Marking Scheme Class X Session 2024-25 MATHEMATICS BASIC (Code No.241)

TIME: 3 hours MAX.MARKS: 80

Q. No.	Section A	Marks
1.	B) 45	1
2.	A) consistent with unique solution	1
3.	B) 4,5	1
4.	C) $2\sqrt{a^2+b^2}$	1
5.	A) 70°	1
6.	D) 3cm	1
7.	B) -2/√2	1
8.	B) ΔEAD	1
9.	B) xy ²	1
10.	B) 49	1
11.	D) 52°	1
12.	C) 15 cm	1
13.	C) 30°	1
14.	(B) 6	1
15.	A) 3/13	1
16.	C) Not real	1
17.	C) 30 - 40	1
18.	D) 25x ² - 5x - 2	1
19.	B) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
	Section B	

21 (A).	$PA^{2} = PB^{2}$ $\Rightarrow (a - 5)^{2} + $ $\Rightarrow a = b o$	$r(b-4)^2 = (a-b)^2 = 0$	$-4)^2$ + (b	- 5) ²			1 1	
				OR				
21 (B).	Coordinate of origin(mid point of PQ)=(0.0) Let coordinate of P =(x,y) x=4, y=0							
22	∠ATB=2X40 ⁰ ∠AOB=180 ⁰ -						1 1	
23 (A).	(3y+5)-(3y-1)= $\Rightarrow d = 6$ Also $6=(5y+1)$ $\Rightarrow y=5$						1	
				OR				
23 (B).	Putting $n = 1$, $S_1 = a = 6 - 1^2 = 5$ (i) Putting $n = 2$, $S_2 = 2a + d = 6 \times 2 - 2^2 = 8$ (ii) Solving (i) & (ii) $d = -2$						1/ ₂ 1 1/ ₂	
24.	$sin(A+B) = \sqrt{3/2} \Rightarrow A+B = 60^{\circ} $ (i)						1/2	
	$sin(A - B) = 1/2 \implies A - B = 30^{\circ}$ (ii) Solving (i) & (ii) to get $A = 45^{\circ}$, $B = 15^{\circ}$						1/ ₂ 1/ ₂ +1/ ₂	
25.		-20 20-40	40-60	60-80	80-100			
	Frequency 5	10	12	6	3		1/2	
	Here, $I = 40$, $f_0 = 10$, $f_1 = 12$, $f_2 = 6$, $h = 20$ Mode=I+(f_1 - f_0)/($2f_1$ - f_0 - f_2)×h Mode = 45					½ 1/2 1		
			Sect	ion-C				

$\sqrt{3} = p$, where q≠0 and p & q are coprime.	1
$\sqrt{3} = \frac{1}{2}$, where $\sqrt{4}$ 0 and $\sqrt{6}$ & q are coprime.	
q	
$q^2 = p^2 \Longrightarrow p^2$ is divisible by 3	
⇒ p is divisible by 3 (i)	1
⇒ p = 3a, where 'a' is a postive integer	
⇒	p is divisible by 3 (i)

_

26.	$9a^2 = 3q^2 \Rightarrow q^2 = 3a^2 \Rightarrow q^2$ is divisible by 3					4	
	\Rightarrow q is divisible by 3 (ii)					1	
	(i) and (ii) leads to contradiction as 'p' and 'q' are co prime.					1/2	
	$\therefore \sqrt{3}$ is an irrational number.					1/2	
27(A)	By using section formula						
		X= (2X10)+3X2	2)/(2+3) =26/	5 =5.2		1.5 1.5
	Y= (2x7+3x3)/(2+3) =23/5 =4.6						
27 (B).	Le	et the line	2x +	y = 4 interse	ects AB at $P(x_1, y_1)$) such that AP: PB=k:1	
					4x+y	=4	
					k	1	
				A(-2,-1)		B(3,5)	
					'		1
	$x_1 = \frac{3k-2}{k+1}$ and $y = \frac{5k-1}{k+1}$						
	(x_1, y_1) lies on $4x + y = 4$						
	Therefore, $4\binom{3k-2}{k+1} + \binom{5k-1}{k+1} = 4$						
	$\Rightarrow k=1$						
	Required ratio is 1:1						
28							
	=cos ² A+(1+sin A) ² /(cos A (1+sin A))						1
	= (cos² A +	1+ sir	n ² A + 2 sin A)/(cos A(1+sin A))	1
	= 2	(1+ sin A)/cos	A (1+sin A)			1
	= 2	/ cos A =	2 sec	c A (Proved)			
29.		Class	x_i	Frequency f_i	$f_i x_i$		Correct table
		0 – 20	10	17	170	Mean = $\frac{\Sigma f_i x_i}{\Sigma f_i}$ \Rightarrow 50 = $\frac{5160 + 30p}{92 + p}$	1 1
		20 - 40	30	p	30p	**	2
		40 – 60 60 – 80	50 70	32 24	1600 1680	$\Rightarrow 50 \times 92 + 50p = 5160 + 30p$ $\Rightarrow 50p - 30p = 5160 - 4600$	
	$80-100$ 90 19 1710 $\Rightarrow 20p = 560 \Rightarrow p = \frac{560}{20} = 28$						1
		Total		$\Sigma f_i = 92 + p$	$\Sigma f_i x_i = 5160 + 30p$	20	1/2

30 (A).	AB + CD = AD + BC	1
	6 + 8 = AD + 9	1
	14 = AD + 9 14 - 9 = AD	
	AD = 5 cm	1
	OR	
30(B)	Figure, Given, To prove	1.5
, ,	proof	1.5
31	Find the value of x and y by solving these equations	
	⇒ x = -2	1
	\Rightarrow y = 5	1
	⇒ m = -1	1
	Section D	
32	Res n	1
	Radius of the cone (r) = Radius of cylinder = $4/2 = 2 \text{ m}$	
	Height of the cylinder (h) = 2.1 m	
	So, the required surface area of the tent = surface area of the cone + surface area of the cylinder	1
	= πrl+2πrh	•
	$=\pi r(l+2h)$	
	= (22/7)×2(2.8+2×2.1)	
	= (44/7)(2.8+4.2)	
	$= (44/7) \times 7 = 44 \text{ m}^2$	
	The cost of the canvas of the tent at the rate of ₹500 per m² will be	
	= Surface area × cost per m²	2
	44×500 = ₹22000	
		4

	OR	
32 (B)	Volume of vessel = 200 m/3 cm^3 $100 \text{X volume of one spherical ball} = \frac{1}{4} \text{ volume of vessel}$ $R^3 = \frac{1}{8}$ $R = \frac{1}{2} = 0.5$	1 2 1
33	Correct Given, to prove, Construction and figure Correct Proof	1 1 2 × 4=2 2 3
34 35 (A).	(i) Perimeter of sector = $2r + \frac{2\pi r\theta}{360} = 73.12$ $\Rightarrow 2(24) + \frac{2\times3.14\times24\times\theta}{360} = 73.12$ $\Rightarrow \theta = 60^{\circ}$ (ii) Area of minor segment = $\frac{3.14\times24\times24\times60}{360} - \frac{1.73}{4} \times 24 \times 24$) cm^{2} $= (301.44 - 249.12) cm^{2}$ $= 52.32 cm^{2}$	1 1 2 1
33 (A).	h E 60° B 45° 9m	1 mark for correct figure
	Let AB be the building and CD be the tower. Here $tan60^{\circ} = \sqrt{3} = \frac{h}{x}$ $\Rightarrow h = x\sqrt{3}$ (i) $tan45^{\circ} = {}^{9} = 1$ $\Rightarrow x = 9 \text{ m}$ (ii) (Distance between tower and building)	1 ½ 1 ½
	Solving (i) & (ii) to get $h = 9 \times 1.732 = 15.588m$ Therefore, the height of the tower $= h + 9 = 24.588 m$.	1/2
	OR	
35 (B).		1 mark for correct

	SECTION - E							
36	i) Total number of outcomes = 50 Total number of odd number cards = 25							
	Hence probability of getting an odd number card = 25/50 = 1/2							
	li) Total number of perfect							
	square cards = 4 (16, 25, 36							
	and 49.)							
	Hence probability of getting a heart card = 4/50 = 2/25	1						
	iii) a) Total number of cards divisible by $5 = 10$ Hence probability of cards divisible by $5 = 10/50 = 1/5$	'						
	lii) b) Total number of prime number less than 20 = 4	1						
	Hence probability of getting prime number less than $20 = 4/50 = 2/25$							
		1						
37	i) Has 2 zeroes	1						
	ii) Has no zeroes	1						
	iii) let $\alpha = 2$ and $\beta = -3$							
	$\alpha + \beta = 2 + (-3) = -1 \text{ and } \alpha\beta = 2 \times (-3) = -6$ -(a+1) = -1	1						
	b = -6							
	a+1=b	1						
	a + 1 = -6							
	a = -7 and $b = -6$							
38	i) 15	1						
	ii) 27 and 3	1						
	iii) n = 10	2						

