
DD2 Modder Guide
Updated Jun 13, 2025

Intro

What is Darkside?

Darkside is a Unity project used to create and bundle Darkest Dungeon 2 files together into a
mod that can be submitted directly to Steam Workshop. This tool is found on Steam via Tools
under the Darkest Dungeon 2: Mod Tools.

What mods can be created with Darkside?
For this initial testing, Darkside can be used to create most types of items; trinket, combat,
rest (inn items), memory (under the hood memories are items), and general stagecoach, pet,
trophy, and flames

Most of this documentation covers adding new items, however, overriding existing data is
also supported but requires a bit more manual setup. Details for override data setup can be
found under the Overriding Data section.

Where can I provide feedback and ask for help?
We will be collecting feedback and holding discussions in the DISCORD channel. With this initial
deployment and guide we want to challenge you to take these basic tools and set ups as far as
you can, and help construct more robust guides on how we can help onboard future modders.
So while this is the beginning introduction of what can be done, we believe there is more
currently possible, but will need to be mapped out by you! All the while reporting to us where the
biggest points of friction are or what is currently still unaccessible.

Are there mod examples for reference?
YES! The default data created whenever you initially make a new item type is filled with
examples for that specific type. The examples provided have been created primarily for teaching
the mod tools so the numbers, effects, and buffs will be all over the place.

In addition, there is a supplementary XLSM file that can be opened with excel, used for
managing/exporting the data from an easily readable source. It contains the same example data
that’s setup with select drop down options and notes explaining specific cells.

Another excellent reference is the base game data! Using Visual Studio Code (this is the tool I
recommend), you can easily view and search through our data. Details for this process can be
found under the TIPS AND TROUBLESHOOTING! section (this section is currently WIP).

Requirements
1.​ Install Unity 2022.3.16f
2.​ Download Darkside project
3.​ Signed into Steam/Steam Workshop
4.​ Updated build of Darkest Dungeon 2 with mod support
5.​ Recommendations

a.​ Access to Visual Studio Code or another IDE (useful for viewing base game
data files)

i.​ Details: Visual Studio Code to view base game data
b.​ Access to Excel (Google sheets won’t work since we’re providing an XLSM file

with macros)
i.​ Details: Using the Excel exporter tool

c.​ Get acquainted with the Unity Editor: Explore the Unity Editor
d.​ Throughout this document there are sections titled VERY IMPORTANT INFO, we

recommend paying close attention to these!

Tool Basics

Opening the project

After opening Darkside, the editor should look something like this with the Item Creation Tool
window already open

https://learn.unity.com/tutorial/explore-the-unity-editor-1#

If the Item Creation Tool window isn’t open or it gets closed, you can open it again by selecting
Window > ItemCreationTool

Item Creation Tool
The Item Creation Tool is what you use to create the default files for the various item types.

The available Item Types are: rest (inn item), combat, trinket, stage_coach_upgrade, and
memory
Item Subtype is currently used for stage_coach_upgrade only and they are: general, pet,
trophy, infernal, and radiant

Project Folders

Project Window
The Project window displays all the files contained within the Unity project. For the purposes of
creating a mod the important folder are Data, Excel, Localization, and UserMods

Data
This folder contains default images which are automatically created and added to the files
wherever a new item is created. After a new item is created, these images are NOT required to
use, they are for placeholder use. The default images can be removed or added to.

Excel
This folder contains the default CSV files for the various Item Types. The _export folder is
pre-populated with example data. The default data can be manipulated for custom
pre-populated data when items are created.

Localization
This folder contains the default TEXT files for the various Item Type strings for their names,
descriptions, tooltips, etc. When an item is created the default text files in UserMods >
[MODNAME] > [MODNAME]_export > Localization will be pre-populated with Item ID
assigned.

UserMods
This folder contains the mod files that are created when you create a new item and are primarily
the files that will be bundled and added to your Workshop Item.
The top level folder has the MODNAME that you chose when creating the mod.

Overriding Data
By default, most of the game data cannot have multiple data pieces of the same types using the
same ID. There are exceptions and ways to use the same IDs to append data together OR
override base game data.

Certain data types, primarily loot tables and battle configs, can have multiple instances that
share the same ID and they will be appended to each other like they’re a single table. An
example of how we utilize this functionality can be found when searching for
TRINKETS_HERO_ALL in loot_data_export_TRINKETS.Group.csv and
loot_data_export_DLC1.Group.csv. This is how we append Crusader and Duelist trinkets to
the loot tables for hero trinket drops.

For modding purposes, there’s an option to override data that share the same type and ID.
When an item is created with the Item Creation Tool, an empty Overrides folder is
automatically created (UserMods > [MODNAME] > [MODNAME]_export > Overrides). Data
files contained in this folder will OVERRIDE any data that shares a type and ID with base game
data.

Images can be overwritten as well, you just need to ensure that the [ITEMID] prefab file name
created when you create a new item EXACTLY matches the item ID in the base game you’re
looking to override. To assign a custom image, follow the steps found in the Item Icons section.

VERY IMPORTANT INFO
By default, the item templates created have all the data contained in a single CSV. If you want to
create mods that override existing items, you’ll need to create a separate CSV with the
OVERRIDE data and move that into the Overrides folder. All other NON-OVERRIDE data
should be contained in the default location (UserMods > [MODNAME] > [MODNAME]_export)

Creating an Item

Creating the initial files
In the Item Creator Tool window, assign an Item Type/Subtype, enter an Item ID, then select
Create to create your first item (congrats you’ve made an item!)

VERY IMPORTANT INFO
When assigning an Item ID, you want to choose an ID that’s unique to the item you’re creating
OR if you’re using the example data, the IDs match Example IDs below based on the Item Type
you’re creating

Example IDs for Item Types/Subtypes

●​ trinket: rh_example_trinket
●​ rest: rh_example_rest_item
●​ combat: rh_example_combat_item
●​ stage_coach_upgrade/general: rh_example_sc_general
●​ stage_coach_upgrade/pet: rh_example_sc_pet
●​ stage_coach_upgrade/trophy: rh_example_sc_trophy
●​ stage_coach_upgrade/infernal: rh_example_sc_infernal
●​ stage_coach_upgrade/radiant: rh_example_sc_radiant

When creating an item, most of the files will be named based on this Item ID and changing
them after the fact can be a bit cumbersome, so doing it right initially will help you down the
road!

After creating an item, in the Project window you’ll find the item files you’ve just created
contained within the UserMods folder.

Assigning item visuals

Item Icons
Details for using custom images can be found under Step 6.

1.​ Find the folder that’s named after your Item ID (UserMods > [MODNAME] > [ITEMID])
2.​ In this folder, select the prefab that’s named after your Item ID
3.​ Open the [ITEMID] prefab (In the Inspector window, press the Open button in the top

right corner)

4. In the Hierarchy window, select the default_item_icon gameobject
5. In the Project window, select the Art folder (UserMods > [MODNAME] > [ITEMID] > Art)
6. From the Art folder, select an image

●​ CUSTOM IMAGES - This is the folder where you can add custom images. The standard
image size for item icons is 512x512. For reference, you can duplicate an example
image, then edit it with your custom image in Photoshop or another photo editing tool, as
this will keep Unity settings and will match our image sizes. HOWEVER, if you feel
comfortable with arranging the correct settings, feel free to import custom images directly
into the appropriate folder locations (see the point below this one!) - in the Inspector
Window, make sure to set the “Texture Type” of the image to “Sprite (2D and UI)” and
“Pixels Per Unit” to 1.

●​ VERY IMPORTANT INFO - The image used MUST be contained in UserMods >
[MODNAME] > [ITEMID] > Art in order to be bundled correctly

7. With the selected image, drag/drop the image onto the empty Source Image field found in
the Inspector window
8. SAVE THE PREFAB - To ensure this is saved, close the prefab by clicking the back arrow
button < in the Hierarchy window

Combat Item Skill Icons
In addition to the item icon, Combat items also have a skill icon. Under the hood Combat item
actions taken in combat are technically skills and have some overlap with skills for requirements
(skill data, skill
ResourceAssets

1.​ This is SPECIFICALLY if you’ve created a combat item
2.​ Find and select the ResourceInLineSkill folder (UserMods > [MODNAME] > [ITEMID] >

ResourceInLineSkill)
a.​ This folder doesn’t exist for most item types as this is the asset for connecting the

item for item use in combat
3.​ Select the ResourceInLineSkill asset name [ITEMID] contained in the

ResourceInLineSkill folder. You will see the details for this asset in the Inspector
window

a.​ You will likely see error messages in the Console window when selecting this
file, this is normal!

4.​ In the Project window, from the Art folder (UserMods > [MODNAME] > [ITEMID] >
Art), select an image

a.​ VERY IMPORTANT INFO - The image used MUST be contained in UserMods >
[MODNAME] > [ITEMID] > Art in order to be bundled correctly

b.​ This image does NOT have to match the item icon
5.​ With the selected image, drag/drop the image onto the empty Skill Sprite field found in

the Inspector window
6.​ In the Inspector window with the ResourceInLineSkill selected, find the checkboxes

under In Line Specification
a.​ Ensure the Is Item check box is marked TRUE (checked)

b.​ If the combat item targets a hero, Is Friendly should be marked TRUE (checked)
c.​ If the combat item targets an enemy, If Friendly should be marked FALSE

(unchecked)

Stagecoach attachments (Preset and Custom)
When creating a stagecoach item (any sub_type), there is an asset that allows for stagecoach
attachments, preset or custom.

1.​ In the ResourceStageCoachVisualUpgrade folder (UserMods > [MODNAME] >
[ITEMID] > ResourceStageCoachVisualUpgrade)

2.​ Select the asset [MODNAME]
3.​ In the Inspector window you will find options for the following

a.​ Location: various attachment points on the stagecoach (currently this list does
NOT include attachment points for pet cages, torches, or trophies)

b.​ Prefab: This is used for custom stagecoach attachments (see below)
c.​ Visual Override: This is used to select preset stagecoach attachments (see

below)

Custom stagecoach attachments
●​ Create a prefab in UserMods > [MODNAME] > [ITEMID] > Art

○​ The prefab MUST be contained in UserMods > [MODNAME] > [ITEMID] > Art
in order to be bundled correctly

●​ Drag/drop the prefab onto the Prefab field on the ResourceStageCoachVisualUpgrade
asset

●​ Ensure the Visual Override is set to none
●​ Select an attachment Location

○​ This location can be used as a starting point THEN in the prefab, you can offset
any visuals to ANY spot you desire

●​ Be careful to not have any Camera objects attached to your prefab. The game will try to
set it as the main camera, resulting in a black screen.

Things to keep in mind when creating the prefab

●​ Models can be added to the prefab, but you need to ensure that any materials are also
added and contained in UserMods > [MODNAME] > [ITEMID] > Art. To keep things
organized, we recommend keeping all prefab assets (models, materials, etc.) in a
subfolder within the Art folder.

●​ If your materials are NOT set up for Universal Render Pipeline, you may need to run
the Render Pipeline Converter. Check Material Upgrade then Initialize And Convert
to convert all non-URP materials to URP supported materials.

○​ Note: Custom stagecoach items are automatically converted to URP when the
mod is uploaded. No need to manually convert materials if you’re making a
custom coach item.

○​

○​

Prepping/editing item data and functionality

Editing CSVs
This is the most direct way to edit item data. In the [MODNAME]_export folder (UserMods >
[MODNAME] > [MODNAME]_export), you will find a CSV file pre-populated with data with
basic functionality for each item type.

This file can be opened and edited with any software used for text editing (Notepad, Notepad++,
Excel, VS Code, etc.)

There is A LOT to understand when it comes to this data. If you’re taking this approach, it would
be best to start with the default CSV file, edit the numbers/IDs there to build a familiarity with the
data structure.

Referencing the base game data is an excellent way to create specific functionality for any item
mods.

Using the Excel exporter tool
We’ve provided access to a supplementary XLSM dd2_mod_data_exporter that requires Excel
to open and export CSVs. This sheet PRIMARILY supports NEW and APPENDED data.
Overriding existing data requires a bit more work.

VERY IMPORTANT INFO
To utilize the export macros for exporting you need to do the following

1.​ After downloading the file
a.​ RIGHT-CLICK the file and open Properties
b.​ At the bottom of Properties, under Security mark Unblock as TRUE (checked)

https://docs.google.com/spreadsheets/d/1e_H8kDfnL58fEhvsTxFcROhha0gz8qp6/edit?usp=drive_link&ouid=107106814488089789710&rtpof=true&sd=true

c.​
2.​ After opening the file

a.​ Click Enable Editing on the top bar (this allow the macro button for Export Group
and Export Multiple to function

b.​

Using dd2_mod_data_exporter in Darkside
VERY IMPORTANT INFO Drag/drop the XLSM file into your [MODNAME] folder (UserMods >
[MODNAME])

What’s contained in dd2_mod_data_exporter
There are several example items that match the default CSV files created when you make a
new item using the Item Creation Tool; trinket, rest, combat, sc_general, and sc_pet

VERY IMPORTANT INFO
All highlighted cells in dd2_mod_data_exporter have drop down options. The drop down
options point to lists found on the Definitions tab of the sheet. Entries can be added here as
well to appear in the drop down selections if you’d like additional options.

1.​ As long as you match the Item ID assigned with the Item Creation Tool to the Item ID in
dd2_mod_data_export, the data should all be connected respective to the various Item
Types/Subtypes

2.​ The default data assigns ALL of these items to the valley inn shop. The drop down
allows you to change which loot table this item will be appended to.

3.​ This text field defines the folder location where the CSV will be exported to. As long as
dd2_mod_data_export is contained in the proper [MODNAME] folder, this should
have [MODNAME]_export in the field

4.​ Once all your data has been entered as desired, clicking EXPORT GROUPED will
export and override the CSV file contained in the UserMods > [MODNAME] >
[MODNAME]_export folder

5.​ EXPORT MULTIPLE will create a CSV file for EACH data type within the tab
a.​ In the example below, there will be 6 files created (1 for the item, 4 for the buffs,

and 1 for the loot table)
b.​ We recommend using EXPORT GROUPED as this keeps all the data for the

table contained in a single file
c.​ NOTE FOR OVERRIDES - This export option may be useful to separate pieces

of data to more easily move into Overrides and default data folders
6.​ Each tab is used for each Item Type example and will create a self contained CSV file

when using EXPORT GROUPED.
a.​ We recommend starting with a single item type, thus only utilizing a single tab, for

a single mod. Once you start to become more familiar with this process and
modding, you could create a mod that contains several items.

Creating custom hero palettes
In the Palette Creator tab, select the hero you wish to make a custom palette for, give it an ID,
and press Create.

This will create a new folder named after the ID you entered. In this folder, you should find an
image titled tex_[your_id]. This is the “col” texture for the hero you selected.

Textures in DD2 are broken into two parts, the col and the ink. The ink texture is the black
outlines that are layered on top of the col texture. The col texture contains all of the color and
details. Custom palettes use a custom col texture.

Open the ‘tex_[your_id]’ texture in a photo editing program of your choice and edit the texture to
your liking (You can right-click on the texture in Unity and select “Show in Explorer” to find it
quickly.) Make sure to save over the original image.

That’s pretty much it! You can now use the Steamworks tool to upload the palette to the
workshop. You can test if it worked by clicking through all of the hero’s Palettes at the
crossroads.

Hero Skins / Custom Hero Models
Use the Hero Skin Creator Tool to make a new mod. In the mod folder, you will have a couple
files. The main one is the skin Resource, which has the default name: (hero)_skn_(modID). In
the skin Resource, you can assign the art prefab (the prefab has the skin's 3D model, the
skeleton, vfx, Unity components, etc.), a name id (note: you still need to do Localization), an
Unlock ID (leave it blank if you want the skin unlocked by default), and custom button sprites for
the cosmetics tab.

If you want to just add things to the skin, you can just drag them onto the proper bone inside the
art prefab. Most likely you will want to do some custom modeling. In this case, you should take
the mdl_heroname.fbx file, and import it into your 3d program of choice (e.g. Blender). Create
your new model, rig it to the skeleton, and export it back into darkside (see import and export
settings below).

Drag your .fbx into the project view in darkside to import it. Then open the art prefab, and drag
the imported fbx into it, on the same level as mdl_heroname, which your model will eventually
be replacing. Click on mdl_heroname, look at the components in the inspector, and add the
same components to your model, most likely these will be: an Animator (with an
AnimationController assigned), TimelinePropertyMapBhv, and AnimatorStateSender. Also check
that your scale matches, several of the heroes are scaled slightly differently (e.g. vestal is
scaled to 1.03).

Click on the meshes in the mdl_heroname, and in the inspector on the right, click on the
materials they use, and copy them into your mod folder if you want to make changes to them
without altering the base versions in darkside. Click on your copied materials, and drag in your
custom textures for Base and Ink, then assign the materials to your own meshes in the art
prefab. While going through the meshes, you should also be checking for components and
adding them to your own. It varies by hero which components are used. Weapons have a
MaterialPropertyBhv with the text 'weapon' in the filter field, and occasionally some will have
different components, e.g. the Occultist's knife has a ToggleActiveStateByAnimationCurve.

Right click the skeleton (SHJntGrp) and click 'Select Children' to expand the entire hierarchy.
Look through the skeleton for all the vfx (which have blue boxes next to them) and all the
objects with white names, and move them over to the same bone in your own fbx. Click on the
art prefab, and in the BoneRemapping component, check that all the remaps are properly
assigned to the white named objects (hit_body, etc.) in your own model. These manage where
visual effects that don't come from the character appear, such as enemy attacks or damage
numbers.

You can now delete the original mdl_heroname, at which point the art prefab should consist of a
Collider, a FakeGroundPlaneShadow, your model, and various hero-specific objects. The game
will simply load the art prefab as the model for the hero, so you don't have to follow these steps
exactly for it to work, and you're welcome to do other things like change vfx or animations in the
animator (make sure you copy it first, or use a Right Click > Create > Animator Override
Controller).

At this point your skin mod should be good to go.

Blender Settings
After importing, and again before exporting, reset the armature poses by selecting the armature
in object mode, switching to pose mode, and pressing: A, Alt+R, Alt+S, Alt+G.
Before exporting, set Armature X rotation to 0.

Import Settings

Export Settings:

Updating names, descriptions, and other strings
In the Localization folder (UserMods > [MODNAME] > [MODNAME]_export > Localization),
there’s a pre-populated text file with string IDs that have automatically been created to match
the Item ID when the item was created. ex)
item_name_rh_example_combat_item=rh_example_combat_item

Each Item Type has slightly different string requirements. Reference and edit the pre-populated
data however you see fit.

Publishing to Steam Workshop
Once you’re satisfied with the item data, you can begin the process of uploading your mod to
the Steam Workshop!

1.​ In the [MODNAME] folder (UserMods > [MODNAME]), select the file called
Steamworks. The details will appear in the Inspector window

2.​ Fill out the fields for your mod. These details will appear on the Steam Workshop page
a.​ This info will NOT appear in the game and does not need to match any of the

item data
b.​ The image used for the Image Preview field can be anywhere in the project files

(it does NOT need to be in the Art folder like images used for actual item data)
3.​ Once you’re satisfied with the Steamworks details, click Publish to Steam
4.​ Assuming all went well, you should see a popup with the title Upload To Steam and in

the description you should see the change notes you included in the Steamworks details
a.​ VERY IMPORTANT INFO - The first time you hit Publish to Steam, you’ll see a

prompt for Addressable Reports. You can hit Yes or No, it doesn’t affect the
outcome when publishing, selecting Yes just provides additional details found in
the Addressable Report window.

5.​ The text in the popup should say “Mod [ID] uploaded to Steam: True”. If it says False,
your mod failed to upload. You should get an error message in the Unity console in that
case.

Testing your mod
Congratulations on creating your mod!

Finding your mod on Steam
In Steam you can find your Workshop Files under Community > Workshop then on this page,
select the link for Your Files

Subscribing (downloading) your mod
On the Your Files page, you’ll find all of your files (go figure). This includes ANY item created
with the Item Creation Tool, even before clicking Publish to Steam for the first time.

Select the mod you’d like to test and hit Subscribe to download the files to the appropriate file
locations

Viewing your mod in game
Run Darkest Dungeon 2 on a mod supported build

1.​ On the main menu screen, you’ll find an option for Mods
2.​ Once in the mods menu (the dark side of the mountain), click Mods to open your mod

list.
3.​ Check the mods you want to use
4.​ Select Continue Expedition or Begin New Expedition

For mods to run, you have to load your run via the Mods menu. Loading a run via the regular
menu will not enable any mods.

After playing and upon arriving at the valley inn, assuming you’re using example item data, your
item mod should appear in the valley inn shop!

Local Mod Testing

Here are instructions to help you test your mods without having to publish to Steam. You can do
this by building the assets.

Inside the mod you want to test, find the Steamworks asset for the mod you want to build and
select it [Assets/UserMods/[mod]/Steamworks.asset. Select the Build Assets button in the
Inspector.
​

From here, open up Darkest Dungeon II’s streamingassets folder
(Steam>Steamapps>common>Darkest Dungeon II > Darkest Dungeon II Data > Streaming
Assets) and copy the data folder of the mod you want to test into the mods/[data] folder.
Rename the data folder to your desired mod name. In the example below, I renamed it to
test_trinket.

Once that is done, load up the game to see it with the description “load from streaming assets”

TIPS AND TROUBLESHOOTING!
This section is WIP and will be added upon once testing is underway

Visual Studio Code to view base game data
After downloading Visual Studio Code, you can view the base game data by selecting File >
Open Folder…

For game data files

Open the Excel folder which can likely be found here
C:\Program Files (x86)\Steam\steamapps\common\Darkest Dungeon® II\Darkest Dungeon
II_Data\StreamingAssets

For string/localization files

Open the Excel folder which can likely be found here
C:\Program Files (x86)\Steam\steamapps\common\Darkest Dungeon® II\Darkest Dungeon
II_Data\StreamingAssets\Localization\Sources

Now that the folder for the base game data is open, you can search and reference various data
we use for different items, skills, effects, buffs, loot tables, etc.

ex) Searching trinket will display all data that contain the string ‘trinket’

Unity
Drag the slider handle in the bottom right corner to the left so the files are list view

Publishing to Steam

Make sure you close the CSV file before attempting to upload the mod to the Workshop. If the
file is still open, the export will fail.

Transferring save files

Mods can only be used on save files that reside in the following folder:

\Users\[XXXXX]\AppData\LocalLow\RedHook\Darkest Dungeon
II\mods\SaveFiles\[XXXXXX]\profiles

XXXXX will be replaced by values created by you or steam for your account. If you wish to use
a pre-existing save file for mods, you can manually copy the save over to the mods/SaveFiles
folder. Regular save files reside in the following folder:

\Users\[XXXXX]\AppData\LocalLow\RedHook\Darkest Dungeon II\SaveFiles[XXXXXX]\profiles

Adding items to base game loot tables
VERY IMPORTANT INFO You'll see many instances of [LOOTABLENAME]_all, the _all is
used to denote the TOP level loot table that has the type all_sub_table which means it will be
provide ALL of the contents of the loot table contained within rather than a random selection. It's
best to avoid appending to any loot table ending in _all

Adding items to base game loot tables is done through appending newly created loot tables to
base game loot tables AS LONG AS THE LOOT TABLE IDs MATCH. When duplicate loot
table IDs are used for new loot tables, the content is appended to the base game loot table ID
as if they were combined all along.

Ex) inn_valley will append this loot table to the provisioner shop selection at the valley inn.
You’ll see this in the default data file when a new item mod is created).

ADDITIONAL LOOT TABLE

BASE GAME LOOT TABLE

VERY IMPORTANT INFO Any base game loot table that is ALL CAPS denote that the loot table
will contain NO sub tables. These loot tables are like the base “ingredients” to be shared and
utilized by other loot tables.

Common item base game loot tables

●​ Trinkets: TRINKETS_COMMODITY_COMMON, TRINKETS_COMMODITY_RARE,
TRINKETS_COMMODITY_EPIC, TRINKETS_GENERAL_ALL,
TRINKETS_HERO_ALL, TRINKETS_SPECIAL_ANTIQ, TRINKETS_HOARDER,
TRINKETS_SHAMBLER_BOSS, TRINKETS_DEATH_BOSS,
TRINKETS_COLLECTOR_BOSS, TRINKETS_CHIRURGEON_BOSS,
TRINKETS_CULTIST, TRINKETS_CULTIST_KEYS

○​ Found in loot_data_export_TRINKETS
●​ Rest (Inn items): ALL_REST_ITEMS, POULTICE_INN_ITEMS, TYPICAL_INN_ITEMS,

ODD_INN_ITEMS, LITERATURE_INN_ITEMS, SPECIAL_INN_ITEMS,
REST_ITEMS_BOOKS, SIGNATURE_INN_ITEMS

○​ ALL_REST_ITEMS contains only basic inn items NOT signature inn items so this
is safe to use for basic inn item pulls

○​ Found in loot_data_export_SUPPLIES
●​ Combat: ALL_COMBAT_ITEMS, BLIGHT_COMBAT_ITEMS,

BLEED_COMBAT_ITEMS, BURN_COMBAT_ITEMS, BUFF_COMBAT_ITEMS,
CLEANSE_COMBAT_ITEMS, DEBUFF_COMBAT_ITEMS, SPECIAL_COMBAT_ITEMS

○​ ALL_COMBAT_ITEMS contains only basic combat items NOT special combat
items like Spring Water or Otherworldly Fragment so this is safe to use for basic
combat item pulls

○​ Found in loot_data_export_SUPPLIES
●​ Stagecoach

○​ General: SC_UPGRADES_ALL, SC_UPGRADES_STORAGE,
SC_UPGRADES_GUIDEBOOKS, SC_UPGRADES_FOOD_GEAR,
SC_UPGRADES_LUXURY_GEAR, SC_UPGRADES_MEDICINE_GEAR,
SC_UPGRADES_ROAD_GEAR, SC_UPGRADES_SCOUTING_GEAR,
SC_UPGRADES_TINKERS_GEAR

○​ Flames: SC_INFERNAL_FLAME, SC_RADIANT_FLAME
○​ Trophies: SC_TROPHY

○​ Pets: SC_PET

Besides common loot tables, there are many unique tables in DD2 to create specific moments.
We recommend searching the base game files with a specific item ID to view all the sources this
item can be obtained from.

Ex) Tinned Delicacies (tinned_preserves)

Various Battles: Look in loot_data_export_COMBATS, here you'll find IDs for shared loot
tables for various battles
Commonly used base game battle loot tables

●​ Road battles: road_gaunt_rewards, road_pillager_rewards, road_faction_rewards,
road_caves_rewards

●​ Resistance battles: resistance_faction_rewards, resistance_caves_rewards
●​ Guardian battles: guardian_cultist_1_rewards, guardian_cultist_2_rewards,

guardian_cultist_3_rewards
●​ Special battles: antiquarian_rewards, chirurgeon_rewards, collector_rewards,

death_rewards, shambler_rewards
●​ Lair battles: lair_prewave_1_rewards, lair_prewave_2_rewards, lair_boss_rewards

Enemy Actors: This is a bit more complicated as individual actors require a specific parameter
to drop loot upon defeat. ex) In cave_swine_skiver_data_export you can find
m_DeathLootIds,skiver_rewards_all,.

Corrupted/Missing data
If you notice that DD2 seems to be running incorrectly, such as hero skills missing information,
tokens going missing, hero goals breaking, ect., this likely means that a base game CSV file
has been modified or access to it has been blocked. This will also cause the main menu to
display “Mod Detected” in the upper right corner. This can happen if you have a modified base
game CSV file open while the game is launching.

To prevent this from happening, be sure to:

-​ Close all base game CSV files before launching DD2.
-​ Avoid deleting any data from the base game CSV files.
-​ If you resized the cells in the CSV excel file, be sure to close it before launching DD2

and discard any changes made. Excel treats resizing cells as modifying the file and thus
prevents the game from accessing it while it’s still open.

This can be fixed either by verifying the integrity of the game files or by reinstalling the game
entirely. Be sure to close all CSV files before reinstalling, as this can prevent the
installation from completing.

TIFTID SEZ: If you wish to modify your game data while the program is running, consider
copying your CSV files into an external folder and modifying them therein - then, copy these
files back to the original folder before running the game. This will also protect your modded data
files from being permanently overridden by game updates.

Mod not appearing in-game
If you uploaded a mod to the workshop and subscribed to it, but it’s not appearing in the mod
menu in-game, this likely means you’re using an outdated version of the Darkside project.
Make sure you’re using the Darkside project that is provided through Steam (Darkest Dungeon
2 Mod Tools) and NOT the Mod project provided in the google drive download.
Also make sure that the Darkest Dungeon 2 Mod Tools project is updated to the latest version.

Testing mods with Editor Prefs and Cheat options
Using Editor Prefs to enable the Cheat options can help with mod testing.
To enable Editor Prefs

1.​ On the DD2 Steam page, open Properties from the settings (Gear icon)

a.​
2.​ Under General > Launch Options, add the line ‘-allowEditorPrefs’ to the Advanced users

launch option field

a.​
3.​ Next, when launching the game from Steam and presented with Launch Options, select

Allow Editor Prefs

a.​
To enable Cheats

1.​ Open the Options Menu
2.​ Select Editor Prefs
3.​ Type ‘Cheat’ into the ‘Enter text…’ field
4.​ Enable Cheats

Once cheats are enabled, there will be options available on the Options Menu and a selection of
Hotkeys while Cheats are enabled.

Adding Editor Prefs to Mods
​
If you want to add editor prefs to a mod you can do that by adding a text file to the data folder in
your mod. It will be loaded additively to the editor prefs that are already loaded or that are
loaded by other mods.

Ex:
A Cheats.txt in the data folder with
enable_cheats-True
Will enable cheats anytime that mod is loaded.

__

End of guide, below are feature suggestions and
other info for Red Hook

MOD TOOL WISHLIST

Put any mod tools you wish to have access to here
1.​ Barks triggered via effects displaying as positive/negative
2.​ Custom tokens
3.​ Sound effects for items (equipping, moving in inventory, using combat items)

4.​ Custom abilities
5.​ Assigning existing animations to custom skills

a.​ TIFTID SEZ: This idea is based
b.​ Related idea: Custom SkillReplacements for hero paths

6.​ Custom paths
7.​ Custom weapon kits
8.​ Recolored weapon kits (if easy to implement before above item)
9.​ Custom models
10.​Custom animations
11.​A “Deliverable” preset for custom items
12.​Route generation settings and related models (custom biomes / modifying base-game

biomes)
13.​Custom map nodes
14.​Ability to modify base game objects, gameplay settings, for example starting with <4

heroes, overwriting/modifying base game objects like actor models, scenery, etc
15.​Access to base game files, ability to write custom code, and ultimately be able to work at

the developer level.
16.​Custom Stagecoach skins
17.​Ability to modify confession run length, both in leagues to travel and in inns to reach.

a.​ TIFTID SEZ: You can already modify the number of regions in a run by modifying
boss_data_export.Group.csv

b.​ With this in mind, allowing modification of leagues to travel is the only thing that is
desired

18.​Offline/local mod usage
19.​Conditional loading of items and overrides

a.​ Example use case: a mod that wishes to add an override only when a certain dlc
or other mod is present

20.​Code injection to override existing core code functionality or the ability to load in a library
that is capable of doing that (eg. harmony, bepinex, etc)

21.​Prevent the mod creation tools from auto-opening when you open darkside
22.​The ability to modify EditorPrefs settings via mods so they don’t need to be enabled

every time you launch the game
a.​ Ex: Setting Fast Driving to always be Enabled and have the multiplier always set

to a specified number
23.​Ability to modify art/visual fx/animations of skills changed by paths
24.​When you unsubscribe from a mod, it leaves behind a (small) “catalog.jsondd” file which

means the mod folder isn’t deleted fully
25.​Mod options.
26.​A condition type that can determine if a certain mod is installed (as well as its opposite)
27.​When you open the Mods menu in the main menu, the scroll bar isn’t scrolled to the top
28.​A version of (or update for) death armor, so it behaves more logically with heroes.

a.​ As it stands, death armor is immediately lost when a hero enters death’s door,
effectively wasting a token.

29.​Expose lockable quirk amounts to a .csv file

30.​Skills having a separate animation on crits
31.​Steamworks description field opt-out (ability to not overwrite existing description on mod

page when publishing) Should be done
32.​Allow torches with custom torch levels to be ambushed (correctly). Currently, torches

that have custom torch levels and are not marked with the “no ambush” tag will be
ambushed, but will not load the ambush battle, leading to a softlock.

33.​A way to manipulate the amount of trinket slots as well as the amount of skill slots via
effects/buffs/rundatastats. In other words, enable the ability to increase or decrease
them mid-run.

34.​In Cheat Menu > CombatDebug > Update Actors, the drop down lists become very
cumbersome with large lists. The wished item here is a search filter.

35.​Ability to override only specific parameters instead of having to override the entire
element

36.​Add a new Mods section to the tutorials page and allow us to create custom tutorials for
our mods

37.​The ability to use custom sprites in localization files

Tangentially related requests
●​ “skill_damage_dealt” m_ConditionType (no m_ConditionActor needed, tested only when

performer uses a skill)
○​ “skill_damage_received” variant which is tested when performer RECEIVES

damage from a skill?
○​ “damage_received” variant which also applies to non-skill damage?

●​ on_crit_heal_as_performer_to_performer_effects,
on_crit_heal_as_performer_to_target_effects, etc…

●​ On x token lost hook
●​ If has x token conditiontype
●​ Conditions for AffinityLeaningLevel (so we can change how they behave with items)
●​ “DD1 character” unity class - essentially the same thing as the Actor class, but instead of

specifying models/animations, we specify a sprite for the actor during its combat idle
stance, when it dodges, when it takes damage, when it’s on Death’s Door and when it’s
doing each of its skills - the goal is to make porting DD1 actors across to DD2 as easy as
possible, and to make it so that people don’t have to make a “dummy model” for
sprite-based characters

●​ m_BuffStealTags effect parameter

Wishlist items fulfilled
1.​ Empty mod creation tool (7/30/24)
2.​ Improved Steamworks description field (7/30/24)
3.​ Local mod building and testing (7/31/24)

Reference for how difficult any given task is (as far as we know)
[OUT OF DATE AS OF STEADFAST STEWARD]

Bespoke tools for modders (not necessarily feature complete, see wishlist)
●​ Custom items
●​ Custom hero palettes
●​ Local mod building and testing

Other functional tools present in darkside
●​ Custom tokens
●​ Custom paths (pretty hacky, has some visual bugs)

Doable with workarounds using darkside + third party tools
●​ Custom skills
●​ Custom animations (except blend shapes)
●​ Custom heroes
●​ Custom hero models
●​ Custom/edited models/animations for base game heroes (probably?)

Not currently possible
●​ Not exposed in data:

○​ Leagues to travel per region
○​ Locked quirks cap

●​ Custom non-skill animations for existing heroes (idle, antic, inn, etc.)
●​ Custom monsters (maybe?)
●​ Custom models for monsters, nodes, stagecoach, etc
●​ Custom textures for monsters, nodes, stagecoach, etc
●​ Custom VFX
●​ Custom SFX
●​ Custom weapon kits
●​ Custom biomes
●​ Custom nodes
●​ Conditional mod loading
●​ Scripting, library loading, code injection
●​ Custom cutscenes (like act bosses being defeated)
●​ Custom UI elements and UI changes

Implementation Ideas

Options menus for mods
I noticed that the guy making the enemy barks mod wanted to add options that enable/disable
barks for each enemy faction.
This makes me think that in reality, a lot of mod options could be boiled down to “do/don’t load
this csv”.
So, for each csv and txt file in a mod, a checkbox could be created under that mod in the menu,
and a special localization file provides names to each of those checkboxes.
(for instance - “effects_bark_faction_lost_battalion.csv” becomes “Enable Lost Battalion Barks”)
Perhaps there could also be a special csv or json file that controls whether or not each file is
loaded by default when you download the mod.

A possible better way to do it is just to have it all be managed by one json file in which each
option name is the header of a list of csv or txt filenames - that way a single option can control
the loading of multiple files, so you can have one checkbox seamlessly turn off both effects and
their associated localisation.

scScripting
A lot of people have requested scripting, but I personally think scripting won’t ever really
happen, since it would require either providing the game’s source code (which will never happen
for obvious reasons) or developing a new scripting language a la QuakeC (which is clearly too
much work).

So I’m here to suggest an alternate solution.

VTMB
Vampire: The Masquerade - Bloodlines (2004) has a scripting system which is generally
well-praised.
The long and short of it is that it uses Python 2.1.2, released 16/Jan/2002.
But it doesn’t just provide the raw interpreter binary with the game - instead, the developers
downloaded Python’s C source code, changed it a little and pre-compiled it into a DLL that is
shipped along with the main game’s binaries.

This is a critically important facet of using Python as a scripting language, because it allows
developers to remove standard libraries that would potentially allow malicious code execution,
such as the os module (which allows file read/writes) and the ctypes module (which allows
Python to utilise entrypoints into C DLLs, including various win32 libraries).

https://en.wikipedia.org/wiki/QuakeC
https://en.wikipedia.org/wiki/Vampire:_The_Masquerade_%E2%80%93_Bloodlines

It also (presumably) allows for very fast interoperability between the interpreter and functions in
the game’s C++ DLLs.

The fact that Python is running alongside the main game and is an interpreted language also
means that Python code can be run directly from the game’s developer console, either
line-by-line or as executed from a .cfg file.

Another important aspect of VTMB’s Python scripting is that it exposes very little of the game’s
source code.
Most of the ways to actually interface with the game involve using the “__main__” object - a
static object which is always in scope.
The player can be accessed by calling “__main__.FindPlayer()”, and most of the game’s global
variables (the most important one being an int called StoryState) can be accessed through
“__main__.G”.
Here’s some example code:
import __main__
from __main__ import G

Find = __main__.FindEntityByName

#F.U. SYNDICATE: Spawns bertram's key after mandarin dies.
def spawnBarabusKey():
 mandarin = Find("Mandarin")
 center = mandarin.GetCenter()
 point = (center[0], center[1], center[2] + 20)
 key = __main__.CreateEntityNoSpawn("item_k_fu_cell_key", point,
(0,0,0))
 key.SetName("fu_key")
 sparklies = __main__.CreateEntityNoSpawn("inspection_node", point,
(0,0,0))
 sparklies.SetParent("fu_key")
 __main__.CallEntitySpawn(key)
 __main__.CallEntitySpawn(sparklies)

Advantages of Python custom DLL as a scripting language
●​ High-level and garbage-collected, so reasonably hard for newbies to create memory

leaks and for experienced programmers to do deliberate evil memory mismanagement
●​ Easy-to-understand for novice programmers since it doesn’t use C syntax
●​ Dynamic typing makes it difficult to encounter common errors such as passing a float to

a function that expects an int
●​ A Python exception in the interpreter doesn’t halt execution of the rest of the game
●​ Being an interpreted language makes it natively open-source, so users know exactly

what they’re downloading unlike recompilations where you could be downloading
anything

Disadvantages of Python custom DLL
●​ Dynamic typing means that strict typechecking (assert isinstance(variable, type)) would

need to be enforced for any parameters that are being passed to the C# runtime of the
game

●​ Interpreted languages are slow and allowing .pyc or .pyx files to be executed is
potentially dangerous unless we make the interpreter itself compile them at runtime

○​ JIT compiling (available through numba library and natively supported in
experimental branches of Python) makes performance better, but holds up code
execution at runtime while it’s compiling the script and adds potential for
malicious code execution

How should DD2 do it?
Effect definitions in CSV files should have a new “m_RunScriptFile” parameter, with the name of
the file afterwards. (e.g. “m_RunScriptFile,make_invincible.py,”)
It will search inside “steamapps\common\Darkest Dungeon II\DarkestDungeon II
Data\StreamingAssets\Python” - or, in the case of mods,
“steamapps\workshop\content\1940340\MOD_STEAMID\Python”.
The game’s Python interpreter will then run this script file (__name__ == “__main__”) when the
effect is triggered.

By default, effects of this nature will be formatted like <color=#{notable}>Run Script File:</color>
<color=#{mastery}>{0}</color> where {0} is replaced by the filename of the script.
Since this is obviously not ideal, it’s recommended that mod developers override the formatting
of any effects that trigger script files.

For a __main__ object, there should be an object called “darkest” (I’m not good enough with
Python to know if calling it __main__ in VTMB was some kind of technical requirement).
The performer and target of the current effect are members of __main__ (converted from DD2’s
C# Actor class to a Python IronCrownActor class), and if the effect is actorless then both are
None.

Some other members of darkest:

●​ heroes - a list of type IronCrownActor which contains the four heroes (fewer if there
are fewer)

○​ IronCrownActor class members:
■​ name - string
■​ localized_name - string
■​ rank - int
■​ health - 0-1 float
■​ health_max - int
■​ spd - int
■​ turns_per_round - int

■​ stress - int
■​ stress_max - int
■​ size - int - controls the actor’s size - use with caution!
■​ hero_path_id - int - index of hero path this actor has equipped - 0 is

Wanderer, -1 is Reserve, this value is None if the actor is not a hero
●​ This can be set to change a hero’s path mid-run, and even update

the SkillReplacements
■​ skills - list[IronCrownSkill] - list of combat skills
■​ skills_equipped - list[IronCrownSkill] - list of equipped combat skills
■​ skill_modifiers - list[IronCrownSkillModifier] - list of skill modifiers due to

relationships
■​ buffs - list[IronCrownBuff] - list of buffs this actor has
■​ tokens - list[IronCrownToken] - list of tokens this actor has
■​ relationships - list[int] - list of indices into darkest.relationships for the

relationships this hero is part of
●​ Modifying this list can change which relationships this actor has in

the C# runtime - so, changing it to an empty list will clear all
relationships

●​ If this actor is not a hero, this list is empty
■​ resistances - dict[string, float]
■​ immunities - list[string] - corresponds with m_ResistAlwaysIds
■​ tags - list[string]
■​ is_healthless - bool - controls whether the actor is invulnerable or not
■​ is_act_out_valid - bool - controls whether the actor can perform

relationship act outs or not
■​ is_token_view_valid - bool - controls whether the Academic View can be

used on the actor
■​ use_skill - method with arguments (skill: IronCrownSkill, target:

IronCrownActor) that forces the actor to use a skill on a target (even if
the skill isn’t in actor.skills or the skill isn’t valid according to the skill’s
launch ranks, target ranks and conditions)

■​ move - method with arguments (amount: int, can_be_resisted: bool) that
moves the actor in its party by the specified amount

■​ move_to - convenience method with arguments (rank: int) that calls
move(rank - self.rank, False) to move the actor to the specified rank

■​ add_buff - method with arguments (buff: IronCrownBuff) that queues a
specified buff to be added to the target by the performer at the end of
script execution

■​ remove_buff - method with arguments (buffid: str) that removes all
instances of the given buff on the actor

■​ remove_buff_by_tag - method with arguments (tag: str) that removes all
buffs on the actor which have the tag

■​ change_health - method with arguments (amount: int) that queues an
event that deals damage to or heals the hero, with the performer as the

performer and the target and the target. Since it’s queued, it can be given
the appropriate SFX and VFX in the C# runtime.

■​ change_stress - similar to change_health, but with stress - also has a
can_be_resisted argument since Stress RES exists

●​ get_hero_in_rank - a method that returns the hero in the given rank, or None if there is
no hero in the specified rank

○​ All functions that expect a rank as input expect the rank to be in the range 1-4,
not 0-3

●​ hero_definitions - a dict of type [string, IronCrownActor] which contains all the heroes
as defined in the game’s CSV files - indexed by ActorDataClass id

●​ monsters - a list of type IronCrownActor which contains the monsters of the current
combat - this list is None if the heroes are not in combat

●​ get_monster_in_rank - the same thing as get_hero_in_rank, but for monsters -
particularly useful for monsters because the list of heroes is passed into __main__ from
C# already ordered by rank, but since monsters can have an m_Size other than 1, it’s
not always obvious how position in a rank-ordered list can correspond to index in that list

●​ monster_definitions - a dict of type [string, IronCrownActor] which contains all the
monsters as defined in the game’s CSV files - indexed by ActorDataClass id

●​ variables - a standard Python dynamically typed dictionary - since this remains in scope
as long as darkest does (so, the entire lifetime of the interpreter), it can be used to create
variables that persist between multiple executions of the same script. However, it also
won’t be garbage-collected until the interpreter is killed, so repeatedly defining variables
might take up a large amount of memory. To prevent this, counting the memory used by
the defined variables and throwing a ValueError when it exceeds a certain value might
be a good solution.

○​ The game also stores some variables from the C# runtime of the game in this dict
when the script is run (or maybe when the interpreter is started) - these can be
changed by the script and have their new values set in the C# runtime at the end
of script execution, but they’re strictly typechecked before this happens

○​ Examples of variables for the game to store - “combat_round_number”,
“run_value_doom”, “run_value_sc_armor”, “run_value_sc_wheels”

●​ relationships - a list of type IronCrownAffinityRelationship that contains the party’s
six relationships - strictly checked so that this list still contains six valid non-duplicate
relationships before being passed back to the C# runtime

○​ IronCrownAffinityRelationship class members - tuple[IronCrownActor]
actors, int affinity

●​ buffs - a dict containing type IronCrownBuff that holds all the buffs the game has
loaded from its CSV files - this is created once on interpreter creation and is thereafter
never passed back to the C# runtime, so it can be modified freely

○​ IronCrownBuff class members:
■​ id - string
■​ duration_type - string
■​ duration_amount - int or None if duration_type is “infinite”
■​ condition - IronCrownCondition, defaults to None

■​ desc_override - string, defaults to None
■​ tooltip_override - string, defaults to None
■​ is_visible - bool - defaults to True
■​ actor_data_stats - IronCrownActorDataStats, defaults to None
■​ actor_data_effects - IronCrownActorDataEffects, defaults to None
■​ run_data_stats - IronCrownRunDataStats, defaults to None
■​ tags - list of strings - defaults to empty list

●​ conditions - similar to darkest.buffs, but with conditions
●​ effects - similar to darkest.buffs, but with effects
●​ test_conditions - method with arguments (conditions: list[IronCrownCondition],

condition_type: string = “all”) that tests the specified conditions (using the performer,
target, heroes, monsters and variables) and returns True or False based on the result

●​ trigger_effect - method with arguments (effect: IronCrownEffect) that first calls
darkest.test_conditions with the effect’s conditions and condition type as input, and
then if that returns True, queues the effect to be triggered in the C# runtime at the end of
script execution

●​ test_mod_installed - method with arguments (steamid: int) that returns True if a mod
with the specified SteamID is installed - useful for script files that want to test for the
presence of popular community mods (for compatibility)

What would you use this for?
As a way to gauge interest and understand what parts of the game would need to be exposed to
the “darkest” object, this section can act as a place to collect psuedocode scripts that act as
potential use-cases for the system.
I’ll start:

Tiftid - Fragile Flame TMTRAINER script
Script by Tiftid 04/Aug/2024

This script is triggered on each hero via a modded version of The

Fragile Flame, which has in its ActorDataEffects block

"enter_biome_effects,run_inf1a_script,"

run_inf1a_script also has a condition to ensure that it only runs if

biome_typical is equal to 1, so we only need to run this script once

Its purpose is to generate a bunch of random buffs from the effects and

conditions in the base-game, and then create a buff which randomly applies

a few of these on turn start and give each hero that buff

The goal being to create a similar kind of item to TMTRAINER from The

Binding of Isaac: Repentance

import __main__ as darkest

import random

import math

valid_actor_data_effects_types = [

 "performer_effects",

 "target_effects",

 "on_hit_as_performer_to_performer_effects",

 "on_hit_as_performer_to_target_effects",

 "on_hit_as_target_to_performer_effects",

 "on_hit_as_target_to_target_effects",

 "on_miss_as_performer_to_performer_effects",

 "on_miss_as_performer_to_target_effects",

 "on_miss_as_target_to_performer_effects",

 "on_miss_as_target_to_target_effects",

 "on_attack_as_performer_to_performer_effects",

 "on_attack_as_performer_to_target_effects",

 "on_attack_as_target_to_performer_effects",

 "on_attack_as_target_to_target_effects",

 "on_crit_as_performer_to_performer_effects",

 "on_crit_as_performer_to_target_effects",

 "on_crit_as_target_to_performer_effects",

 "on_crit_as_target_to_target_effects",

 "performer_on_crit_single_effects",

 "on_kill_as_performer_to_performer_effects",

 "performer_on_kill_fail_effects",

 "friendly_team_effects",

 "enemy_team_effects",

 "performer_team_others_effects",

 "target_team_effects",

 "target_team_others_effects",

 "combat_health_damage_effects",

 "combat_health_heal_effects",

 "combat_stress_damage_effects",

 "combat_stress_heal_effects",

 # "friendly_death_effects", - this is known to not apply buffs

 # "enemy_death_effects",

 # "deaths_door_enter_effects",

 # "deaths_door_survive_effects",

 # "deaths_door_exit_effects",

 "turn_start_effects",

 "turn_end_effects",

 "round_start_effects",

 "round_end_effects",

 "turn_start_friendly_team_effects",

 "turn_end_friendly_team_effects",

 "turn_start_enemy_team_random_effects",

 "turn_start_enemy_team_effects",

 "turn_end_enemy_team_effects",

 "combat_health_damage_friendly_team_effects",

 "combat_health_damage_enemy_team_effects",

 "combat_health_heal_friendly_team_effects",

 "combat_health_heal_enemy_team_effects",

 "combat_stress_damage_friendly_team_effects",

 "combat_stress_damage_enemy_team_effects",

 "combat_stress_heal_friendly_team_effects",

 "combat_stress_heal_enemy_team_effects",

]

valid_actor_data_stats_types = {

 "key_map,health_max": "any_30_0.9", # int value, then float value

 "key_map,crit_chance": "float_0.5",

 "key_map,speed": "int_9",

 "key_map,health_damage_dealt_percent": "float_2.5",

 "key_map,health_damage_received_percent": "float_2.5",

 # "key_map,speed_number_of_turns": "int_1",

 # "key_map,stress_max": "int_2",

 "sub_stat,resistance,stun": "float_1", # desired data type of value,

and desired maximum value for random range

 "sub_stat,resistance,bleed": "float_1",

 "sub_stat,resistance,blight": "float_1",

 "sub_stat,resistance,burn": "float_1",

 "sub_stat,resistance,disease": "float_1",

 "sub_stat,resistance,move": "float_1",

 "sub_stat,resistance,debuff": "float_1",

 "sub_stat,resistance,death": "float_0.5",

 "sub_stat,resistance,stress": "float_1",

 "sub_stat,resistance_ignore,stun": "float_1",

 "sub_stat,resistance_ignore,bleed": "float_1",

 "sub_stat,resistance_ignore,blight": "float_1",

 "sub_stat,resistance_ignore,burn": "float_1",

 # "sub_stat,resistance_ignore,disease": "float_1", # lol

 "sub_stat,resistance_ignore,move": "float_1",

 "sub_stat,resistance_ignore,debuff": "float_1",

 "sub_stat,dot_effect_value_dealt_change,bleed": "int_10",

 "sub_stat,dot_effect_value_dealt_change,blight": "int_10",

 "sub_stat,dot_effect_value_dealt_change,burn": "int_10",

 "sub_stat,dot_effect_value_dealt_change,hot": "int_6",

 "sub_stat,dot_effect_value_dealt_multiplier,bleed": "intfloat_4_0.25",

number of possible increments, and float value added with each increment

 "sub_stat,dot_effect_value_dealt_multiplier,blight":

"intfloat_4_0.25", # so, this range is (0.25, 0.5, 0.75, 1)

 "sub_stat,dot_effect_value_dealt_multiplier,burn": "intfloat_4_0.25",

 "sub_stat,dot_effect_value_received_change,bleed": "int_10",

 "sub_stat,dot_effect_value_received_change,blight": "int_10",

 "sub_stat,dot_effect_value_received_change,burn": "int_10",

 "sub_stat,dot_effect_value_received_change,hot": "int_6",

 "sub_stat,dot_extra_duration_dealt,bleed": "int_2",

 "sub_stat,dot_extra_duration_dealt,blight": "int_2",

 "sub_stat,dot_extra_duration_dealt,burn": "int_2",

 "sub_stat,dot_extra_duration_received,bleed": "int_2",

 "sub_stat,dot_extra_duration_received,blight": "int_2",

 "sub_stat,dot_extra_duration_received,burn": "int_2",

 "sub_stat,health_heal_dealt_percent,skill": "float_1",

 "sub_stat,health_heal_received_percent,skill": "float_1",

 "sub_stat,overstress_chance_modifier,resolute": "float_0.25",

 "sub_stat,overstress_chance_modifier,meltdown": "float_0.25",

}

valid_conds: list

valid_effects: list

manager_buff_id = f"inf1a_buff_manager{darkest.target.rank - 1}"

manager_buff_effect_names_ads = []

manager_buff_effect_names_ade = []

def trim_data():

 global valid_conds

 global valid_effects

 valid_conds = list(filter(test_cond(), darkest.conditions))

 valid_effects = list(filter(test_cond(), darkest.conditions))

def test_cond(cond) -> bool:

 id = cond.id.split("_")

 if not cond.is_visible:

 return False # Don't pull from invisible conds to make

auto-formatting easier

 if id[0] == "performer":

 if id[1] == "skill" and id[2] == "hist":

 return False # Don't pull from hero goal conds cause they have

very specific overrides

 elif id[1] == "item" and id[2] == "use":

 return False # Also a hero goal cond

 elif id[1] == "kill":

 return False # Also a hero goal cond

 elif id[1] == "visit":

 return False # Also a hero goal cond

 elif id[1] == "is":

 return False # Ignore conditions that require the performer to

be a specific class, because most of these ask the performer to be a

monster and these buffs will only be on heroes

 elif id[0] == "herostory":

 return False # Ignore hero story conds

 elif id[0] == "item" and id[1] == "tooltip":

 return False # Ignore signature item conds, cause they have very

specific overrides (the hero's name; they won't display the body of the

buff cause they have no {0})

 return True

def test_effect(effect) -> bool:

 for cond in effect.conditions:

 if not test_cond(cond):

 return False # Don't use effects with invisible conditions

 return True

def assemble_random_buff(index: int, type: str = "ads"):

 buffid = f"inf1a{index:03}"

 conditional = False if random.random() < 0.5 else True # 50% chance

for the buff to have a random condition

 cond = random.choice(valid_conds) if conditional else None

 if type == "ads":

 ads = darkest.IronCrownActorDataStats()

 stat_key =

random.choice(list(valid_actor_data_stats_types.keys()))

 stat_class = valid_actor_data_stats_types[stat_key].split("_")

 random_roll = (random.random() - 0.5) * 2 # -1 to 1

 if stat_class[0] == "float":

 stat_value = random_roll * float(stat_class[1])

 elif stat_class[0] == "int":

 stat_value = int(random_roll * int(stat_class[1]))

 elif stat_class[0] == "intfloat":

 stat_value = math.ceil(random_roll * int(stat_class[1])) *

float(stat_class[2]) # Use ceil cause otherwise there would be a chance of

adding +0% which is pretty pointless

 elif stat_class[0] == "any":

 coinflip = random.randint(0, 1)

 if coinflip == 0:

 stat_value = int(random_roll * int(stat_class[1]))

 else:

 stat_value = random_roll * float(stat_class[1])

 is_key_map = True if stat_key.split(",")[0] == "key_map" else

False

 if is_key_map:

ads.key_map.append(darkest.IronCrownKeyMap(stat_key.split(",")[1],

stat_value))

 else:

ads.sub_stats.append(darkest.IronCrownSubStat(stat_key.split(",")[1],

stat_key.split(",")[2], stat_value))

 buff = darkest.IronCrownBuff(id=buffid, duration_type="round_end",

duration_amount=2, condition=cond, tags=["buff"], actor_data_stats = ads)

 elif type == "ade":

 ade = darkest.IronCrownActorDataEffects()

 ade_type_key =

random.choice(list(valid_actor_data_effects_types.keys())) # TODO:

Implement chance for buff to have apply_limit_effects

 ade[ade_type_key].append(random.choice(valid_effects)) # Gives it

a random effect under a random ADE type

 buff = darkest.IronCrownBuff(id=buffid, duration_type="round_end",

duration_amount=2, condition=cond, tags=["buff"], actor_data_effects =

ade)

 return buff

def create_effect_from_buff(buff):

 effect = darkest.IronCrownEffect(id=f"add_{buff.id}", chance=1)

 effect.buffs.append(buff.id)

 return effect

def create_manager_buff(type = "ads"):

 ade = darkest.IronCrownActorDataEffects()

 if type == "ads":

 ade["turn_start_apply_limit_effects"] =

manager_buff_effect_names_ads

 ade["turn_start_apply_limit"] = 2 # 2 ADS buffs per turn

 elif type == "ade":

 ade["turn_start_apply_limit_effects"] =

manager_buff_effect_names_ade

 ade["turn_start_apply_limit"] = 3 # 3 ADE buffs per turn

 return

darkest.IronCrownBuff(id=f"inf1a_manager_{type}{manager_buff_id}",

duration_type="infinite", actor_data_effects = ade)

if __name__ == "__main__":

 trim_data()

 for i in range(256):

 buff_ads = assemble_random_buff(i)

 darkest.buffs[buff_ads.id] = buff_ads

 buff_ads_effect = create_effect_from_buff(buff_ads)

 darkest.effects[buff_ads_effect.id] = buff_ads_effect

 manager_buff_effect_names_ads.append(buff_ads_effect.id)

 for j in range(512):

 buff_ade = assemble_random_buff(255 + j, "ade")

 darkest.buffs[buff_ade.id] = buff_ade

 buff_ade_effect = create_effect_from_buff(buff_ade)

 darkest.effects[buff_ade_effect.id] = buff_ade_effect

 manager_buff_effect_names_ade.append(buff_ade_effect.id)

 darkest.target.add_buff(create_manager_buff("ads"))

 darkest.target.add_buff(create_manager_buff("ade"))

C# Libraries and Harmony
Another alternative and proven method is allowing us to load in our own assemblies at startup.
This will allow us to use library dlls to run custom code. Many Unity games (eg. Rimworld, Risk
of Rain 2, Cities Skylines, Valheim, etc) use this as a cornerstone of their modding scenes.
They also use a patch/code injection library known as Harmony
(https://harmony.pardeike.net/articles/intro.html) to allow modders the ability to extend and
change core game functionality. They don’t need access to the game’s source code, as long as
their CIL is unobfuscated, we can decompile that and bootstrap our own code with relative ease.
This is how Binarizer’s Lib and Speedwagon both worked.

Diagram showing how Harmony allows us to modify existing game code without touching source files

Officially, we can already do this, we don’t need an extra scripting language. Assembly
sideloaders like Bepinex and Unity Doorstop exist to facilitate this.
But for first party support, we’d need the devs to write a mechanism to load our own assemblies
at startup. This would be a lower effort requirement in comparison to accommodating a new
scripting language/DSL or exposing a whole new set of scripting hooks (and documenting them)
and/or introducing a new language competence to the project and to the modding scene.

 Realistic example use case

ConditionTypes exist within the game’s codebase (ironcrown.dll) as a hardcoded enum:

https://harmony.pardeike.net/articles/intro.html

This CustomEnum is used when condition validation happens (within
GetRunValueForConditionType):

By injecting our own code we can alter how GetRunValueForConditionType happens and even
add our own ConditionTypes that we define within our own dlls.
This would require no new infrastructure or alterations to this code from Red Hook, all being
done by the modders themselves.

The Downsides

While incredibly powerful, this approach does come with downsides:
●​ By injecting code directly at runtime without developer supervision, it allows bad code to

be written by any mod developer to go unchecked for users. This usually comes in the
form of NullReferenceExceptions breaking something within the game, or hard crashes.

●​ Being able to run any code on a player’s machine theoretically allows bad actors to do
bad things on people’s PCs.

○​ Fortunately Valve takes their user generated content very seriously and has very
strict checks in place to protect the upload of malware to the steam workshop.
This of course gives no such protections to other file distribution platforms
though.

●​ This would use the C# syntax and requires the modder in question to have decompiled
the game’s code. This is a functional barrier to entry for making new behaviors, though
does not affect CSV only mods and their barrier to entry.

●​ Mods that add C# libraries will need to be recompiled against every major version and
would not be evergreen, as the cost of maintenance is passed from the developers
maintaining an API to modders having to make changes to their injected code to
accommodate for changes within ironcrown.

Questions, Requests and Bugs: Steadfast Steward Update

Questions:
●​
●​ What is the default outline width that the game uses? The default value in the

outline shader provided seems to be too thin.
●​ How can we have our custom materials fade to black when the heroes do?

(Example: fade to black after exiting a victory screen)

Requests:
●​ An example combat scene for testing. Currently we can only test how our custom

models will look in game by uploading the mod and playing it. If we had an
example scene in Unity, it would save a lot of time.

●​ Can we have access to hero skill timelines? This would allow us to edit the
“Action” pose of attack animations. We cannot currently edit the action pose
without making a new timeline for that skill. We also don’t seem to have any
action or recovery anims available. This will also make it pretty easy to create
new path skills.

●​ We’ll need access to the DD2 FMOD library in order to use sounds in our mods.
We were given the FMOD Plugin, but not the DD2 library.

●​ Workshop tags for custom skins, weapon kits, and animations
●​ The ability to override a hero prefab without the player needing to change skins

(Example: mods that change a hero’s animation shouldn’t require changing
skins)

●​ Animator State behaviors or Animation events to set Animator variables.
●​ Allow using Weapon kits with Hero Skins.

Bugs:
●​ Changing a hero’s palette while a custom weapon kit is applied will apply the

palette’s texture to the weapon kit.

●​ Outlines seem inconsistent. Custom weapon kits appear to have outlines in some
scenes and lack outlines in others (whether or not the outline shader was applied
to the object in Unity)

●​ When importing the models into Blender, they turn into a tiny blob. The models
look correct when set to their rest pose, but any other pose breaks the model.

●​ Skins and Palettes for Abom don’t function in-game
●​ Constraints targeting a character rig's arms are out of place when executing in

the inn. (Potentially an execution order issue?)

	DD2 Modder Guide
	Intro
	What is Darkside?
	What mods can be created with Darkside?
	Where can I provide feedback and ask for help?
	Are there mod examples for reference?

	Requirements
	Tool Basics
	Opening the project
	Item Creation Tool
	Project Folders
	Project Window
	Data
	Excel
	Localization
	UserMods

	Overriding Data

	Creating an Item
	Creating the initial files
	Assigning item visuals
	Item Icons
	Combat Item Skill Icons

	
	Stagecoach attachments (Preset and Custom)
	Custom stagecoach attachments

	
	Prepping/editing item data and functionality
	Editing CSVs
	Using the Excel exporter tool

	
	Creating custom hero palettes
	Hero Skins / Custom Hero Models
	Blender Settings

	Updating names, descriptions, and other strings
	
	Publishing to Steam Workshop
	
	Testing your mod
	Finding your mod on Steam
	Subscribing (downloading) your mod
	Viewing your mod in game
	Local Mod Testing

	
	TIPS AND TROUBLESHOOTING!
	Visual Studio Code to view base game data
	Unity
	Publishing to Steam
	
	Transferring save files
	Adding items to base game loot tables
	Corrupted/Missing data
	Mod not appearing in-game
	Testing mods with Editor Prefs and Cheat options
	Adding Editor Prefs to Mods

	End of guide, below are feature suggestions and other info for Red Hook
	
	
	
	
	
	
	
	
	MOD TOOL WISHLIST
	Put any mod tools you wish to have access to here
	Tangentially related requests
	Wishlist items fulfilled
	
	Reference for how difficult any given task is (as far as we know) [OUT OF DATE AS OF STEADFAST STEWARD]
	Bespoke tools for modders (not necessarily feature complete, see wishlist)
	Other functional tools present in darkside
	Doable with workarounds using darkside + third party tools
	Not currently possible

	
	Implementation Ideas
	Options menus for mods
	scScripting
	VTMB
	Advantages of Python custom DLL as a scripting language
	Disadvantages of Python custom DLL
	How should DD2 do it?
	What would you use this for?
	Tiftid - Fragile Flame TMTRAINER script

	C# Libraries and Harmony
	 Realistic example use case
	The Downsides

	Questions, Requests and Bugs: Steadfast Steward Update
	Questions:
	Requests:
	Bugs:

