Question 4.1:

Given data:

Partial pressure of oxygen in alveoli=1.4×10⁻⁴M=1.4×10⁻⁴mol/L=1.4×10⁻⁴×10³mol/m³=

 $1.4 \times 10^{-1} \text{mol/ m}^3$

Partial pressure of oxygen in blood= 5.6×10^{-5} M= 5.6×10^{-5} mol/L= $5.6 \times 10^{-5} \times 10^{3}$ mol/m³=

 $5.6 \times 10^{-2} \text{mol/ m}^3$

Thickness of membrane= 20 μm=20×10⁻⁶m

 $D_{O2}\!\!=\!\!1\;\mu\text{m}^2\!/\text{msec}\!\!=\!\!10^{\text{3-6}}\;\text{m}^2\!/\text{sec}\!\!=\!\!10^{\text{-3}}\;\text{m}^2\!/\text{sec}$

To find:

Rate of oxygen transport=?

Formula:

Rate of oxygen transport= $\frac{DO2}{\Delta x}$ (P₀₂.alveoli-P₀₂.blood)

Calculations:

By putting values:

Rate of oxygen transport= $\frac{10-3 \text{ m2/sec}}{20\times10-6m}$ (1.4×10⁻¹mol/ m3 -5.6×10⁻²mol/ m3)

Rate of oxygen transport= $10^{6-3}/20 (0.084 \text{mol/m}3)$ =**4.2mol/s per m**²

Question 4.2:

Given data:

Partial pressure of oxygen in alveoli=1.4×10⁻⁴M=1.4×10⁻⁴mol/L=1.4×10⁻⁴×10³mol/m³=

 $1.4 \times 10^{-1} \text{mol/ m}^3$

Partial pressure of oxygen in blood= $5.6 \times 10^{-5} M = 5.6 \times 10^{-5} mol/L = 5.6 \times 10^{-5} \times 10^{3} mol/m^{3} = 10^{-5} M = 1$

 $5.6 \times 10^{-2} \text{mol/m}^3$

Thickness of membrane= 20 μm =20×10⁻⁶m

 D_{02} =0.5 $\mu m^2/msec$ =0.5 $\times 10^{3-6}$ m^2/sec =0.5 $\times 10^{-3}$ m^2/sec

To find:

Rate of oxygen transport=?

Formula:

Rate of oxygen transport= $\frac{DO2}{\Delta x}$ (P₀₂.alveoli-P₀₂.blood)

Calculations:

By putting values:

Rate of oxygen transport=
$$\frac{0.5 \times 10 - 3 \text{ } m2/\text{sec}}{20 \times 10 - 6m} (1.4 \times 10^{-1} \text{mol/ m} \cdot 3 - 5.6 \times 10^{-2} \text{mol/ m} \cdot 3)$$

Rate of oxygen transport= $0.5 \times 10^{6-3}/20 (0.084 \text{mol/m}3)$ =**2.1 mol/s per m**²

Question 4.3

Rate of oxygen transport per square meter through injured lung is 2.1mol/s. Rate of oxygen transport per square meter through healthy lung is 4.2 mol/s. considering both values, it s inferred that rate of oxygen transport is reduced to half in injured tissue.

Question 4.4

Given data:

 $Partial\ pressure\ of\ oxygen\ in\ alveoli=1.4\times10^{\text{-4}}M=1.4\times10^{\text{-4}}mol/L=1.4\times10^{\text{-4}}\times10^{\text{-3}}mol/m^{\text{3}}=1.4\times10^{\text{-4}}mol/L=1.4\times10^{\text{-4}}$

 $1.4 \times 10^{-1} \text{mol/ m}^3$

Rate of oxygen transport=4.2 mol/s per m²

Thickness of membrane= $20 \mu m=20 \times 10^{-6} m$

 $D_{O2} \ of \ half \ injured \ lung=0.5\times1 \ \mu m^2/msec=0.5\times10^{3\text{-}6} \ m^2/sec=0.5\times10^{\text{-}3} \ m^2/sec$

Since D_{O2} is directly proportional to area, quarter injured tissues' D_{O2} value=0.75×10⁻³ m²/sec

To find:

Partial pressure of oxygen in blood=?

Formula:

Rate of oxygen transport= $\frac{DO2}{\Delta x}$ (P₀₂.alveoli-P₀₂.blood)

Calculations:

By putting values:

$$4.2 \text{mol/s/m}^2 = \frac{0.75 \times 10 - 3 \text{ } m2/\text{sec}}{20 \times 10 - 6m} (1.4 \times 10^{-1} \text{mol/ } \text{m}^3\text{-P02.blood})$$

$$8.4 \times 10^{-5} / 0.75 \times 10^{-3} = 1.4 \times 10^{-1} \text{mol/ m}^3 - \text{P02.blood}$$

$$0.112 = 1.4 \times 10^{-1} \text{mol/ m}^3 - \text{P02.blood}$$

$$P_{02}.blood{=}1.4{\times}10^{\text{--}1}\text{--}0.112{=}0.14\text{--}0.112{=}0.028mol/m^3$$

Value of partial pressure of oxygen in blood should be 0.028mol/m³=20000mmHg