DD2 Modder Guide

Updated Jun 13, 2025

Intro

What is Darkside?

Darkside is a Unity project used to create and bundle Darkest Dungeon 2 files together into a
mod that can be submitted directly to Steam Workshop. This tool is found on Steam via Tools
under the Darkest Dungeon 2: Mod Tools.

What mods can be created with Darkside?

For this initial testing, Darkside can be used to create most types of items; trinket, combat,
rest (inn items), memory (under the hood memories are items), and general stagecoach, pet,
trophy, and flames

Most of this documentation covers adding new items, however, overriding existing data is
also supported but requires a bit more manual setup. Details for override data setup can be
found under the Overriding Data section.

Where can | provide feedback and ask for help?

We will be collecting feedback and holding discussions in the DISCORD channel. With this initial
deployment and guide we want to challenge you to take these basic tools and set ups as far as
you can, and help construct more robust guides on how we can help onboard future modders.
So while this is the beginning introduction of what can be done, we believe there is more
currently possible, but will need to be mapped out by you! All the while reporting to us where the
biggest points of friction are or what is currently still unaccessible.

Are there mod examples for reference?

YES! The default data created whenever you initially make a new item type is filled with
examples for that specific type. The examples provided have been created primarily for teaching
the mod tools so the numbers, effects, and buffs will be all over the place.

In addition, there is a supplementary XLSM file that can be opened with excel, used for
managing/exporting the data from an easily readable source. It contains the same example data
that’s setup with select drop down options and notes explaining specific cells.

Another excellent reference is the base game data! Using Visual Studio Code (this is the tool |
recommend), you can easily view and search through our data. Details for this process can be
found under the TIPS AND TROUBLESHOOTING! section (this section is currently WIP).

Requirements

aobrwbd-~

o

Install Unity 2022.3.16f
Download Darkside project
Signed into Steam/Steam Workshop
Updated build of Darkest Dungeon 2 with mod support
Recommendations
a.

Access to Visual Studio Code or another IDE (useful for viewing base game
data files)

i. Details: Visual Studio Code to view base game data
Access to Excel (Google sheets won't work since we're providing an XLSM file
with macros)

i. Details: Using the Excel exporter tool
Get acquainted with the Unity Editor: Explore the Unity Editor
Throughout this document there are sections titted VERY IMPORTANT INFO, we
recommend paying close attention to these!

Tool Basics

Opening the project

After opening Darkside, the editor should look something like this with the Item Creation Tool
window already open

https://learn.unity.com/tutorial/explore-the-unity-editor-1#

File Edit Assets GameObject Component Services FMOD Jobs Tools Window Help

* Favorites

@ Assets

adressab, Data e e Locaization Plugins Scenes UiTookt UlBuic UserMods Assemby—.. U

ntyDefau.

If the Item Creation Tool window isn’t open or it gets closed, you can open it again by selecting
Window > ItemCreationTool

File Edit Assets GameObject Component Services FMOD Jobs Tools Steam UGC Window Help
Signin & ©® Panels >
‘= Hierarchy H Next Window Ctrl+Tab
+ -) Previous Window Ctrl+Shift+Tab] w
R Untitled L >
ltemCreationTool

Unity Version Control

Search >

Asset Store
Package Manager

Text >
TextMeshPro >
Asset Management >
General >

Rendering >

Animation
Audio

Sequencing

Analysis >
2D
Al
Visual Effects
Ul Toolkit

Iltem Creation Tool

The Item Creation Tool is what you use to create the default files for the various item types.

The available Item Types are: rest (inn item), combat, trinket, stage_coach_upgrade, and

memory
Item Subtype is currently used for stage _coach_upgrade only and they are: general, pet,

trophy, infernal, and radiant

[tem Creation Tool

Project Folders
Project Window

The Project window displays all the files contained within the Unity project. For the purposes of
creating a mod the important folder are Data, Excel, Localization, and UserMods

w Favorites

(@9 Assets
B AddressableAssetsData

B Plugins

enes

B Ul Toolkit

Data

This folder contains default images which are automatically created and added to the files
wherever a new item is created. After a new item is created, these images are NOT required to
use, they are for placeholder use. The default images can be removed or added to.

B Consale

* Favorites Assets » Data > Items » Default > Art

achlife

[Assets

C
C

O
O

rmba

etsData i .
e infernallif
innlife

= memorylife

Excel

This folder contains the default CSV files for the various Item Types. The _export folder is
pre-populated with example data. The default data can be manipulated for custom
pre-populated data when items are created.

B Console

* Favorites / 5 ¥ 5l: cach_upgrade > pet

[Assets

I AddressableAssetsData

I infernal_tarch
i pet

I radiant_torch

o Overrides

Localization

This folder contains the default TEXT files for the various Item Type strings for their names,
descriptions, tooltips, etc. When an item is created the default text files in UserMods >
[MODNAME] > [MODNAME]_export > Localization will be pre-populated with Item ID
assigned.

Lacalization » stage_coach_upgrade

agecoach_upgrade

[Localization
e characters
e combat
[O currency
B memory
im rest
e stage_coach_upgrade

UserMods

This folder contains the mod files that are created when you create a new item and are primarily
the files that will be bundled and added to your Workshop Item.
The top level folder has the MODNAME that you chose when creating the mod.

nplemod

xamplemod

Overriding Data

By default, most of the game data cannot have multiple data pieces of the same types using the
same ID. There are exceptions and ways to use the same IDs to append data together OR
override base game data.

Certain data types, primarily loot tables and battle configs, can have multiple instances that
share the same ID and they will be appended to each other like they’re a single table. An
example of how we utilize this functionality can be found when searching for
TRINKETS_HERO_ALL in loot_data_export_TRINKETS.Group.csv and
loot_data_export_DLC1.Group.csv. This is how we append Crusader and Duelist trinkets to
the loot tables for hero trinket drops.

For modding purposes, there’s an option to override data that share the same type and ID.
When an item is created with the Item Creation Tool, an empty Overrides folder is
automatically created (UserMods > [MODNAME] > [MODNAME]_export > Overrides). Data
files contained in this folder will OVERRIDE any data that shares a type and ID with base game
data.

(¢ 00 _examplemod
@ 00 _examplemod

e At

@ 00 _examplemod_export
e Localization
— W Overrides

Images can be overwritten as well, you just need to ensure that the [ITEMID] prefab file name
created when you create a new item EXACTLY matches the item ID in the base game you're
looking to override. To assign a custom image, follow the steps found in the ltem Icons section.

VERY IMPORTANT INFO

By default, the item templates created have all the data contained in a single CSV. If you want to
create mods that override existing items, you’ll need to create a separate CSV with the
OVERRIDE data and move that into the Overrides folder. All other NON-OVERRIDE data
should be contained in the default location (UserMods > [MODNAME] > [MODNAME]_export)

Creating an Item

Creating the initial files

In the Item Creator Tool window, assign an Item Type/Subtype, enter an Item ID, then select
Create to create your first item (congrats you've made an item!)

VERY IMPORTANT INFO

When assigning an Item ID, you want to choose an ID that’s unique to the item you’re creating
OR if you're using the example data, the IDs match Example IDs below based on the Item Type
you’re creating

Example IDs for ltem Types/Subtypes

trinket: rh_example_trinket

rest: rh_example_rest_item

combat: rh_example_combat_item

stage coach_upgrade/general: rh_example_sc_general
stage_coach_upgrade/pet: rh_example_sc_pet
stage_coach_upgrade/trophy: rh_example_sc_trophy
stage_coach_upgrade/infernal: rh_example_sc_infernal
stage_coach_upgrade/radiant: rh_example_sc_radiant

When creating an item, most of the files will be named based on this Item ID and changing
them after the fact can be a bit cumbersome, so doing it right initially will help you down the
road!

After creating an item, in the Project window you'll find the item files you’ve just created
contained within the UserMods folder.

Assigning item visuals

Item Icons

Details for using custom images can be found under Step 6.
1. Find the folder that's named after your Item ID (UserMods > [MODNAME] > [ITEMID])
2. In this folder, select the prefab that's named after your ltem ID
3. Open the [ITEMID] prefab (In the Inspector window, press the Open button in the top
right corner)

4. In the Hierarchy window, select the default_item_icon gameobject
5. In the Project window, select the Art folder (UserMods > [MODNAME] > [ITEMID] > Art)
6. From the Art folder, select an image
e CUSTOM IMAGES - This is the folder where you can add custom images. The standard
image size for item icons is 512x512. For reference, you can duplicate an example
image, then edit it with your custom image in Photoshop or another photo editing tool, as
this will keep Unity settings and will match our image sizes. HOWEVER, if you feel
comfortable with arranging the correct settings, feel free to import custom images directly
into the appropriate folder locations (see the point below this one!) - in the Inspector
Window, make sure to set the “Texture Type” of the image to “Sprite (2D and Ul)” and
“Pixels Per Unit” to 1.
e VERY IMPORTANT INFO - The image used MUST be contained in UserMods >
[MODNAME] > [ITEMID] > Art in order to be bundled correctly
7. With the selected image, drag/drop the image onto the empty Source Image field found in
the Inspector window
8. SAVE THE PREFAB - To ensure this is saved, close the prefab by clicking the back arrow
button < in the Hierarchy window

Combat Item Skill Icons

In addition to the item icon, Combat items also have a skill icon. Under the hood Combat item
actions taken in combat are technically skills and have some overlap with skills for requirements
(skill data, skill
ResourceAssets
1. This is SPECIFICALLY if you've created a combat item
2. Find and select the ResourcelnLineSkill folder (UserMods > [MODNAME] > [ITEMID] >
ResourcelnLineSkill)
a. This folder doesn’t exist for most item types as this is the asset for connecting the
item for item use in combat
3. Select the ResourcelnLineSkill asset name [ITEMID] contained in the
ResourcelnLineSkill folder. You will see the details for this asset in the Inspector
window
a. You will likely see error messages in the Console window when selecting this
file, this is normal!
4. In the Project window, from the Art folder (UserMods > [MODNAME] > [ITEMID] >
Art), select an image
a. VERY IMPORTANT INFO - The image used MUST be contained in UserMods >
[MODNAME] > [ITEMID] > Art in order to be bundled correctly
b. This image does NOT have to match the item icon
5. With the selected image, drag/drop the image onto the empty Skill Sprite field found in
the Inspector window
6. Inthe Inspector window with the ResourcelnLineSkill selected, find the checkboxes
under In Line Specification
a. Ensure the Is Item check box is marked TRUE (checked)

b. If the combat item targets a hero, Is Friendly should be marked TRUE (checked)
c. Ifthe combat item targets an enemy, If Friendly should be marked FALSE
(unchecked)

@ darkside - senel - Windows, Mac, Linux - Unity 2022.3,

Stagecoach attachments (Preset and Custom)

When creating a stagecoach item (any sub_type), there is an asset that allows for stagecoach
attachments, preset or custom.

1. In the ResourceStageCoachVisualUpgrade folder (UserMods > [MODNAME] >
[ITEMID] > ResourceStageCoachVisualUpgrade)
2. Select the asset [MODNAME]
3. In the Inspector window you will find options for the following
a. Location: various attachment points on the stagecoach (currently this list does
NOT include attachment points for pet cages, torches, or trophies)
b. Prefab: This is used for custom stagecoach attachments (see below)
c. Visual Override: This is used to select preset stagecoach attachments (see
below)

361" <DX11>
rvices FMOD Tools Window Help

Custom stagecoach attachments

e Create a prefab in UserMods > [MODNAME] > [ITEMID] > Art
o The prefab MUST be contained in UserMods > [MODNAME] > [ITEMID] > Art
in order to be bundled correctly
e Drag/drop the prefab onto the Prefab field on the ResourceStageCoachVisualUpgrade
asset
Ensure the Visual Override is set to none
Select an attachment Location
o This location can be used as a starting point THEN in the prefab, you can offset
any visuals to ANY spot you desire
e Be careful to not have any Camera objects attached to your prefab. The game will try to
set it as the main camera, resulting in a black screen.

Things to keep in mind when creating the prefab

e Models can be added to the prefab, but you need to ensure that any materials are also
added and contained in UserMods > [MODNAME] > [ITEMID] > Art. To keep things
organized, we recommend keeping all prefab assets (models, materials, etc.) in a
subfolder within the Art folder.

e |f your materials are NOT set up for Universal Render Pipeline, you may need to run
the Render Pipeline Converter. Check Material Upgrade then Initialize And Convert
to convert all non-URP materials to URP supported materials.

o Note: Custom stagecoach items are automatically converted to URP when the
mod is uploaded. No need to manually convert materials if you're making a
custom coach item.

@ darkside - Untitled - Windows, Mac, Linux - Unity 2022.3.16f1 <DX11>
File Edit Assets GameObject Component Services FMOD Jobs Tools Window Help

Panels >
Next Window Ctrl+Tab
Previous Window Ctrl+Shift+Tab

R Untitled ey N
BuildProject

ItemCreationTool
Unity Version Control

Search >

Asset Store
Package Manager

Text >
TextMeshPro >
Asset Management >

General > -
Rendering > Lighting Ctrl+9
Animation > Light Explorer
Audio > Probe Volume Settings (Experimental)
Sedlcpdng > Render Pipeline Converter
Analysis >) N
Ocdlusion Culling
2D >

Look Dev

Al >
Visual Effects
Ul Toolkit

>onverter

ine to URP.

Rendering Settings 0/0 selected
Converter Disabled 0— 0A O 0

This converter will look at creating Universal Render Pipeline assets and respective Renderer
Assets and configure their settings based on equivalent settings from builtin renderer.

v Material Upgrade 0/0 selected

— Pending Initialization 0— 0OA 0 O

This converter converts Materials from the Built-in Render Pipeline to URP. This converter works
best on default -built Materials that are supplied by Unity. Custom Materials are not supported.

Readonly Material Converter 0/0 selected
Converter Disabled 0— 0A O 0
Cnnverte rafarancas tn Ruiilt-In readnnlv materiale tn LIRP readnnlv materiale Thic will nraata
Initialize Converters

Initialize And Convert

Prepping/editing item data and functionality

Editing CSVs

This is the most direct way to edit item data. In the [MODNAME]_export folder (UserMods >
[MODNAME] > [MODNAME]_export), you will find a CSV file pre-populated with data with
basic functionality for each item type.

I Project B Console
+ -

* Favorites A amplemod > 00_examplemod_export

(e Assets

sualUpgrade

[0 Overric - a Assets/UserMods/00_examplemod/00_examplemod_export/dd2_mod_data_sc_general Group.csv

This file can be opened and edited with any software used for text editing (Notepad, Notepad++,
Excel, VS Code, etc.)

There is A LOT to understand when it comes to this data. If you're taking this approach, it would
be best to start with the default CSV file, edit the numbers/IDs there to build a familiarity with the
data structure.

Referencing the base game data is an excellent way to create specific functionality for any item
mods.

Using the Excel exporter tool

We've provided access to a supplementary XLSM dd2_mod_data_exporter that requires Excel
to open and export CSVs. This sheet PRIMARILY supports NEW and APPENDED data.
Overriding existing data requires a bit more work.

VERY IMPORTANT INFO
To utilize the export macros for exporting you need to do the following
1. After downloading the file
a. RIGHT-CLICK the file and open Properties
b. At the bottom of Properties, under Security mark Unblock as TRUE (checked)

https://docs.google.com/spreadsheets/d/1e_H8kDfnL58fEhvsTxFcROhha0gz8qp6/edit?usp=drive_link&ouid=107106814488089789710&rtpof=true&sd=true

Attributes: [|Read-only []Hidden Advanced...

Security: This file came from another
computer and might be blocked to Unblock
help protect this computer.

c

2. After opening the file
a. Click Enable Editing on the top bar (this allow the macro button for Export Group
and Export Multiple to function

@ AutoSave (:. Off:) - dd2_mod_data_exporter - Protected View = Saved to this PC v

File Home Insert Page Layout Formulas Data Review View Automate Developer Help

@ PROTECTED VIEW Be careful—files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View. | Enable Editing ‘

Using dd2_mod_data_exporter in Darkside
VERY IMPORTANT INFO Drag/drop the XLSM file into your [MODNAME] folder (UserMods >
[MODNAME])

s Project B Console
-+ -

& Favorites 00_examplemod

[Assets

amplemod/dd2_mod_data_exporter.xlsm

What’s contained in dd2_mod_data_exporter
There are several example items that match the default CSV files created when you make a
new item using the Item Creation Tool; trinket, rest, combat, sc_general, and sc_pet

VERY IMPORTANT INFO

All highlighted cells in dd2_mod_data_exporter have drop down options. The drop down
options point to lists found on the Definitions tab of the sheet. Entries can be added here as
well to appear in the drop down selections if you'd like additional options.

1. As long as you match the Item ID assigned with the Item Creation Tool to the Item ID in
dd2_mod_data_export, the data should all be connected respective to the various Item
Types/Subtypes

The default data assigns ALL of these items to the valley inn shop. The drop down
allows you to change which loot table this item will be appended to.
This text field defines the folder location where the CSV will be exported to. As long as
dd2_mod_data_export is contained in the proper [MODNAME] folder, this should
have [MODNAME]_export in the field
Once all your data has been entered as desired, clicking EXPORT GROUPED wiill
export and override the CSV file contained in the UserMods > [MODNAME] >
[MODNAME]_export folder
EXPORT MULTIPLE will create a CSV file for EACH data type within the tab
a. Inthe example below, there will be 6 files created (1 for the item, 4 for the buffs,
and 1 for the loot table)
b. We recommend using EXPORT GROUPED as this keeps all the data for the
table contained in a single file
c. NOTE FOR OVERRIDES - This export option may be useful to separate pieces
of data to more easily move into Overrides and default data folders
Each tab is used for each ltem Type example and will create a self contained CSV file
when using EXPORT GROUPED.
a. We recommend starting with a single item type, thus only utilizing a single tab, for
a single mod. Once you start to become more familiar with this process and
modding, you could create a mod that contains several items.

Creating custom hero palettes

In the Palette Creator tab, select the hero you wish to make a custom palette for, give it an ID,
and press Create.

Patlette Creator Tool

Hero crusader

Palette ID cru_col_example

Create

This will create a new folder named after the ID you entered. In this folder, you should find an
image titled tex_[your_id]. This is the “col” texture for the hero you selected.

Textures in DD2 are broken into two parts, the col and the ink. The ink texture is the black
outlines that are layered on top of the col texture. The col texture contains all of the color and
details. Custom palettes use a custom col texture.

Open the ‘tex_[your_id] texture in a photo editing program of your choice and edit the texture to
your liking (You can right-click on the texture in Unity and select “Show in Explorer” to find it
quickly.) Make sure to save over the original image.

f’ gv Blend Mode: Normal v Opacity: 100% ¥ Smooth: 0% ¥ » - (?

RA_{‘ tex_cru_col_exampl- * X

A
.‘,‘
2,
?J
E J]
e,
T.
’0
-4
¥,
s

That's pretty much it! You can now use the Steamworks tool to upload the palette to the
workshop. You can test if it worked by clicking through all of the hero’s Palettes at the
crossroads.

Hero Skins / Custom Hero Models

Use the Hero Skin Creator Tool to make a new mod. In the mod folder, you will have a couple
files. The main one is the skin Resource, which has the default name: (hero)_skn_(modID). In
the skin Resource, you can assign the art prefab (the prefab has the skin's 3D model, the
skeleton, vfx, Unity components, etc.), a name id (note: you still need to do Localization), an
Unlock ID (leave it blank if you want the skin unlocked by default), and custom button sprites for
the cosmetics tab.

vestal

Prefab Reference

Skin Mame

& =none>

L& =none:

If you want to just add things to the skin, you can just drag them onto the proper bone inside the
art prefab. Most likely you will want to do some custom modeling. In this case, you should take
the mdl_heroname.fbx file, and import it into your 3d program of choice (e.g. Blender). Create
your new model, rig it to the skeleton, and export it back into darkside (see import and export
settings below).

Drag your .fbx into the project view in darkside to import it. Then open the art prefab, and drag
the imported fbx into it, on the same level as mdl_heroname, which your model will eventually
be replacing. Click on mdl_heroname, look at the components in the inspector, and add the
same components to your model, most likely these will be: an Animator (with an
AnimationController assigned), TimelinePropertyMapBhv, and AnimatorStateSender. Also check
that your scale matches, several of the heroes are scaled slightly differently (e.g. vestal is
scaled to 1.03).

‘= Hierarchy

+1|r

Click on the meshes in the mdl_heroname, and in the inspector on the right, click on the
materials they use, and copy them into your mod folder if you want to make changes to them
without altering the base versions in darkside. Click on your copied materials, and drag in your
custom textures for Base and Ink, then assign the materials to your own meshes in the art
prefab. While going through the meshes, you should also be checking for components and
adding them to your own. It varies by hero which components are used. Weapons have a
MaterialPropertyBhv with the text 'weapon' in the filter field, and occasionally some will have
different components, e.g. the Occultist's knife has a ToggleActiveStateByAnimationCurve.

Right click the skeleton (SHJntGrp) and click 'Select Children' to expand the entire hierarchy.
Look through the skeleton for all the vfx (which have blue boxes next to them) and all the
objects with white names, and move them over to the same bone in your own fbx. Click on the
art prefab, and in the BoneRemapping component, check that all the remaps are properly
assigned to the white named objects (hit_body, etc.) in your own model. These manage where
visual effects that don't come from the character appear, such as enemy attacks or damage
numbers.
Ea |Iir._[.2-r-f:!jF:!LZ[i|f:!
53 hit_body
& hit_root

r.
r.
r.
r.
r.
r.
r.
r.
r.
r.
o,

You can now delete the original mdl_heroname, at which point the art prefab should consist of a
Collider, a FakeGroundPlaneShadow, your model, and various hero-specific objects. The game
will simply load the art prefab as the model for the hero, so you don't have to follow these steps
exactly for it to work, and you're welcome to do other things like change vfx or animations in the
animator (make sure you copy it first, or use a Right Click > Create > Animator Override
Controller).

At this point your skin mod should be good to go.

Blender Settings

After importing, and again before exporting, reset the armature poses by selecting the armature
in object mode, switching to pose mode, and pressing: A, Alt+R, Alt+S, Alt+G.
Before exporting, set Armature X rotation to 0.

Import Settings

Operator Presets

v Inc

Export Settings:

Import FBX

& Custom Normals
1D
+ Custom Properties
+ Import Enums As Strings
+ Image Search

sRGB

Cancel

Operator Presets
Path Mode
Batch Mode

v Include

Limit to

Object Types

v Transform

Scale
Apply Scalings
Forward

Up

v Geometry

Smoothing

Vertex Colors

~ Armature

Primary Bone Axis

Secondary Bone Axis

Armature FBXNode Type

Animation

Selected Objects
Visible Objects

Active Collection

Empty
Camera

Lamp
Armature
Mesh
Other

Custom Properties

FBX All
-Z Forward
Y Up
+ Apply Unit
Use Space Transform

Apply Transform

Normals Only
Export Subdivision Surface
+ Apply Modifiers
Loose Edges
Triangulate Faces
Tangent Space
sRGB

Prioritize Active Color

Y Axis
X Axis
Null
Only Deform Bones

Add Leaf Bones

Updating names, descriptions, and other strings

In the Localization folder (UserMods > [MODNAME] > [MODNAME]_export > Localization),
there’s a pre-populated text file with string IDs that have automatically been created to match
the Item ID when the item was created. ex)
item_name_rh_example_combat_item=rh_example_combat_item

Each Item Type has slightly different string requirements. Reference and edit the pre-populated
data however you see fit.

Publishing to Steam Workshop

Once you're satisfied with the item data, you can begin the process of uploading your mod to
the Steam Workshop!

1. In the [MODNAME] folder (UserMods > [MODNAME]), select the file called
Steamworks. The details will appear in the Inspector window
2. Fill out the fields for your mod. These details will appear on the Steam Workshop page
a. This info will NOT appear in the game and does not need to match any of the
item data
b. The image used for the Image Preview field can be anywhere in the project files
(it does NOT need to be in the Art folder like images used for actual item data)
3. Once you'’re satisfied with the Steamworks details, click Publish to Steam
4. Assuming all went well, you should see a popup with the title Upload To Steam and in
the description you should see the change notes you included in the Steamworks details
a. VERY IMPORTANT INFO - The first time you hit Publish to Steam, you’ll see a
prompt for Addressable Reports. You can hit Yes or No, it doesn’t affect the
outcome when publishing, selecting Yes just provides additional details found in
the Addressable Report window.
5. The text in the popup should say “Mod [ID] uploaded to Steam: True”. If it says False,
your mod failed to upload. You should get an error message in the Unity console in that
case.

File Edit Assets GameOl mponent _Senvices FMOD Tools Window _Help

Upload To Steam

Mod 3307331441 uploaded to Steam: True AddNew Tag
Change Notes: Fingers crossed z

Oy

Testing your mod

Congratulations on creating your mod!

Finding your mod on Steam

In Steam you can find your Workshop Files under Community > Workshop then on this page,
select the link for Your Files

STORE LIBRARY REDHOOKERICH
Home
Discussions
Market

Broadcasts

[R—————

Workshop Home | Apc

Create, discover, and download content for your game

Browse All Workshops

‘ i, 7 =

I}H AT Alphabetical

Recently Played
:’LANET s
A Your Games

Recently Visited

V.| TILTED

TENNIS

Your Subscriptions and Workshop Collections
TomB

Subscribing (downloading) your mod

On the Your Files page, you'll find all of your files (go figure). This includes ANY item created
with the Item Creation Tool, even before clicking Publish to Steam for the first time.

Select the mod you’d like to test and hit Subscribe to download the files to the appropriate file
locations

= redhookerich » Workshop Items

o
¥ Filter by g Select a game ™ . © By redhookerich ® redhookerich's Favorites

Screenshots Artwork Videos Workshop Items Merchandise Collections Guides

Your Workshop
0 Foll
o

View Legal Agreement

Items

Favorited

Hale Draught Override Test

Subscribed ltems

R EE

i_@‘"‘o'n'k'suopi

rh_example_sc_general rh_example_combat_item rh_example_rest_item

rh_example_trinket

n® Il > Workshop >

rh_example memory

Description Discussions Comments Change Notes Item Stats

(view)

¥ Subscribed
rh_example_memory Z, Edit title & description
Add/edit images & videos
Add/remove Contributors
Edit Links
This is an example memory mod that has a very high chance to appear when selecting a Allow Comments (2)
memory
) Delete
Wﬂmments(o) Private Developer Comments (0)
thread ©) Add/Remove Required DLC
% Add/Remove Required Items
o~ Change Visibility N

Update Content Descriptors

Viewing your mod in game

Run Darkest Dungeon 2 on a mod supported build
1. On the main menu screen, you'll find an option for Mods
2. Once in the mods menu (the dark side of the mountain), click Mods to open your mod
list.
Check the mods you want to use
4. Select Continue Expedition or Begin New Expedition

w

Confinue Expedifion Regin New Expedifion

4.

Confinue Expedifion Begin New Expedifion

Refurn to Base Game

For mods to run, you have to load your run via the Mods menu. Loading a run via the regular
menu will not enable any mods.

After playing and upon arriving at the valley inn, assuming you're using example item data, your
item mod should appear in the valley inn shop!

Local Mod Testing

Here are instructions to help you test your mods without having to publish to Steam. You can do
this by building the assets.

Inside the mod you want to test, find the Steamworks asset for the mod you want to build and
select it [Assets/UserMods/[mod]/Steamworks.asset. Select the Build Assets button in the
Inspector.

test_trinket_j
DEIE]
test_trinket_jm
Steamworks

7, Assets/UserMods/test_trinket_jm/Steamworks.asset

Open on Steam

test trinket

combatlife
Public
1

test new version

Add New Tag

Build Assets

Publish To Steam

From here, open up Darkest Dungeon II's streamingassets folder
(Steam>Steamapps>common>Darkest Dungeon Il > Darkest Dungeon Il Data > Streaming
Assets) and copy the data folder of the mod you want to test into the mods/[data] folder.
Rename the data folder to your desired mod name. In the example below, | renamed it to
test_trinket.

common > Darkest Dungeon® Il > Darkest Dungeon ll_Data > StreamingAssets » mods > | test_trinket >
Tl Sort = View aee
Name Date modified Type
Assets File folder
Localization File folder
Overrides File folder
Assets.meta META File

@ dd2_mod_data_trinket.Group.csv Microsoft Excel Comma St

dd2_mod_dsta_trinket.Group.csv.meta META File
Localization.meta 6/20/2024 2:48 PM META File
Overrides.meta 6/20/2024 2:48 PM META File

Once that is done, load up the game to see it with the description “load from streaming assets”

PSS ™ YN

TIPS AND TROUBLESHOOTING!

This section is WIP and will be added upon once testing is underway

Visual Studio Code to view base game data

After downloading Visual Studio Code, you can view the base game data by selecting File >
Open Folder...

For game data files

Open the Excel folder which can likely be found here
C:\Program Files (x86)\Steam\steamapps\common\Darkest Dungeon® Il\Darkest Dungeon
Il_Data\StreamingAssets

For string/localization files

Open the Excel folder which can likely be found here
C:\Program Files (x86)\Steam\steamapps\common\Darkest Dungeon® ll\Darkest Dungeon
II_Data\StreamingAssets\Localization\Sources

This PC » Local Disk (C:) » Program Files (x86) » Steam » steamapps * common * Darkest Dungeon® Il » Darkest Dungeon Il_Data > StreamingAssets

dlder

N

Name Date modified Type Size
aa 2024-06-10 9:32 AM File folder
Audio 2024-06-03 10:19 AM File folder
Excel 2024-06-03 10:19 AM File folder

Localization 2023-08-01 12:29 PM File folder

Now that the folder for the base game data is open, you can search and reference various data
we use for different items, skills, effects, buffs, loot tables, etc.

ex) Searching trinket will display all data that contain the string ‘trinket’

File Edit Selection View Go Run Terminal Help
SEARCH

trinket

B achievement_data_export.Group.csv (2

B altar_of_hope_rules_data_export.Group.csv (8

B buff data_export.Group.csv (756

B condition_data_export.Group.csv (2
element_start,antiq_wealth_threshold_trinkets,Condition
..shambler torch_threshold_trinkets,Condition

B curio_choice_export.Group.csv (60

B effect_data_export.Group.csv (36
m_TokenAddTag,neg_trinket_token,
element_start,add_1_neg_trinket_token_last_initiative, Effect
m_TokenAddTag,neg_trinket_token,
element_start,add_1_neg_trinket token_occ_daemons_pull Effect
m_TokenAddTag,neg_trinket_token,
element_start,add_1_pos_trinket_token_snap_judgement,Effect
m_TokenAddTag, pos_trinket_token,
element_start,add_1_random_neg_trinket_token,Effect
m_TokenAddTag,neg_trinket_token,
element_start,add_1_random_neg_trinket token_33pct,Effect
m_TokenAddTag,neg_trinket_token,
element_start,add_1_random_neg_trinket token_66pct,Effect

m_TokenAddTag,neg_trinket_token,

element_start,add_1_random_neg_trinket token_80pct,Effect

m_TokenAddTag,neg_trinket_token,
element_start,add_1_random_neg_trinket_token_anatomical_map,Effect

m TAalanAAATaA nan trinkat tAlan

Unity

Drag the slider handle in the bottom right corner to the left so the files are list view

Publishing to Steam

Upload To Steam

Mod 3266613532 uploaded to Steam: False

Change Notes: Another try at preventing equip

Okay

Make sure you close the CSV file before attempting to upload the mod to the Workshop. If the

file is still open, the export will fail.

Transferring save files

Mods can only be used on save files that reside in the following folder:

\Users\[XXXXX]\AppData\LocalLow\RedHook\Darkest Dungeon
INmods\SaveFiles\[XXXXXX]\profiles

XXXXX will be replaced by values created by you or steam for your account. If you wish to use
a pre-existing save file for mods, you can manually copy the save over to the mods/SaveFiles
folder. Regular save files reside in the following folder:

\Users\[XXXXX]\AppData\LocalLow\RedHook\Darkest Dungeon I\SaveFiles[XXXXXX]\profiles

Adding items to base game loot tables

VERY IMPORTANT INFO You'll see many instances of [LOOTABLENAME]_all, the _all is
used to denote the TOP level loot table that has the type all_sub_table which means it will be
provide ALL of the contents of the loot table contained within rather than a random selection. It's
best to avoid appending to any loot table ending in _all

Adding items to base game loot tables is done through appending newly created loot tables to
base game loot tables AS LONG AS THE LOOT TABLE IDs MATCH. When duplicate loot
table IDs are used for new loot tables, the content is appended to the base game loot table ID
as if they were combined all along.

Ex) inn_valley will append this loot table to the provisioner shop selection at the valley inn.
You'll see this in the default data file when a new item mod is created).

ADDITIONAL LOOT TABLE

element_start inn_valley LootTable
m_chances

m_gtys
m_ids [ITEMID]
m_types itemn

element_end

BASE GAME LOOT TABLE

element start inn_valley LootTable
m_chances 1 1 1 1 1 1 1 1
m_atys 10 1 1 1 1 1 1 2
ids inn_valley_pets BLEED_COMBAT_ITEMS BLIGHT COMBAT_ITEMS BURN_COMBAT_ITEMS BUFF_COMBAT_ITEMS CLEANSE_COMBAT_ITEMS DEBUFF_COMBAT_ITEMS laudanum
able sub_table sub_table sub_table

uuuuuuuuuuuu

VERY IMPORTANT INFO Any base game loot table that is ALL CAPS denote that the loot table
will contain NO sub tables. These loot tables are like the base “ingredients” to be shared and
utilized by other loot tables.

Common item base game loot tables
e Trinkets: TRINKETS_COMMODITY_COMMON, TRINKETS_COMMODITY_RARE,
TRINKETS_COMMODITY_EPIC, TRINKETS_GENERAL_ALL,
TRINKETS_HERO_ALL, TRINKETS_SPECIAL_ANTIQ, TRINKETS_HOARDER,
TRINKETS_SHAMBLER_BOSS, TRINKETS_DEATH_BOSS,
TRINKETS_COLLECTOR_BOSS, TRINKETS_CHIRURGEON_BOSS,
TRINKETS_CULTIST, TRINKETS_CULTIST_KEYS
o Found in loot_data_export_TRINKETS
e Rest (Innitems): ALL_REST_ITEMS, POULTICE_INN_ITEMS, TYPICAL_INN_ITEMS,
ODD_INN_ITEMS, LITERATURE_INN_ITEMS, SPECIAL_INN_ITEMS,
REST_ITEMS_BOOKS, SIGNATURE_INN_ITEMS
o ALL_REST_ITEMS contains only basic inn items NOT signature inn items so this
is safe to use for basic inn item pulls
o Found in loot_data_export_ SUPPLIES
e Combat: ALL_COMBAT_ITEMS, BLIGHT_COMBAT_ITEMS,
BLEED_COMBAT_ITEMS, BURN_COMBAT _ITEMS, BUFF_COMBAT _ITEMS,
CLEANSE_COMBAT_ITEMS, DEBUFF_COMBAT _ITEMS, SPECIAL_COMBAT_ITEMS
o ALL_COMBAT_ITEMS contains only basic combat items NOT special combat
items like Spring Water or Otherworldly Fragment so this is safe to use for basic
combat item pulls
o Found in loot_data_export SUPPLIES
e Stagecoach
o General: SC_UPGRADES_ALL, SC_UPGRADES_STORAGE,
SC_UPGRADES_GUIDEBOOKS, SC_UPGRADES_FOOD_GEAR,
SC_UPGRADES_LUXURY_GEAR, SC_UPGRADES_MEDICINE_GEAR,
SC_UPGRADES_ROAD_GEAR, SC_UPGRADES_SCOUTING_GEAR,
SC_UPGRADES_TINKERS_GEAR
o Flames: SC_INFERNAL_FLAME, SC_RADIANT_FLAME
o Trophies: SC_TROPHY

o Pets: SC PET
Besides common loot tables, there are many unique tables in DD2 to create specific moments.
We recommend searching the base game files with a specific item ID to view all the sources this

item can be obtained from.

Ex) Tinned Delicacies (tinned_preserves)

iy na:i_prezer'.«'eﬂ

files to include

files to exclude

edrtor

~ [item_data_export.Group.csv
element_start inned_preserves, ltem
m_tags,food tinned_preserves,
m_buyCostld tinned_preserves buy cost,
element_start tinned_preserves_buy_co

~ [@ loot_data_export STORY_CURIO.Group.
m_ids,tinned_presernves
m_ids, tinned_preserve

~ [@ loot_data_export SUPPLIES.Group.csv

...medicinal_leeches orbitoclast, the_wine tinned_preserves,

Various Battles: Look in loot_data_export_ COMBATS, here you'll find IDs for shared loot
tables for various battles
Commonly used base game battle loot tables
e Road battles: road_gaunt_rewards, road_pillager_rewards, road_faction_rewards,
road_caves_rewards
Resistance battles: resistance faction_rewards, resistance caves_rewards
Guardian battles: guardian_cultist 1 _rewards, guardian_cultist 2 _rewards,
guardian_cultist_3_rewards
e Special battles: antiquarian_rewards, chirurgeon_rewards, collector_rewards,
death_rewards, shambler_rewards
e Lair battles: lair_prewave 1 rewards, lair_prewave 2 rewards, lair_boss_rewards

Enemy Actors: This is a bit more complicated as individual actors require a specific parameter
to drop loot upon defeat. ex) In cave_swine_skiver_data_export you can find
m_DeathLootlds,skiver_rewards_all,.

Corrupted/Missing data

If you notice that DD2 seems to be running incorrectly, such as hero skills missing information,
tokens going missing, hero goals breaking, ect., this likely means that a base game CSV file
has been modified or access to it has been blocked. This will also cause the main menu to
display “Mod Detected” in the upper right corner. This can happen if you have a modified base
game CSV file open while the game is launching.

To prevent this from happening, be sure to:
- Close all base game CSYV files before launching DD2.
- Avoid deleting any data from the base game CSV files.
- If you resized the cells in the CSV excel file, be sure to close it before launching DD2
and discard any changes made. Excel treats resizing cells as modifying the file and thus
prevents the game from accessing it while it’s still open.

This can be fixed either by verifying the integrity of the game files or by reinstalling the game
entirely. Be sure to close all CSV files before reinstalling, as this can prevent the
installation from completing.

TIFTID SEZ: If you wish to modify your game data while the program is running, consider
copying your CSV files into an external folder and modifying them therein - then, copy these
files back to the original folder before running the game. This will also protect your modded data
files from being permanently overridden by game updates.

Mod not appearing in-game

If you uploaded a mod to the workshop and subscribed to it, but it's not appearing in the mod
menu in-game, this likely means you’re using an outdated version of the Darkside project.
Make sure you’re using the Darkside project that is provided through Steam (Darkest Dungeon
2 Mod Tools) and NOT the Mod project provided in the google drive download.

Also make sure that the Darkest Dungeon 2 Mod Tools project is updated to the latest version.

Testing mods with Editor Prefs and Cheat options

Using Editor Prefs to enable the Cheat options can help with mod testing.
To enable Editor Prefs

1. Onthe DD2 Steam page, open Properties from the settings (Gear icon)

Add to Favorites

Add to
Manage >

a.

2. Under General > Launch Options, add the line ‘-allowEditorPrefs’ to the Advanced users
launch option field

General
Enable the Steam Overlay while in-game
General
Updates
Installed Files
Keep games saves in the Steam Cloud for Darkest Dungeon® Il
Betas
Controller

DLC

Privacy

Ask when starting game

-allowEditorPrefs

a.
3. Next, when launching the game from Steam and presented with Launch Options, select
Allow Editor Prefs

Darkest Dungeon® I

SELECT LAUNCH OPTION (2)

O Play Darkest Dungeon® |l

® Allow Editor Prefs

Always use this option

You can view launch options and edit your selection from the gear icon
on this app’s Library page.

Play Cancel

a.
To enable Cheats
1. Open the Options Menu
2. Select Editor Prefs
3. Type ‘Cheat’ into the ‘Enter text...’ field
4. Enable Cheats

3, Clear Filter

ACHIEVEMENTS

AFFINITY

ALTAR _OF _HOPE_GROUP
AUDID

AUTOMATED TESTING
BATTLE

BOOLS

enable_cheats

CAMPAIGN

CONDITION

DERUG LOG

Once cheats are enabled, there will be options available on the Options Menu and a selection of
Hotkeys while Cheats are enabled.

Skip To Inn Show Cheat Menu

Skip To Altar Add Trophy

Skip To Hero Add 10 Candles

+ Armor

Reveal Region
- Armor

+ Wheel Gfx Debug Menu

s Toggle Graphy (Consoles)

Give Lots of Stuff
Adv. Graphy (Consoles)

Achievements

FPS Lock: OFF

d (Shift+G) OpenActorEditorToCurrent (Alt+E)
(Shift+T)

h (Ctrl+T)
oom (Shift+V)

oom (Ctrl+V)

ts (Shift+U)

Show orEditor (Alt+J)
HealHealth (Shift+H)
HealStress (Shift+S)

DealDama

ift+F)

el (Ctrl+F)

DDFogPass (ON) ()

Ope

BlurPass (ON) ()
mbatDeb

GLOBAL_PER_OBJECT_FC LE (OFF) ()

_USE_GAMMA_CORRECTION (OFF) ()

_DEBUG_LIGHT_CONTRIBUTION (OFF) ()

Adding Editor Prefs to Mods

If you want to add editor prefs to a mod you can do that by adding a text file to the data folder in
your mod. It will be loaded additively to the editor prefs that are already loaded or that are
loaded by other mods.

Ex:

A Cheats.txt in the data folder with
enable_cheats-True

Will enable cheats anytime that mod is loaded.

End of guide, below are feature suggestions and
other info for Red Hook

MOD TOOL WISHLIST

Put any mod tools you wish to have access to here

1. Barks triggered via effects displaying as positive/negative
2. Custom tokens
3. Sound effects for items (equipping, moving in inventory, using combat items)

4. Custom abilities
Assigning existing animations to custom sKkills
a. TIFTID SEZ: This idea is based
b. Related idea: Custom SkillReplacements for hero paths
Custom paths
Custom weapon kits
Recolored weapon kits (if easy to implement before above item)
9. Custom models
10. Custom animations
11. A “Deliverable” preset for custom items
12. Route generation settings and related models (custom biomes / modifying base-game
biomes)
13. Custom map nodes
14. Ability to modify base game objects, gameplay settings, for example starting with <4
heroes, overwriting/modifying base game objects like actor models, scenery, etc
15. Access to base game files, ability to write custom code, and ultimately be able to work at
the developer level.
16. Custom Stagecoach skins
17. Ability to modify confession run length, both in leagues to travel and in inns to reach.
a. TIFTID SEZ: You can already modify the number of regions in a run by modifying
boss data_export.Group.csv
b. With this in mind, allowing modification of leagues to travel is the only thing that is
desired
+8-Offtineflocatmodusage
19. Conditional loading of items and overrides
a. Example use case: a mod that wishes to add an override only when a certain dic
or other mod is present
20. Code injection to override existing core code functionality or the ability to load in a library
that is capable of doing that (eg. harmony, bepinex, etc)

o

© N

23. Ability to modify art/visual fx/animations of skills changed by paths
24. When you unsubscribe from a mod, it leaves behind a (small) “catalog.jsondd” file which
means the mod folder isn’'t deleted fully
25. Mod options.
26. A condition type that can determine if a certain mod is installed (as well as its opposite)
27. When you open the Mods menu in the main menu, the scroll bar isn’t scrolled to the top
28. A version of (or update for) death armor, so it behaves more logically with heroes.
a. As it stands, death armor is immediately lost when a hero enters death’s door,
effectively wasting a token.
29. Expose lockable quirk amounts to a .csv file

30.

33.

34.

35.

36.

37.

page-when-publishirg}-Should be done
32.

Skills having a separate animation on crits

Allow torches with custom torch levels to be ambushed (correctly). Currently, torches
that have custom torch levels and are not marked with the “no ambush” tag will be
ambushed, but will not load the ambush battle, leading to a softlock.

A way to manipulate the amount of trinket slots as well as the amount of skill slots via
effects/buffs/rundatastats. In other words, enable the ability to increase or decrease
them mid-run.

In Cheat Menu > CombatDebug > Update Actors, the drop down lists become very
cumbersome with large lists. The wished item here is a search filter.

Ability to override only specific parameters instead of having to override the entire
element

Add a new Mods section to the tutorials page and allow us to create custom tutorials for
our mods

The ability to use custom sprites in localization files

Tangentially related requests

“skill_damage_dealt” m_ConditionType (no m_ConditionActor needed, tested only when
performer uses a skill)

o “skill_damage_received” variant which is tested when performer RECEIVES

damage from a skill?

o “damage_received” variant which also applies to non-skill damage?
on_crit_heal _as_performer_to_performer_effects,
on_crit_heal _as performer_to_target_effects, etc...
On x token lost hook
If has x token conditiontype
Conditions for AffinityLeaningLevel (so we can change how they behave with items)
“‘DD1 character” unity class - essentially the same thing as the Actor class, but instead of
specifying models/animations, we specify a sprite for the actor during its combat idle
stance, when it dodges, when it takes damage, when it's on Death’s Door and when it’s
doing each of its skills - the goal is to make porting DD1 actors across to DD2 as easy as
possible, and to make it so that people don’t have to make a “dummy model” for
sprite-based characters
m_BuffStealTags effect parameter

Wishlist items fulfilled

1.
2.
3.

Empty mod creation tool (7/30/24)
Improved Steamworks description field (7/30/24)
Local mod building and testing (7/31/24)

Reference for how difficult any given task is (as far as we know)
[OUT OF DATE AS OF STEADFAST STEWARD]

Bespoke tools for modders (not necessarily feature complete, see wishlist)

e (Custom items
e Custom hero palettes
e Local mod building and testing

Other functional tools present in darkside

e Custom tokens
e Custom paths (pretty hacky, has some visual bugs)

Doable with workarounds using darkside + third party tools

Custom skills

Custom animations (except blend shapes)

Custom heroes

Custom hero models

Custom/edited models/animations for base game heroes (probably?)

Not currently possible

e Not exposed in data:
o Leagues to travel per region
o Locked quirks cap
Custom non-skill animations for existing heroes (idle, antic, inn, etc.)
Custom monsters (maybe?)
Custom models for monsters, nodes, stagecoach, etc
Custom textures for monsters, nodes, stagecoach, etc
Custom VFX
Custom SFX
Custom weapon kits
Custom biomes
Custom nodes
Conditional mod loading
Scripting, library loading, code injection
Custom cutscenes (like act bosses being defeated)
Custom Ul elements and Ul changes

Implementation Ideas

Options menus for mods

| noticed that the guy making the enemy barks mod wanted to add options that enable/disable
barks for each enemy faction.

This makes me think that in reality, a lot of mod options could be boiled down to “do/don’t load
this csv”.

So, for each csv and txt file in a mod, a checkbox could be created under that mod in the menu,
and a special localization file provides names to each of those checkboxes.

(for instance - “effects_bark_faction_lost_battalion.csv” becomes “Enable Lost Battalion Barks”)
Perhaps there could also be a special csv or json file that controls whether or not each file is
loaded by default when you download the mod.

A possible better way to do it is just to have it all be managed by one json file in which each
option name is the header of a list of csv or txt flenames - that way a single option can control
the loading of multiple files, so you can have one checkbox seamlessly turn off both effects and
their associated localisation.

scScripting

A lot of people have requested scripting, but | personally think scripting won’t ever really
happen, since it would require either providing the game’s source code (which will never happen
for obvious reasons) or developing a new scripting language a la QuakeC (which is clearly too
much work).

So I'm here to suggest an alternate solution.

VTMB

Vampire: The Masquerade - Bloodlines (2004) has a scripting system which is generally
well-praised.

The long and short of it is that it uses Python 2.1.2, released 16/Jan/2002.

But it doesn’t just provide the raw interpreter binary with the game - instead, the developers
downloaded Python’s C source code, changed it a little and pre-compiled it into a DLL that is
shipped along with the main game’s binaries.

This is a critically important facet of using Python as a scripting language, because it allows
developers to remove standard libraries that would potentially allow malicious code execution,
such as the os module (which allows file read/writes) and the ctypes module (which allows
Python to utilise entrypoints into C DLLs, including various win32 libraries).

https://en.wikipedia.org/wiki/QuakeC
https://en.wikipedia.org/wiki/Vampire:_The_Masquerade_%E2%80%93_Bloodlines

It also (presumably) allows for very fast interoperability between the interpreter and functions in
the game’s C++ DLLs.

The fact that Python is running alongside the main game and is an interpreted language also
means that Python code can be run directly from the game’s developer console, either
line-by-line or as executed from a .cfg file.

Another important aspect of VTMB’s Python scripting is that it exposes very little of the game’s
source code.

Most of the ways to actually interface with the game involve using the “__main__" object - a
static object which is always in scope.

The player can be accessed by calling “__main__.FindPlayer()”, and most of the game’s global
variables (the most important one being an int called StoryState) can be accessed through

“ main__.G".

Here’s some example code:

G
.FindEntityByName

#F.U. SYNDICATE: Spawns bertram's key after mandarin dies.

0:

("Mandarin")
.GetCenter ()

[01, [11, [2])

.CreateEntityNoSpawn ("item k fu cell key",
(0,0,0))

.SetName ("fu_ key")
.CreateEntityNoSpawn ("inspection node",

.SetParent ("fu key")
.CallEntitySpawn ()
.CallEntitySpawn (

Advantages of Python custom DLL as a scripting language

e High-level and garbage-collected, so reasonably hard for newbies to create memory
leaks and for experienced programmers to do deliberate evil memory mismanagement
Easy-to-understand for novice programmers since it doesn’t use C syntax
Dynamic typing makes it difficult to encounter common errors such as passing a float to
a function that expects an int
A Python exception in the interpreter doesn’t halt execution of the rest of the game
Being an interpreted language makes it natively open-source, so users know exactly
what they’re downloading unlike recompilations where you could be downloading
anything

Disadvantages of Python custom DLL

e Dynamic typing means that strict typechecking (assert isinstance(variable, type)) would
need to be enforced for any parameters that are being passed to the C# runtime of the
game

e Interpreted languages are slow and allowing .pyc or .pyx files to be executed is
potentially dangerous unless we make the interpreter itself compile them at runtime

o JIT compiling (available through numba library and natively supported in
experimental branches of Python) makes performance better, but holds up code
execution at runtime while it's compiling the script and adds potential for
malicious code execution

How should DD2 do it?

Effect definitions in CSV files should have a new “m_RunScriptFile” parameter, with the name of
the file afterwards. (e.g. “m_RunScriptFile,make_invincible.py,”)

It will search inside “steamapps\common\Darkest Dungeon I\DarkestDungeon Il
Data\StreamingAssets\Python” - or, in the case of mods,
“steamapps\workshop\content\1940340\MOD_STEAMID\Python”.

The game’s Python interpreter will then run this script file (__name__ ==“__main__") when the
effect is triggered.

By default, effects of this nature will be formatted like <color=#{notable}>Run Script File:</color>
<color=#{mastery}>{0}</color> where {0} is replaced by the filename of the script.

Since this is obviously not ideal, it's recommended that mod developers override the formatting
of any effects that trigger script files.

For a __main__ object, there should be an object called “darkest” (I'm not good enough with
Python to know if calling it __main__ in VTMB was some kind of technical requirement).

The performer and target of the current effect are members of __main__ (converted from DD2’s
C# Actor class to a Python IronCrownActor class), and if the effect is actorless then both are
None.

Some other members of darkest:
e heroes - a list of type IronCrownActor which contains the four heroes (fewer if there
are fewer)

o IronCrownActor class members:
name - string
localized_name - string
rank - int
health - 0-1 float
health_max - int
spd - int
turns_per_round - int

stress - int
stress_max - int
size - int - controls the actor’s size - use with caution!
hero_path_id - int - index of hero path this actor has equipped - 0 is
Wanderer, -1 is Reserve, this value is None if the actor is not a hero
e This can be set to change a hero’s path mid-run, and even update
the SkillReplacements
skills - list[lronCrownSkill] - list of combat skills
skills_equipped - list[lronCrownSkill] - list of equipped combat skills
skill_maodifiers - list[lronCrownSkillModifier] - list of skill modifiers due to
relationships
buffs - list[lronCrownBuff] - list of buffs this actor has
tokens - list[lIronCrownToken] - list of tokens this actor has
relationships - list[int] - list of indices into darkest.relationships for the
relationships this hero is part of
e Modifying this list can change which relationships this actor has in
the C# runtime - so, changing it to an empty list will clear all
relationships
e |[f this actor is not a hero, this list is empty
resistances - dict[string, float]
immunities - list[string] - corresponds with m_ResistAlwayslds
tags - list[string]
is_healthless - bool - controls whether the actor is invulnerable or not
is_act_out_valid - bool - controls whether the actor can perform
relationship act outs or not
is_token_view_valid - bool - controls whether the Academic View can be
used on the actor
use_skill - method with arguments (skill: IronCrownSkill, target:
IronCrownActor) that forces the actor to use a skill on a target (even if
the skill isn’t in actor.skills or the skill isn’t valid according to the skill’'s
launch ranks, target ranks and conditions)
move - method with arguments (amount: int, can_be_resisted: bool) that
moves the actor in its party by the specified amount
move_to - convenience method with arguments (rank: int) that calls
move(rank - self.rank, False) to move the actor to the specified rank
add_buff - method with arguments (buff: IronCrownBuff) that queues a
specified buff to be added to the target by the performer at the end of
script execution
remove_buff - method with arguments (buffid: str) that removes all
instances of the given buff on the actor
remove_buff_by tag - method with arguments (tag: str) that removes all
buffs on the actor which have the tag
change_health - method with arguments (amount: int) that queues an
event that deals damage to or heals the hero, with the performer as the

performer and the target and the target. Since it's queued, it can be given
the appropriate SFX and VFX in the C# runtime.
m change_stress - similar to change_health, but with stress - also has a
can_be_resisted argument since Stress RES exists
get_hero_in_rank - a method that returns the hero in the given rank, or None if there is
no hero in the specified rank

o All functions that expect a rank as input expect the rank to be in the range 1-4,
not 0-3

hero_definitions - a dict of type [string, IronCrownActor] which contains all the heroes
as defined in the game’s CSV files - indexed by ActorDataClass id

monsters - a list of type IronCrownActor which contains the monsters of the current
combat - this list is None if the heroes are not in combat

get_monster_in_rank - the same thing as get_hero_in_rank, but for monsters -
particularly useful for monsters because the list of heroes is passed into __main__ from
C# already ordered by rank, but since monsters can have an m_Size other than 1, it's
not always obvious how position in a rank-ordered list can correspond to index in that list
monster_definitions - a dict of type [string, IronCrownActor] which contains all the
monsters as defined in the game’s CSV files - indexed by ActorDataClass id

variables - a standard Python dynamically typed dictionary - since this remains in scope
as long as darkest does (so, the entire lifetime of the interpreter), it can be used to create
variables that persist between multiple executions of the same script. However, it also
won't be garbage-collected until the interpreter is killed, so repeatedly defining variables
might take up a large amount of memory. To prevent this, counting the memory used by
the defined variables and throwing a ValueError when it exceeds a certain value might
be a good solution.

o The game also stores some variables from the C# runtime of the game in this dict
when the script is run (or maybe when the interpreter is started) - these can be
changed by the script and have their new values set in the C# runtime at the end
of script execution, but they’re strictly typechecked before this happens

o Examples of variables for the game to store - “combat_round_number”,
“run_value_doom”, “run_value _sc_armor”, “run_value_sc_wheels”

relationships - a list of type IronCrownAffinityRelationship that contains the party’s
six relationships - strictly checked so that this list still contains six valid non-duplicate
relationships before being passed back to the C# runtime

o IronCrownAffinityRelationship class members - tuple[lronCrownActor]
actors, int affinity

buffs - a dict containing type IronCrownBuff that holds all the buffs the game has
loaded from its CSV files - this is created once on interpreter creation and is thereafter
never passed back to the C# runtime, so it can be modified freely

o IronCrownBuff class members:

m id - string

m duration_type - string

m duration_amount - int or None if duration_type is “infinite”
m condition - IronCrownCondition, defaults to None

desc_override - string, defaults to None

tooltip_override - string, defaults to None

is_visible - bool - defaults to True

actor_data_stats - IronCrownActorDataStats, defaults to None

actor_data_effects - IronCrownActorDataEffects, defaults to None

run_data_stats - IronCrownRunDataStats, defaults to None

tags - list of strings - defaults to empty list
conditions - similar to darkest.buffs, but with conditions
effects - similar to darkest.buffs, but with effects
test_conditions - method with arguments (conditions: list{lronCrownCondition],
condition_type: string = “all’) that tests the specified conditions (using the performer,
target, heroes, monsters and variables) and returns True or False based on the result

e trigger_effect - method with arguments (effect: IronCrownEffect) that first calls
darkest.test_conditions with the effect’'s conditions and condition type as input, and
then if that returns True, queues the effect to be triggered in the C# runtime at the end of
script execution

e test_mod_installed - method with arguments (steamid: int) that returns True if a mod
with the specified SteamlD is installed - useful for script files that want to test for the
presence of popular community mods (for compatibility)

What would you use this for?

As a way to gauge interest and understand what parts of the game would need to be exposed to
the “darkest” object, this section can act as a place to collect psuedocode scripts that act as
potential use-cases for the system.

I'll start:

dom buffs frc

"performer effects",

"target effects",

"on hit as performer to performer effects",

"on hit as performer to target effects",

"on hit as target to performer effects",

"on hit as target to target effects",

"on miss as performer to performer effects",

"on miss as performer to target effects",

"on miss as target to performer effects",

"on miss as target to target effects",

"on attack as performer to performer effects",

"on attack as performer to target effects",

"on attack as target to performer effects",

"on attack as target to target effects",

"on crit as performer to performer effects",

"on crit as performer to target effects",

"on crit as target to performer effects",

"on crit as target to target effects",

"performer on crit single effects",

"on kill as performer to performer effects",

"performer on kill fail effects",

"friendly team effects",

"enemy team effects",

"performer team others effects",

"target team effects",

"target team others effects",

"combat health damage effects",

"combat health heal effects",

"combat stress damage effects",

"combat stress heal effects",
"friendly death effects", - this is known to not apply

"enemy death effects",

"deaths door survive effects",

#
#
"deaths door enter effects",
#
#

"deaths door exit effects",
"turn start effects",
"turn end effects",

"round start effects",

"round end effects",

"turn start friendly team effects",

"turn end friendly team effects",

"turn start enemy team random effects",

"turn start enemy team effects",

"turn end enemy team effects",

"combat health damage friendly team effects",
"combat health damage enemy team effects",
"combat health heal friendly team effects",
"combat health heal enemy team effects",
"combat stress damage friendly team effects",
"combat stress damage enemy team effects",
"combat stress heal friendly team effects",

"combat stress heal enemy team effects",

{
"key map,health max": "any 30 0.9", # int value, then float
"key map,crit chance": "float 0.5",
"key map, speed": "int 9",
"key map,health damage dealt percent": "float 2.5",
"key map,health damage received percent": "float 2.5",

"key map, speed number of turns": "int 1",

"key map,stress max": "int 2",

"sub stat,resistance,stun": "float 1", # desired data type of value,

desired maximum value for random range

"sub stat, resistance,bleed": "float 1",

"sub stat,resistance,blight": "float 1",

"sub stat,resistance,burn": "float 1",

"sub stat,resistance,disease": "float 1",

"sub stat,resistance,move": "float 1",

"sub stat,resistance,debuff": "float 1",

"sub stat,resistance,death": "float 0.5",

"sub stat,resistance,stress": "float 1",

"sub stat,resistance ignore,stun": "float 1",
"sub stat,resistance ignore,bleed": "float 1",
"sub stat,resistance ignore,blight": "float 1",
"sub stat, resistance ignore,burn": "float 1",

"sub stat,resistance ignore,disease": "float 1", # lol
"sub stat,resistance ignore,move": "float 1",

"sub stat,resistance ignore,debuff": "float 1",

"sub stat,dot effect value dealt change,bleed": "int 10",

"sub stat,dot effect value dealt change,blight": "int 10",

"sub stat,dot effect value dealt change,burn": "int 10",

"sub stat,dot effect value dealt change,hot":

L

int o",

"sub stat,dot effect value dealt multiplier,bleed": "intfloat 4 0.25",

number of possible increments, and float value added with each increment

"sub stat,dot effect value dealt multiplier,blight":
"intfloat 4 0.25", # so, this range is (0.25, 0.5, 0.75, 1)
"sub stat,dot effect value dealt multiplier,burn": "intfloat 4 0.25",

"sub stat,dot effect value received change,bleed": "int 10",

"sub stat,dot effect value received change,blight": "int 10",

"sub stat,dot effect value received change,burn": "int 10",

"sub stat,dot effect value received change,hot": "int 6",

"sub stat,dot extra duration dealt,bleed": "int 2",

"sub stat,dot extra duration dealt,blight": "int 2",

~

"sub stat,dot extra duration dealt,burn": "int 2",

"sub stat,dot extra duration received,bleed": "int 2",

"sub stat,dot extra duration received,blight": "int 2",

"sub stat,dot extra duration received,burn": "int 2",

"sub stat,health heal dealt percent,skill": "float 1",

"sub stat,health heal received percent,skill": "float 1",

"sub

"sub stat,overstress

stat,

(

overstress chance modifier, resolute": "float 0.25"

chance modifier,meltdown": "float 0.25",

"infla buff manager .target.rank
[]
[]

.conditions))

.conditions))

I

.id.split (" ")

.is visible:

Don't pull from invisible conds to make

auto-formatting easier
[0] "performer":
"skill"™ [2] "hist":
Don't pull from hero goal conds cause they have
very specific overrides
[1] "item" [2] "use":
Also a hero goal cond
"kill":
Also hero goal cond
"visit":

Also hero goal cond

Ignore conditions that require the performer to
be a specific class, because most of these ask the performer to be a
monster and these buffs will only be on heroes
[0] "herostory":
Ignore hero story conds
"item" [1] "tooltip":

Ignore signature item conds, cause they have very

specific overrides (the hero's name; they won't display the body of the

buff cause they have no {0})

)=
.conditions:
() s

Don't use effects with invisible conditions

"infla

50% chance
for the buff to have a random condition

()

.IronCrownActorDataStats ()

0))

() # -1 to

"float":

"int":

"intfloat":
(
([2]) # Use ceil cause otherwise there would be a chance of
adding +0% which is pretty pointless

[J nanyn:

1] keyimap "

.key map.append (.IronCrownKeyMap (
))

.sub_ stats.append (.IronCrownSubStat (. ",") (11,
(",") [2],))

.IronCrownBuff (, "round end",

’ ["buff"],)

.IronCrownActorDataEffects ()

((.keys())) #

Implement chance for buff to have apply limit effects

[] .append (. ()) # Gives it
a random effect under a random ADE type
.IronCrownBuff (0 "round end",

v ["buff"],

() 8
.IronCrownEffect (

.buffs.append (.1d)

("ads") :
.IronCrownActorDataEffects ()

1] ",

ads

["turn start apply limit effects"]

["turn start apply limit"] # 2 ADS buffs per turn

ade

["turn start apply limit effects"]

["turn start apply limit"] # 3 ADE buffs per turn

.IronCrownBuff ("infla manager

"infinite",

.buffs]

.effects]|

.target.add buff (
.target.add buff (

C# Libraries and Harmony

Another alternative and proven method is allowing us to load in our own assemblies at startup.
This will allow us to use library dlls to run custom code. Many Unity games (eg. Rimworld, Risk
of Rain 2, Cities Skylines, Valheim, etc) use this as a cornerstone of their modding scenes.
They also use a patch/code injection library known as Harmony
(https://harmony.pardeike.net/articles/intro.html) to allow modders the ability to extend and
change core game functionality. They don’'t need access to the game’s source code, as long as
their CIL is unobfuscated, we can decompile that and bootstrap our own code with relative ease.
This is how Binarizer’s Lib and Speedwagon both worked.

sl L il

postiix

Diagram showing how Harmony allows us to modify existing game code without touching source files

Officially, we can already do this, we don’t need an extra scripting language. Assembly
sideloaders like Bepinex and Unity Doorstop exist to facilitate this.

But for first party support, we’d need the devs to write a mechanism to load our own assemblies
at startup. This would be a lower effort requirement in comparison to accommodating a new
scripting language/DSL or exposing a whole new set of scripting hooks (and documenting them)
and/or introducing a new language competence to the project and to the modding scene.

Realistic example use case

ConditionTypes exist within the game’s codebase (ironcrown.dll) as a hardcoded enum:

https://harmony.pardeike.net/articles/intro.html

ditionCalculationType conditionCalculationType, isValidForInverse, isValidForBuff)

3 conditionCalculationType;
isValidForInverse;
isValidForBuff;

alth_percent”, ConditionCalculationType.

This CustomEnum is used when condition validation happens (within
GetRunValueForConditionType):

GetRunValueFor

num
if (condit

num = 5i

nce.RunManager ! 2& iour<RunBhvs.Instance.RunManager.Boss.m_Id == conditionString)

rPrefs.GetString(NDITION_TEST |) : activeBiome.ToString

OME_SUB_TYPE)

By injecting our own code we can alter how GetRunValueForConditionType happens and even
add our own ConditionTypes that we define within our own dlls.

This would require no new infrastructure or alterations to this code from Red Hook, all being
done by the modders themselves.

The Downsides

While incredibly powerful, this approach does come with downsides:

e By injecting code directly at runtime without developer supervision, it allows bad code to
be written by any mod developer to go unchecked for users. This usually comes in the
form of NullReferenceExceptions breaking something within the game, or hard crashes.

e Being able to run any code on a player’s machine theoretically allows bad actors to do
bad things on people’s PCs.

o Fortunately Valve takes their user generated content very seriously and has very
strict checks in place to protect the upload of malware to the steam workshop.
This of course gives no such protections to other file distribution platforms
though.

e This would use the C# syntax and requires the modder in question to have decompiled
the game’s code. This is a functional barrier to entry for making new behaviors, though
does not affect CSV only mods and their barrier to entry.

e Mods that add C# libraries will need to be recompiled against every major version and
would not be evergreen, as the cost of maintenance is passed from the developers
maintaining an API to modders having to make changes to their injected code to
accommodate for changes within ironcrown.

Questions, Requests and Bugs: Steadfast Steward Update
Questions:

What is the default outline width that the game uses? The default value in the
outline shader provided seems to be too thin.

e How can we have our custom materials fade to black when the heroes do?
(Example: fade to black after exiting a victory screen)

Requests:

e An example combat scene for testing. Currently we can only test how our custom
models will look in game by uploading the mod and playing it. If we had an
example scene in Unity, it would save a lot of time.

e We'll need access to the DD2 FMOD library in order to use sounds in our mods.
We were given the FMOD Plugin, but not the DD2 library.
Worksl : Kins- kits—are-animat

e The ability to override a hero prefab without the player needing to change skins
(Example: mods that change a hero’s animation shouldn’t require changing
skins)
Animator State behaviors or Animation events to set Animator variables.
Allow using Weapon kits with Hero Skins.

Bugs:

e Changing a hero’s palette while a custom weapon kit is applied will apply the
palette’s texture to the weapon Kkit.

Outlines seem inconsistent. Custom weapon kits appear to have outlines in some
scenes and lack outlines in others (whether or not the outline shader was applied
to the object in Unity)

When importing the models into Blender, they turn into a tiny blob. The models
look correct when set to their rest pose, but any other pose breaks the model.
Skins and Palettes for Abom don’t function in-game

Constraints targeting a character rig's arms are out of place when executing in
the inn. (Potentially an execution order issue?)

	DD2 Modder Guide
	Intro
	What is Darkside?
	What mods can be created with Darkside?
	Where can I provide feedback and ask for help?
	Are there mod examples for reference?

	Requirements
	Tool Basics
	Opening the project
	Item Creation Tool
	Project Folders
	Project Window
	Data
	Excel
	Localization
	UserMods

	Overriding Data

	Creating an Item
	Creating the initial files
	Assigning item visuals
	Item Icons
	Combat Item Skill Icons

	
	Stagecoach attachments (Preset and Custom)
	Custom stagecoach attachments

	
	Prepping/editing item data and functionality
	Editing CSVs
	Using the Excel exporter tool

	
	Creating custom hero palettes
	Hero Skins / Custom Hero Models
	Blender Settings

	Updating names, descriptions, and other strings
	
	Publishing to Steam Workshop
	
	Testing your mod
	Finding your mod on Steam
	Subscribing (downloading) your mod
	Viewing your mod in game
	Local Mod Testing

	
	TIPS AND TROUBLESHOOTING!
	Visual Studio Code to view base game data
	Unity
	Publishing to Steam
	
	Transferring save files
	Adding items to base game loot tables
	Corrupted/Missing data
	Mod not appearing in-game
	Testing mods with Editor Prefs and Cheat options
	Adding Editor Prefs to Mods

	End of guide, below are feature suggestions and other info for Red Hook
	
	
	
	
	
	
	
	
	MOD TOOL WISHLIST
	Put any mod tools you wish to have access to here
	Tangentially related requests
	Wishlist items fulfilled
	
	Reference for how difficult any given task is (as far as we know) [OUT OF DATE AS OF STEADFAST STEWARD]
	Bespoke tools for modders (not necessarily feature complete, see wishlist)
	Other functional tools present in darkside
	Doable with workarounds using darkside + third party tools
	Not currently possible

	
	Implementation Ideas
	Options menus for mods
	scScripting
	VTMB
	Advantages of Python custom DLL as a scripting language
	Disadvantages of Python custom DLL
	How should DD2 do it?
	What would you use this for?
	Tiftid - Fragile Flame TMTRAINER script

	C# Libraries and Harmony
	 Realistic example use case
	The Downsides

	Questions, Requests and Bugs: Steadfast Steward Update
	Questions:
	Requests:
	Bugs:

