the
Installation. The second folder contains several example cases outlined in Examples.

The Windows executable is currently built using Cygwin, and therefore will require Cygwin to be
installed on the Windows machine in order to run. It is helpful to copy the executable into your
user directory path such that it is accessible from the Cygwin command prompt in any directory.

B. From Source Code

The code can be downloaded from github using this link. Build the executable by running the
build.sh script. Before running the script, it must be an executable. To make the build.sh script
executable, open a terminal window, navigate to the MAVIS folder, and type

On aMac: chmod +x build.sh

On Windows:

As a last step, the build.sh script attempts to copy the executable to /usr/local/bin so that it can
be accessed from anywhere on the machine. In order for that to work correctly on a mac, the

build script must be run with root permissions:

sudo ./build.sh

mailto:doug.hunsaker@usu.edu
https://github.com/usuaero/mavis

You can avoid needing to type in credentials each time by opening the shell with root privileges
by typing

sudo -s
before running the build script. If you don’t run the build script with root permissions, the
executable will still build, but will only be available in the /bin directory. The build script for the

main code also builds a test executable stored in the testing folder.

Note: If you getthe error $'\r': command not found in build script, try changing
the end-line characters using the command sed -i 's/\r$//' build.sh

C. Testing the Installation

The installation can be tested by navigating to the test folder and running the command
./test test.json

This will run a series of tests listed in the test.json file. Additional tests can be added by creating
new directories, one for each test, and adding the name of the directory in the json file along

with the output file to be compared after running Mavis. The test executable always looks for a
file in the directory called expected_result.csv against which to compare the output file.

2. Running MAVIS

Once compiled, the code can be run by opening a command prompt in the directory in which the
executable is stored and typing

./mavis <input filename>
where the input_filename is the name of a .json file that contains the instructions for running the
code. Or, if you moved the executable to a location accessible in your path, you can execute the

code from any directory by typing

mavis <input filename>

Currently there is no GUI available for MAVIS.

3. Input File Structure

MAVIS uses a JSON input file to read in all commands for the code. The JSON file structure
allows for commands and information within the JSON file to be nested within JSON
dictionaries. The top-level JSON file must contain the following dictionaries:

{ "simulation": {...},
"atmosphere": {...},
"vehicle": {...},
"view": {...}

Any dictionary within the JSON file can read from another JSON file using the command
"filepath" : <path to json dictionary file>
For example, if all of the information required in the simulation dictionary were stored in a file

named “simulation.json” one directory higher than the main file path, the main file would have an
entry for simulation as follows:

{ "simulation": {"filepath" : "../simulation.json"},
"atmosphere": {...},
"vehicle": {...},
"view": {...}

This technique can be used for any dictionary or sub-dictionary in the input file structure.

A. Simulation Dictionary

The simulation dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
name string arbitrary optional MySim The name of the simulation.
begin_time[sec] float arbitrary optional 0.0 B.egmnl_ng time of the
simulation.
end_time[sec] float arbitrary Required Ending time of the simulation.

time_step[sec]

Time step used in simulation.
float >=0 optional 0.0 If 0, the simulation is set to
real-time and will use a time

Key Value Type Allowed Values | Required / Optional Default Value Description
step as small as possible to
make the simulation run in
real-time.
Altitude of the ground plane.
ground_altitudelft] float arbitrary optional 0.0 This is used for collision and
landing.
Rate at which the states
states_print_rate[hz] float >0 optional 1.0 should be printed to the
console during execution.
Rate at which the states
states_save_rate[hz] float >0 optional 1.0 should be saved to a file
during execution.
Rate at which simulation
. execution speed should be
pulse_rate[hz] float >0 optional 1.0 printed to the console during
execution.
connection dictionary optional See Connections Dictionary.
The simulation—connections dictionary contains a list of dictionaries with arbitrary names. Each
name must start with the string “send_" or “receive_". For example, the name of one connection
could be “send_to_graphics” or “receive_from_controller”. The first word delimited by the
underscore tells the connection whether it should be sending information or receiving
information for that connection. Each sub-dictionary contains the following:
Key Value Type Allowed Values | Required / Optional Default Value Description
Length of array of floats to be
. . passed for message type -1.
array_length integer >0 optional Required if message_type =
-1.
Standard deviation of random
numbers to be added to the
float array of array when sending/receivin
std_dev length 1 or arbitrary optional [0.0] y 9 9-

array_length

If a single value is given in the
array, this same standard
deviation is applied to all

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

values in the array for this
connection. If more than one
value is given in the array, the
array must have the same
length as given by
array_length, and each value
represents the standard
deviation to be added to each
corresponding value in the
value array. This is helpful for
testing how noisy
data/connections might affect
the solution.

port_type

string

UDRP, file

required

Whether to use UDP for
communication or
send/receive from a file.

filename

string

arbitrary ending in
.csv

optional

Required for port_type = file.

file_header

string

arbitrary

optional

“Time[s],
variables —”

Header to be used when
sending data to a CSV file.

port_ID

integer

>0

optional

Port number to be used for
the connection. Required for
port_type = UDP.

IP Address

optional

127.0.01

IP address where the port
should be accessed.

refresh_rate[hz]

float

>0

optional

100

Rate at which the connection
should be read/written during
execution.

wait_for_data

bool

true, false

optional

false

A flag to tell any receiving port
to wait for data on the port
before returning. If true, the
code will not progress until
data is read from the port. If
false, the code will continue to
progress and simply use the
last data read from the port.
This option is only available
for connections used for
receiving.

verbose

bool

true, false

optional

false

A flag to output verbose
information during runtime.

More on how to interface with MAVIS is given in the Interfacing with MAVIS section.

B. Atmosphere Dictionary

The simulation dictionary contains the following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

constant_wind[ft/s]

float array of
length 3

arbitrary

optional

[0.0, 0.0, 0.0]

Array containing the direction
and magnitude of constant
wind.

gusts

dictionary

optional

See Gusts Dictionary.

The atmosphere—gusts dictionary contains the following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

type

string

none,
dryden_beal

optional

none

The type of gusts to be
included in the simulation.

intensity

string

light, moderate,
severe

optional

light

The level of turbulence
intensity to be used in the
simulation.

ramp_in[sec]

float

>0

optional

1.0

Time required to ramp in
turbulence so there is not a
step change in atmospheric
conditions. This time applies
at the beginning of the
simulation for type =
“dryden_beal”, or at the time
an aircraft enters the
bounding box of a turbulence
database for type =
“database”.

seed

string

auto, repeatable

optional

auto

How to seed the random
number generator. If auto, the
computer time is used to seed

Key Value Type Allowed Values | Required / Optional Default Value Description
the generator. If repeatable,
the value 0 is used to seed
the generator, so the solutions
are repeatable.
sample dictionary optional See Sample Dictionary.
Sample Dictionary
The atmosphere—gusts—sample dictionary contains the following:
Key Value Type Allowed Values | Required / Optional Default Value Description
) . . . sample_gust_ou | The type of gusts to be
save_filename string arbitrary optional tput.csv included in the simulation.
number_of_points integer >0 optional 100 Number of points to sample.
timefs] float array of arbitrary required B_egmnmg and ending sample
length 2 times as an array.
float array of . . Beginning and ending values
X[ft] length 2 arbitrary required for x as an array.
float array of . . Beginning and ending values
yift] length 2 arbitrary required fory as an array.
Z[ft] float array of arbitrary required Beginning and ending values
length 2 for z as an array.
C. Vehicle Dictionary
The vehicle dictionary contains the following:
Key Value Type Allowed Values | Required / Optional Default Value Description
properties dictionary required See Properties Dictionary.
initial dictionary required See |nitial Dictionary.

The vehicle—properties dictionary contains the following:

Key

Value Type Allowed Values

Required / Optional

Default Value

Description

airfoils

dictionary

optional

See Airfoils Dictionary.
Required if referenced by a
wing or rotor component.

propulsion

dictionary

optional

See Propulsion Dictionary.
Required if referenced by a
rotor component.

components

dictionary

required

See Components Dictionary.

control_effectors

dictionary

optional

See Control Effector:
Dictionary.

Airfoils Dictionary

The vehicle—properties—airfoils dictionary contains a list of airfoils and their thickness

parameters. Any number of airfoils can be included in this dictionary. Each airfoil is a component
of the dictionary with a key name specified by the user. Each sub-dictionary contains the
thickness distribution parameters for a single airfoil. Two airfoil thickness functions are currently

supported, although others can easily be added. These are a NACA 4-digit thickness

distribution function, or a diamond airfoil thickness distribution.

If the key name "a0" appears in the dictionary, the code defaults to the NACA 4-digit distribution

and requires the following parameters.

Key Value Type Allowed Values | Required / Optional Default Value Description
. . First term in the NACA 4-digit
a0 float arbitrary required airfoil thickness distribution.
Second term in the NACA
al float arbitrary required 4-digit airfoil thickness
distribution.
. . Third term in the NACA 4-digit
a2 float arbitrary required airfoil thickness distribution.
Fourth term in the NACA
a3 float arbitrary required 4-digit airfoil thickness
distribution.
. . Fifth term in the NACA 4-digit
a4 float arbitrary required airfoil thickness distribution.
If the key name "a0" does not appear in the dictionary, the code defaults to a diamond airfoil,
which instead requires the following parameter to be specified:
Key Value Type Allowed Values | Required / Optional Default Value Description
The x-location of airfoil
xm/c float arbitrary required maximum thickness in
percent chord (x/c) for a
diamond airfoil.
Propulsion Dictionary
The vehicle—properties—propulsion dictionary contains a list of propulsion elements and their
parameters. Any number of propulsion elements can be included in this dictionary. Each is a
component of the dictionary with a key name specified by the user. Each sub-dictionary contains
the following:
Key Value Type Allowed Values | Required / Optional Default Value Description
. olynomial, . Defines the type of propulsion
type string Tgf(\)//) default required unit. yp prop

If type is “polynomial”, the following parameters can be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

CT

float array of
arbitrary length

arbitrary

required

The components of this array
specify the polynomial
coefficients to be used to
compute the thrust as a
function of advance ratio.

CPb

float array of
arbitrary length

arbitrary

optional

[0.0]

The components of this array
specify the polynomial
coefficients to be used to
compute the break power as
a function of advance ratio.

CN,alpha[1/rad]

float array of
arbitrary length

arbitrary

optional

[0.0]

The components of this array
specify the polynomial
coefficients to be used to
compute the normal force
gradient per radian as a
function of advance ratio.

Cn,alpha[1/rad]

float array of
arbitrary length

arbitrary

optional

[0.0]

The components of this array
specify the polynomial
coefficients to be used to
compute the yawing-moment
gradient per radian as a
function of advance ratio.

If type is “T=f(V)", the

following parameters must be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

float array of

The components of this array
specify the polynomial

T_coefficients . arbitrary required coefficients to be used to
arbitrary length
compute the thrust as a
function of velocity.
a float arbitrary required Exponent to scale the density

ratio by.

If type is “default”, the propulsion element uses properties for a family of propellers as outlined
by Hunsaker [1]. In this case, the following parameter must be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

pitch_to_diameter

float

arbitrary

required

The pitch-to-diameter ratio of
the rotor.

Components Dictionary

The vehicle—properties—components dictionary contains a list of dictionaries with arbitrary
names, each for a different component of the vehicle. Any number of elements can be included
in this dictionary. Each key name is specified by the user. Each sub-dictionary contains the
following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

type

string

cuboid, cylinder,
sphere, wing,
rotor, engine,
custom

required

This parameter specifies the
type of component. Each
component requires slightly
different parameters to be
specified as outlined below.

location][ft]

float array of
length 3

arbitrary

optional

[0.0, 0.0, 0.0]

Location of the component
coordinate origin relative to
the aircraft coordinate origin
in aircraft coordinates.
Components refer to x, y, and
z locations.

orientation[deg]

float array of
length 3

arbitrary

optional

[0.0, 0.0, 0.0]

Orientation of the component
coordinate system relative to
the aircraft coordinate system
in terms of Euler angles.
Components refer to ¢, 0, and
w angles in the traditional
Euler angle formulation and
rotation matrix [R] given by
Hunsaker [1]. Note: This
parameter is not used for type
“wing”.

include_aero

boolean

true, false

optional

false

If true, the aerodynamics of
the component are included in
the aerodynamic model for
the entire aircraft.

weight[lbf]

float

arbitrary

optional

0.0

Weight of the component.

mass[slug]

float

arbitrary

optional

0.0

Mass of the component.

density[slug/ft"3]

float

arbitrary

optional

0.0

Density of the component.

Cuboid

If type is “cuboid” the following parameters can be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

lengthlft]

float array of
length 3

arbitrary

required

An array containing the three
lengths that define the
external size of the cuboid in
feet. The array components
correspond to the x, y, and z
lengths of the cuboid in the
cuboid coordinate system.

length_inner[ft]

float array of
length 3

arbitrary

optional

[0.0, 0.0, 0.0]

An array containing the three
lengths that define the internal
size of the cuboid in feet, for
the case of a hollow cuboid.
The array components
correspond to the x, y, and z
lengths of the cuboid in the
cuboid coordinate system.

Cylinder

If type is “cylinder” the following parameters can be specified:

Key Value Type Allowed Values | Required / Optional Default Value Description
length[ft] float arbitrary required The length of the cylinder.
radiuslft] float arbitrary required Thg external radius of the

cylinder.
The internal radius of the
radius_inner{ft] float arbitrary optional 0.0 cylinder for the case of a
hollow cylinder.
Sphere

If type is “sphere” the following parameters can be specified:

Key Value Type Allowed Values | Required / Optional Default Value Description
radiuslft] float arbitrary required The external radius of the
sphere.
The internal radius of the
radius_inner{ft] float arbitrary optional 0.0 sphere for the case of a
hollow sphere.

Wing Segment

If type is “wing” the following parameters can be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

side

string

left, right, both

required

Specifies how the wing will be
treated, as a right wing, left
wing, or mirrored (both) wing.

span(ft]

float

arbitrary

required

The span of the wing
segment.

sweep[deq]

float

arbitrary

optional

0.0

The quarter-chord sweep
angle of the wing segment.

dihedral[deg]

float

arbitrary

optional

0.0

The dihedral angle of the wing
segment.

chord]ft]

float array of
length 2

arbitrary

required

A float array with two
components specifying the
root and tip chord of the wing
segment in feet. The first
entry corresponds to the root
chord, and the second entry
corresponds to the tip chord.

thickness[%]

float array of
length 2

arbitrary

required

A float array with two
components specifying the
root and tip airfoil thickness of
the wing segment in percent
chord. The first entry
corresponds to the root airfoil
thickness, and the second
entry corresponds to the tip
airfoil thickness.

airfoil

string

Must match one
entry in the airfoils
dictionary

required

A string containing the name
of the airfoil to be used to
compute the airfoil thickness
distribution. Information about
the airfoil thickness
distribution is contained in the
Airfoils Dictionary. The name
of the airfoil used here must
match one in the airfoils
dictionary.

aerodynamics

dictionary

See Aerodynamics Dictionary.

Rotor

If type is “rotor” the following parameters can be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

rotation

string

RH, LH

optional

RH

Denotes right-hand or
left-hand rotation of the rotor
with the thumb pointed in the
opposite direction of the
thrust.

blade_count

integer

>0

required

The number of blades on the
rotor.

rotor_diameter]ft]

float

>0

required

The diameter of the rotor.

hub_diameter]ft]

float

>0

required

The diameter of the rotor hub.

hub_height]ft]

float

>0

required

The height or thickness of the
rotor hub.

chord[ft]

float array of
length 2

arbitrary

required

A float array with two
components specifying the
root and tip chord of a single
rotor blade in feet. The first
entry corresponds to the root
chord, and the second entry
corresponds to the tip chord.

thickness[%]

float array of
length 2

arbitrary

required

A float array with two
components specifying the
root and tip airfoil thickness of
a single rotor blade in percent
chord. The first entry
corresponds to the root airfoil
thickness, and the second
entry corresponds to the tip
airfoil thickness.

airfoil

string

Must match one
entry in the airfoils
dictionary

required

A string containing the name
of the airfoil to be used to
compute the airfoil thickness
distribution. Information about
the airfoil thickness
distribution is contained in the
Airfoils Dictionary. The name
of the airfoil used here must
match one in the airfoils
dictionary.

propulsion

string

Must match one
entry in the
propulsion
dictionary

optional

The name of the propulsion
element to be used to
compute the propulsion
properties of the rotor.
Information about the
propulsion properties is
contained in the Propulsion
Dictionary. The name of the
propulsion element used here
must match one in the
propulsion dictionary.
Required if include_aero is
true.

Engine

If type is “engine” the following parameters can be specified:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

propulsion

string

Must match one
entry in the
propulsion
dictionary

optional

The name of the propulsion
element to be used to
compute the propulsion
properties of the rotor.
Information about the
propulsion properties is
contained in the Propulsion
Dictionary. The name of the
propulsion element used here
must match one in the
propulsion dictionary.
Required if include_aero is
true.

Custom

If type is “custom” the following parameters can be specified:

Key Value Type Allowed Values | Required / Optional Default Value Description
float array of The location of the center of
local_CGft] len th% arbitrary optional [0.0, 0.0, 0.0] gravity in the component
9 coordinate system.
local_inertia_reference float array of The reference location about
—. - arbitrary optional [0.0, 0.0, 0.0] which the inertia tensor is
—location[fi] length 3 specified by the user.

The reference location about
local_aero_reference_| float array of . . which the aerodynamic
ocation[ft] length 3 arbitrary optional [0.0,0.0,0.0] information is specified by the

user.
inertia dictionary required See [nertia Dictionary.

Angular momentum vector
angular_momentum(sl float array of . . and magnitude in the
ug-fth2/s] length 3 arbitrary optional [0.0,0.0,0.0] component coordinate

system.

Required if include_aero is
aerodynamics dictionary optional true. See Aerodynamics

Dictionary.

Inertia Dictionary

The vehicle—properties—components—inertia dictionary contains either the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
. . Ixx moment of inertia
_ftA
Ixx[slug-ft*2] float arbitrary required component.
lyy[slug-ft*2] float arbitrary required lyy moment of inertia
component.
Izz[slug-ft*2] float arbitrary required Izz moment of inertia
component.
. . Ixy moment of inertia
_ftA
Ixy[slug-ft*2] float arbitrary optional 0.0 component.
Ixz[slug-ft*2] float arbitrary required xz moment of inertia
component.
. . lyz moment of inertia
A
lyz[slug-ftr2] float arbitrary optional 0.0 component.

Or, it can contain the same information as a Generic Model Dictionary.

Aerodynamics Dictionary

The vehicle—properties—components—aerodynamics dictionary contains the same information

as a Generic Model Dictionary. Additionally, it contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
reference dictionary required See Reference Dictionary.
See Stall Dictionary. If not
stall dictionary optional present, no stall model will be
added.
Reference Dictionary
The vehicle—properties—components—aerodynamics—reference dictionary contains the
following parameters that are used to scale the dimensionless aerodynamic information given.
Key Value Type Allowed Values | Required / Optional Default Value Description
Reference area for scaling the
area[ft"2] float >0 required aerodynamic properties
specified.
Reference longitudinal length
longitudinal_lengthlft] float >0 required for scaling the aerodynamic
properties specified.
Reference lateral length for
lateral_length[ft] float >0 required scaling the aerodynamic
properties specified.
Stall Dictionary

The vehicle—properties—components—aerodynamics—stall dictionary contains the following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

include_stall

boolean

true, false

optional

false

If true, the aerodynamic
results will be corrected for
stall.

blending_angle[deg]

float

>0

optional

25.0

Angle at which 50% of the
blending has occurred for the
stall model.

blending_factor

float

>0

optional

40.0

Factor used to specify how
abrupt the stall is. Factors of
20 to 100 typically produce
reasonable results, with 20 for
a soft stall and 100 for an
abrupt stall.

Generic Model Dictionary

A generic model dictionary can be used for the aerodynamic model, and/or the inertia model of
an aircraft. It contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
. _— . See Custom Variables
custom_variables dictionary optional o
Dictionary.
equations dictionary optional See Equations Dictionary.
. . . Path to folder containing the
database_directory string optional list of databases to be used.
Array of database file names
database_list string array of optional to be used. These must be

arbitrary length

.csv files. See Database
Structure.

Custom Variables Dictionary

A model—custom_variables dictionary contains a set of constants or sub-directories, each
defining the value of a custom variable. The name of the sub-directory key (variable name) is

arbitrary and can be chosen by the user. However, these variables must be defined in

alphabetical order and will be computed in alphabetical order. Therefore, no variable in the list
can depend on a variable that occurs later in the list. Each custom variable sub-directory can
contain either a constant value, or an arbitrary number of entries composed of the following list

of independent variables. Each of the descriptors of these independent variables is relative to

the component, not the vehicle.

Aerodynamic Independent Variables:

Keywords Description
1 Unity.
alpha Angle of attack in radians.
beta Sideslip angle in radians.
pbar Dimensionless rolling rate.
gbar Dimensionless pitching rate.
rbar Dimensionless yawing rate.

Any custom variable
appearing higher in the list

Name of any control effector

See Control Effectors Dictionary.

Inertia Independent Variables:

Any independent variables that are separated by an underscore will be multiplied together at

runtime.

For example, the following is a custom_variables dictionary that could be specified in an

Keywords

Description

1

Unity.

Any custom variable
appearing higher in the list

Name of any control effector

See Control Effectors Dictionary.

aerodynamic model.

"custom variables" : {
"CD1" 0.1,
"CL1" : {
"1" : 0.0535,

"alpha" 3.84

}y

"Ccgl" o {

"beta" : -1.0098,
"pbar™ : 0.098,
"CL1 pbar" : 0.002,
"rbar" : 1.121,
"aileron" : 0.078,
"rudder" : 0.168

In this example, the user has created three custom variables named CD1, CL1, and CS1. Note
that they are listed in alphabetical order. The first variable, CD1, is simply a constant. At runtime,
the value of each non-constant custom variable will be computed by multiplying the constant
value specified for each parameter by each of the independent variables, parsed by the
underscore and summed with all other components in the dictionary. For example, CL1 will take
on the value CL1 = 0.0535x1 + 3.84xalpha, where alpha is the component angle of attack in
radians. Note that CS1 is a function of CL1. Hence, once the value for CL1 has been computed,
the value of CS1 can be found from CS1 = -1.098xbeta + 0.098xpbar + 0.002xCL1xpbar +
1.121xrbar + 0.078xaileron + 0.168xrudder. In this example, aileron and rudder are viable
independent variables that come from definitions in the Control Effectors Dictionary.

Equations Dictionary
The model—equations dictionary is identical to the Custom Variables Dictionary, with one

exception. All sub-directory names in this dictionary must be known keywords of dependent
variables. The list of allowed dependent variables depends on what the model is being used for.

For an aerodynamic model, the following dependent variables are allowed:
Cx
Cy
Cz
ClI (small “L” = rolling-moment coefficient)
Cm
Cn
CL (Capital “L” = lift coefficient)
CD
CS (side force coefficient)

For an inertia model, the following dependent variables are allowed:
Ixx[slug-ft"2]
lyy[slug-ft*2]
Izz[slug-ft*2]
Ixy[slug-ft"2]
Ixz[slug-ft"2]

lyz[slug-ft*2]

Each of these can be specified as constant or as a function of independent variables, the same
way custom variables are defined in the Custom Variables Dictionary.

Database Structure

A generic model dictionary can contain a list of datasets to be used for the model. During
program runtime, the properties are interpolated from these tables. Results from each table are
summed to give the final properties of the component.

The database information is read in from .csv files with the following format:

1. A pound symbol can be used at the beginning of any line to produce a comment (that
line is ignored when read in).

2. Any non-commented lines above the data header can include parameters. Parameters
are denoted by any line starting with with a comma-separated word “parameter”. Two
parameters are required for the aerodynamic databases.

a. Number of Independent Variables: This parameter is denoted by the line:
“‘parameter,independent_variables,N” (where N is the number of independent
variables in the dataset). This simply tells the interpolation code how to
categorize each column of the data. The first N columns are flagged as
independent variables, and the remaining columns are flagged as dependent
variables.

b. Coordinate System of the Data: This parameter is denoted by the line:
“parameter,coordinate_system,” followed by any of the strings: “body”, “stability”,
or “wind”. This tells the code how to rotate the aerodynamic data to get it into the
body-fixed coordinate system before application to the equations of motion.

3. The first line that is not commented and is not a parameter is the data header row. This
is a list of labels for the columns of data. For example, a header could be: “alpha[deq],
Cx, Cy, Cz".

4. The remaining non-commented rows contain comma-separated values of data.

5. All of the following are used as delimiters when parsing the datafile:

a. Comma
b. Semicolon
c. Tab

It is best to organize the data when you produce the data file. However, the code will sort the
data when it is read in. It will sort the data by values (lowest to highest) in order of the columns
of the independent variables. Here is an example aerodynamic dataset:

Wind tunnel data taken on <date>

Any notes you want to add, including reference areas, lengths, etc.
parameter, independent variables, 3

parameter,coordinate system,body

elevator[deg],betal[deg],alphaldeg],Cx,Cy,Cz,Cl,Cm,Cn
-25.0,-30.0,-20.0,-0.18370,0.3677,1.19400,-0.00600,0.20590,-0.06330
-25.0,-30.0,-15.0,-0.17140,0.4019,0.99600,-0.00480,0.16980,-0.06210
-25.0,-30.0,-10.0,-0.15310,0.4367,0.79300,-0.00330,0.14260,-0.06780
-25.0,-30.0,-5.0,-0.11510,0.5538,0.41000,0.02980,0.16200,-0.08500
-25.0,-30.0,0.0,-0.09070,0.6218,0.18000,0.02760,0.15300,-0.09950
-25.0,-30.0,5.0,-0.05140,0.6544,-0.09000,0.03900,0.14700,-0.10440
-25.0,-30.0,10.0,-0.00790,0.6255,-0.34000,0.05620,0.15000,-0.09810
-25.0,-30.0,15. .03540,0.5885,-0.61000,0.07370,0.16700,-0.09760
-25.0,-30.0,20. .07400,0.5783,-0.87000,0.07610,0.15100,-0.06770
=25.,0,=30.0,25. .10920,0.5005,-1.17000,0.09100,0.12000,-0.04880
-25.0,-30.0, 30. .09150,0.3751,-1.31500,0.07430,0.10800,-0.01020
=25,0,=30,0,35. .10790,0.3292,-1.52000,0.07040,0.08200,-0.00280
-25.0,-30.0,40. .13060,0.447,-1.60000,0.06650,0.11300,-0.00370
-25.0,-30.0,45. .15350,0.1634,-1.56000,0.07880,0.09300,-0.01200
-25.0,-30.0,50. .14710,0.1366,-1.30000,0.06050,-0.01500,-0.03730
=25.0,=30.0,55. .15540,0.1735,-1.70500,0.04530,0.01900,-0.04490
-25.0,-30.0,60. .15010,0.2233,-1.70000,0.06100,-0.03600,-0.00550
-25.0,-30.0,70. .15010,0.2609,-1.69000,0.07130,-0.30700,0.02320
-25.0,-30.0,80. .16850,0.3055,-1.93500,0.06140,-0.36500,0.02360
=25.0,=30.0, 90, .17120,0.3078,-1.96000,0.06010,-0.52600,0.0319
-25.0,-25.0,-20.0,-0.18530,0.307,1.27200,0.00650,0.19370,-0.06670
-25.0,-25.0,-15.0,-0.17650,0.322,1.05700,0.00590,0.16500,-0.05790
-25.0,-25.0,-10.0,-0.16270,0.3823,0.83200,0.00950,0.15790,-0.05880
-25.0,-25.0,-5.0,-0.12320,0.4778,0.41000,0.02450,0.17700,-0.07610

O O O O O O O o o o o o o
~ N~ S N~
O O O O O O O O o o o o o

~

~

~ ~ ~ ~ ~

~

The code looks for “key words” in the data labels. Allowed key words depend on whether it is an
aerodynamic model or inertia model.

For an aerodynamic model, it will recognize the following INDEPENDENT variables:
alpha
beta
pbar
gbar
rbar
Any other name of a control effector listed in the Control Effectors Dictionary.

The code will recognize the following DEPENDENT variables:

Cx

Cy

Cz

ClI (small “L” = rolling-moment coefficient)

Cm

Cn

CL (Capital “L” = lift coefficient)

CD
CS (side force coefficient)

The code recognizes [rad] or [deg] units in square brackets and treats them accordingly. Note
that these units should be put in square brackets and part of the label name with no space
between the name and the units (i.e. alpha[deg] or beta[deq]).

For an inertia model, it will recognize the following INDEPENDENT variables:
Any name of a control effector listed in the Control Effectors Dictionary.

The code will recognize the following DEPENDENT variables:
Ixx[slug-ft"2]
lyy[slug-ft*2]
Izz[slug-ft*2]
Ixy[slug-ft"2]
Ixz[slug-ft"2]
lyz[slug-ft"2]

Control Effectors Dictionary

The vehicle—properties—control effectors dictionary contains a list of dictionaries. These
dictionaries must be named with integers in ascending order starting from “0”. Each
sub-dictionary contains the following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

name

string

arbitrary

required

Name of the control effector.
This name must match any
relevant references in the
aerodynamics model
associated with the parent
component of the control
effector.

parent_component

string

Any vehicle
component

required

Name of the parent
component associated with
this control effector.

units

string

deg or empty

optional

empty

Units of measurement used
for the control effector. Only
current options are deg or
empty.

magnitude_limits

float array of
length 2

arbitrary

required

Minimum and maximum
values limiting total value of
the control effector in the
same units as “units”.

rate_limits[/s]

float array of
length 2

arbitrary

required

Minimum and maximum
values limiting the actuation
rate of the control effector in
units of “units” per second.

time_constant[s]

float

>0

required

First-order lag of control
effector.

The vehicle—initial dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
airspeed[ft/s] float >=0 optional 0.0 Initial airspeed of the vehicle.
Initial Mach number of the
mach float >=0 optional 0.0 vehicle. Either airspeed or
Mach can be specified.
altitudel[ft] float arbitrary optional 0.0 Initial altitude of the vehicle.
latitude[deg] float arbitrary optional 0.0 Initial latitude of the vehicle.
longitude[deg] float arbitrary optional 0.0 Initial longitude of the vehicle.
heading_angle[deq] float arbitrary optional 0.0 Imt'?' heading angle of the
vehicle.
type string state. trim required This specifies how the aircraft
’ will be initialized.
- . Required if type = “state”. See
state dictionary optional State Dictionary.
. - . Required if type = “trim”. See
trim dictionary optional Trim Dictionary.

State Dictionary

The vehicle—initial—state dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
. . . Initial elevation angle of the
elevation_angle[deg] float arbitrary optional 0.0 vehicle
bank_angle[deg] float arbitrary optional 0.0 erﬂia(!lgank angle of the
alpha[deg] float arbitrary optional 0.0 Lr:elﬂia(ilgngle of attack of the
beta[deg] float arbitrary optional 0.0 Lr;ltr:iacllzldesllp angle of the
pldeg/s] float arbitrary optional 0.0 Lrgﬂia(ll(raolllng rate of the
g[deg/s] float arbitrary optional 0.0 Lr:;tr:?;lg'mhmg rate of the
. . Initial yawing rate of the
r[deg/s] float arbitrary optional 0.0 vehicle.
Initial control effector values in
units specified in Control
float array of Effectors Dictionary. The
same len ¥h as order must match the order
control_effectors numbe? of arbitrary optional the control effectors are
control effectors defined in the Control
Effectors Dictionary. Required
if control effectors have been
defined.

Trim Dictionary

The vehicle—initial—trim dictionary contains the following:

Key

Value Type

Allowed Values

Required / Optional

Default Value

Description

type

string

sct, shss

required

Specifies the type of trim to
be conducted where sct is
steady coordinated turn and
shss is steady-heading
sideslip. SCT requires
bank_angle[deg] to be
specified. SHSS requires
bank_angle[deg] or
sideslip_angle[deg] to be
specified. Either type requires
elevation_angle[deg] or
climb_angle[deg] to be
specified.

elevation_angle[deg]

float

arbitrary

optional

Initial elevation angle of the
vehicle.

climb_angle[deg]

float

arbitrary

optional

Initial climb angle of the
vehicle.

bank_angle[deg]

float

arbitrary

optional

Initial bank angle of the
vehicle.

sideslip_angle[deq]

float

arbitrary

optional

Initial sideslip angle of the
vehicle.

solver

dictionary

required

See Solver Dictionary.

Solver Dictionary

The vehicle—initial»trim—solver dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
finite difference ste The step size to be used in
T —Step_ float >0 optional 0.01 the finite-difference
size : .
computation of gradients.
The relaxation factor to be
relaxation_factor float >0 optional 0.5 used in the Newton’s method
solver.
The value of the error residual
tolerance float >0 optional 1.0e-10 at which the solution will be
considered converged.
The maximum number of
max_iterations int >0 optional 100 |t§rat|9n§, at Wh'Ch. the solver
will exit if the solution has not
yet converged.
Whether verbose information
verbose boolean true, false optional false about the solver should be
printed to the screen.
D. Analysis Dictionary
The analysis dictionary is an optional dictionary used to perform additional analysis on the
aircraft outside of 6-DoF simulation. If present, this dictionary contains the following:
Key Value Type Allowed Values | Required / Optional Default Value Description
A dictionary with reference
reference dictionary required values for the vehicle. See
export_aero_database dictionary optional Sl:ee Export Aerodvnamic orl:t _Ae_rod namic
export_linear_aero_m See ExportLinear
odZI - - - dictionary optional Aerodynamic Model
export_linear_aero_de See Export Linear
rivgtive_s - - dictionary optional Aerodynamic Derivatives
Dict
export_linear_state_sp - . See Export Linear
dictionary optional

ace_model

State-S Model Dicti

The analysis—export_aero_database dictionary contains an arbitrary number of
sub-dictionaries, each with a unique, arbitrary name. The name of each sub-dictionary is
appended with “.csv” to create the file name for the corresponding database. Hence, the
number of sub-directories corresponds to the number of databases that will be generated. Each
sub-dictionary contains the following about a single database to be created:

Key Value Type Allowed Values | Required / Optional Default Value Description
A single string with all
alphadeg] independent variables to be
bZta[de % ’ used in the database creation
o[deg/s] q[c?e,g/s] delimited with an underscore
independent_variables string r[deg/s], pbar, required = d- If un(ljts pt>erta_|nbt|0 t?r?
bar, rbar, any independent variable, they
gontr‘ol eff,ector must be included. Any
disolay name independent variables not
play ' included are set to zero for
the database creation.
A single string with all
Cx, Cy, Cz, dependent variables to be
dependent_variables string Cl, Cm, Cn, required output in the database
CL, CD, CS delimited with an underscore
For each independent
variable listed in the first
parameter, there must be an
associated “_range” denoted
as an array. If the length of
this array is 3, the first two
<independent_variable . . values denote the bounds of
float array arbitrary required

_name>_range

the range, and the last value
denotes the increment to be
used within that range. If the
length is anything other than
3, the values in the array are
used as a list of values for the
independent variable.

The analysis—export_linear_aero_model dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
finite difference ste The step size to be used in
- —Step_ float >0 optional 0.01 the finite-difference

size

computation of gradients.

The analysis—export_linear_aero_derivatives dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
finite difference ste The step size to be used in
- —Step_ float >0 optional 0.01 the finite-difference

size

computation of gradients.

The analysis—export_linear_state_space_model dictionary contains the following:

Key Value Type Allowed Values | Required / Optional Default Value Description
finite difference ste The step size to be used in
- —Step_ float >0 optional 0.01 the finite-difference

size

computation of gradients.

If present, the code will export both an A and B matrix, each in a separate CSV file to represent
x_dot = Ax + Bu.

4. Outputs

5. Physics

A. Equations of Motion

MAVIS employs six degree-of-freedom rigid-body equations of motion where the inertial
coordinate system is assumed to be a flat earth. This neglects the rotation of the earth as well

as any centripetal forces due to high-speed travel. These effects may be added in the future.
The full equations of motion and solution method is outlined by Hunsaker [1].

B. Numerical Methods

MAVIS uses 4th-order Runge-Kutta integration as the core numerical method for integrating the
states of the aircraft forward in time. This integration scheme has been shown to be nearly
identical in accuracy per computation time step as the commonly-used 4th-order
Adams-Bashforth-Moulton method [2—4].

C. Turbulence

The implementation of the Dryden turbulence model follows the development of Beal [5] and is
outlined in Hunsaker [1]. Gust or turbulence perturbations are included as perturbations to the
aerodynamic properties of the components.

6. Interfacing with MAVIS

By default, MAVIS has the following connections built in. MAVIS looks for the associated keys in
the Connections dictionary.

Key

Array Length

Array Contents

send_states

14 + number of control effectors

time[s],

u[ft/s], v[ft/s], w[ft/s],

plrad/s], q[rad/s], rrad/s],

X[ft], yift], z[ft],

e0, ex, ey, ez,

actual value of each control effector in units specified in Control

Effectors Dictionary

timel[s],
a_x[ft/s*2], a_y[ft/s*2], a_z [ft/s"2],
p_dot[rad/s"2], q_dot[rad/s*2], r_dot[rad/s"2],

send_imu 7 plrad/s], q[rad/s], rlrad/s],
e0, ex, ey, ez,
phi[rad], theta[rad], psi[rad]
send_pitot 2 time[s], u[ft/s]
send_gps 4 time[s], x[ft], y[ft], z[ft]

send_graphics

Time[s],

u[ft/s], v[ft/s], w[ft/s],

ax[ft/s"2], ay[ft/s2], az[ft/s"2],

x[ft], yiftl, z[ft],

e0, ex, ey, ez,

phi[rad], theta[rad], psi[rad],

speed of sound[ft/s],ground altitude[ft],gravity[ft/s"2],

actual value of each control effector in units specified in Control

Effectors Dictionary

receive_controls

number of control effectors

commanded values for each control effector in units specified in
Control Effectors Dictionary

Other connections can be easily added by modifying the source code.

7. Examples

A. Vehicles

Run the sphere example by navigating to examples/sphere and running

mavis sphere.json

You can open and plot the results from the output file sphere_states.csv.

https://www.dji.com/mavic-3-pro

https://www.foxtechfpv.com/foxtech-great-shark-330-pro-vtol.html

In 1979, NASA published a dataset based on wind-tunnel data that was used for an F-16 flight
simulator. The original publication can be found here. A digitized version of this original dataset
can be found here. This original information has been reformatted into a form that can be used
in this flight simulator. The datasets in this format can be found here.

B. Controls

C. Visualization

8. Developer Notes

To Do:
- Check aerodynamic coefficients for _body wind _stability coordinates and how those
are implemented
- Write the aerodynamic database documentation
- Write the aerodynamic coefficients documentation
- Modify code so order of control effectors doesn’t matter(?)
- Add examples
- Have student check results vs. SAASHA

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800005879.pdf
https://docs.google.com/spreadsheets/d/1eYWH2TmKkatd1s6TWnpm7PVd5_77yTXsuUl4aYWwOgI/edit?gid=0#gid=0

- Finish turbulence model development
- Not sure angular momentum of rotor is included

To find out how many lines of code are in the project, cd to the directory in question and use the
command

git ls-files | xargs wc -1

| believe in order to do this it requires it to be a git repository.

9. References

[1 Hunsaker, D., Simulation of Flight, 2024.

[2] Gerald, C. F., and Wheatley, P. O., Applied Numerical Analysis, 6th ed., Addison Wesley
Longman, Reading, MA, 1999, pp. 451 — 477.

[3] Hoffman, J. D., Numerical Methods for Engineers and Scientists, McGraw-Hill, New
York, 1992, pp. 225 — 266.

[4] Phillips, W. F., Hailey, C. E., and Gebert, G. A., “Review of Attitude Representations
Used for Aircraft Kinematics,” Journal of Aircraft, Vol. 38, No. 4, 2001.

[5] Beal, T. R., “Digital Simulation of Atmospheric Turbulence fro Dryden and von Karman
Models,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 1, 1993.

	MAVIS Documentation and User Manual
	Welcome to MAVIS
	1. Installation
	A. From an Executable
	B. From Source Code
	C. Testing the Installation

	2. Running MAVIS
	3. Input File Structure
	A. Simulation Dictionary
	Connections Dictionary

	B. Atmosphere Dictionary
	Gusts Dictionary
	Sample Dictionary

	C. Vehicle Dictionary
	Properties Dictionary
	Airfoils Dictionary
	Propulsion Dictionary
	Components Dictionary
	Cuboid
	Cylinder
	Sphere
	Wing Segment
	Rotor
	Engine
	Custom
	Inertia Dictionary
	Aerodynamics Dictionary
	Reference Dictionary
	Stall Dictionary

	Generic Model Dictionary
	Custom Variables Dictionary
	Equations Dictionary
	Database Structure

	Control Effectors Dictionary

	Initial Dictionary
	State Dictionary
	Trim Dictionary
	Solver Dictionary

	D. Analysis Dictionary
	Export Aerodynamic Database Dictionary
	Export Linear Aerodynamic Model Dictionary
	Export Linear Aerodynamic Derivatives Dictionary
	Export Linear State-Space Model Dictionary

	4. Outputs
	5. Physics
	A. Equations of Motion
	B. Numerical Methods
	C. Turbulence
	Dryden Turbulence Model

	6. Interfacing with MAVIS
	7. Examples
	A. Vehicles
	Sphere
	Arrow
	RQ-21 Fixed-Wing Aircraft (Component Buildup)
	Quad-Rotor (Component Buildup)
	Transition Vehicle (Component Buildup)
	F-16 (Custom Aerodynamic Model)
	F-16 (Custom Aerodynamic Database)

	B. Controls
	PID Controller for Fixed-Wing Aircraft

	C. Visualization
	Paraview
	Unreal Engine

	8. Developer Notes
	9. References

