<u>Vector Calculus MAT226 Spring 2025</u> <u>Professor Sormani</u>

Lesson 20: Method of Lagrange Multipliers

You will cut and paste the photos of your notes and completed classwork in a googledoc entitled:

MAT226S25-lesson20-lastname-firstname

Then share editing of that document with me <u>sormanic@gmail.com</u>. You will also put photos of your homework in this googledoc. If you work with any classmates, be sure to write their names on the problems you completed together.

This topic is an essential application of Vector Calculus! In this lesson we present three examples.

If you missed class watch the Playlist 226F21-19-ip123

The	Method of Lagrange Multipliers	
0/	ptimize a function $F(x,y,z)$ subject to a constraint $h(x,y,z)=k$	
OIT	method: Use h(x,y,z)=k to solve for z=	
	then sub in formula for z into F(x,y,z) to get a function of only two variables. which you then maximize over a domain	.
Exa	imple 1: Maximize Volume of a Rectangular Blownder a plane 6x+2y+3z=6	
E×o	emple 2: Maximize distance from a point P= $(\frac{3}{4})^2$ to a surface $x^2 + (\frac{y}{3})^2 + (\frac{3}{4})^2 = 1$)
Dif	-ficulties with old method: Solving for 2 may be impossible	
	or the domain is difficult to find.	
	Optimize: [Lagrange's Theorem] F(*1y, z) If (*1y, 130) & S achieves the maximum value of Fors	
(2016,30)	the maximum value of Fons max F = F(xo, yo, 20) Same theo holds	irem
5 Constraint	h(x,y,z)=k Lagrange multiplier	nimum
Key Idea of ∇F⊥5.	Lagrange: at a max or min such that $\nabla F_{(x_0,y_0,z_0)} = \lambda \nabla h_{(x_0,y_0,z_0)}$	
Find critic	cal points by solving: $\nabla F_{(x,y,z)} = \lambda \nabla h_{(x,y,z)} = \lambda h_{x}(x,y,z) =$	(x,y,2)
with fou	four equations h(x, y, z)= k fz(x, y, z)= k h(x, y, z)= k	


```
Example 1: Maximize Volume of a Rectangular Block
            under a plane 6x+2y+3z=6
Solve using the Method of Lagrange Multipliers
                                                                                             (x,y,2)=5
       F(x,y,z)=x.y.z (volume of a rectangular block
h(x,y,z)=6x+2y+3z=6 (constraint: a plane)
                        ∇F(x,y,z) = λ ν h(x,y,z)
                              h(x,y,z)=k = point in S
       \nabla F = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} = \begin{pmatrix} \frac{3}{3x} (xyz) \\ \frac{3}{3y} (xyz) \\ \frac{3}{3z} (xyz) \end{pmatrix} = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}
      \nabla h = \begin{pmatrix} h_{x} \\ h_{y} \\ h_{z} \end{pmatrix} = \begin{pmatrix} \frac{2}{3x} (6x + 2y + 3z) \\ \frac{2}{3y} (6x + 2y + 3z) \\ \frac{2}{3z} (6x + 2y + 3z) \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix} \leftarrow \begin{cases} normal \\ to the p \\ S \end{cases}
                                                                                         system
                                                                                       (not linear)
  We want to solve the system for (x,y, 2) don't care about ?
     so get rid of a first if possible.
     \frac{y^2}{6} = \lambda \frac{x^2}{2} = \lambda \frac{xy}{3} = \lambda Thus: \frac{y^2}{6} = \frac{x^2}{2} = \frac{xy}{3} How to use this?
                                                                                    " > lambda
   So try something else: may be notice symmetry
                                                                                         Lagrange
                        now all three Thus x76=y72= 273
   xyz=x36
                                                  Assume 2 # 0 divide it out
                          equations equal xy 7
    y x = = y 22
                                                     and get 6x= 2y = 32 which is
    2 x y = 7 73
                                                                         s the line cross 5 ?
                                                         6+2+++++=6= +++++=6
Must also check
 what happens when 7=0
```


Classwork 2

The Method of Lagrange Multipliers works with any number of variables
Maximize F(x,y) subject to constraint h(x,y)=k then solve (1====================================
then solve \ \ \tank - \
Maximize $F(x_1, x_2, \dots, x_m)$ subject to $h(x_1, \dots, x_m) = k$ $\nabla F = \begin{pmatrix} F_{x_1} \\ F_{x_2} \end{pmatrix} = \lambda \begin{pmatrix} h_{x_1} \\ h_{x_2} \\ h_{x_m} \end{pmatrix}$ m+1 eqns for m+1 unknows h_x_m
very difficult to solve when many vortables
(Next meeting we will have 2 constraints.)

Classwork 3

Check that you have watched the complete Playlist 226F21-19-ip123.

Extra Credit: prove Lagrange Theorem for Minima

Lehman Official HW (do before next lesson): 13.10/ 1, 3, 5, 7, and problems about max vol, min cost, refraction of light, production level, putnam challenge, or one related to your major

Homework for our class:

First finish the classwork above then do the problems below:

Selected homework for our class:

Use Method of Lagrange Multipliers to solve:

() Maximize f(x,y)=xx subject to constraint x+y=10

hint find of where h(xy)=k 13 the constraint hint find of where h(xy)=k 13 the constraint hint write equations of = 70h 3 equations hint write equations of fact each solution

(3) Minimize f(xy)=x2+y2 subject to constraint x+y-4=0

(5) Minimize f(xy)=x2-y2 subject to constraint x-2y+6=0

(7) Maximize f(xy)=2x+2xy+y subject to constraint constraint 2x+y=100

Solutions.

Use Method of Lagrange Multipliers to solve: () Maximize f(x,y)=xx subject to constraint x+y=10 hint find ∇h where h(x,y)=k 13 the constraint hint find ∇h where h(x,y)=k 13 the constraint hint write equations $\nabla f=\lambda \nabla h$ 3 equations h(x,y)=k and λ . hout check value of f out each solution $\Delta t = \begin{pmatrix} t^{\lambda} \\ t^{\lambda} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \times \lambda \\ \frac{3}{2} \times \lambda \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ $\nabla h = \begin{pmatrix} h_x \\ h_y \end{pmatrix} - \begin{pmatrix} \frac{1}{3x} (x+y) \\ \frac{1}{3x} (x+y) \end{pmatrix} = \begin{pmatrix} 1+6 \\ 6+1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{array}{c|c}
\nabla f = \lambda \nabla h \\
h(x_1y) = k
\end{array}
\longrightarrow
\begin{array}{c}
(x) = \lambda(1) \\
x + y = 10
\end{array}
\longrightarrow
\begin{array}{c}
x = \lambda \cdot 1 \\
x + y = 10
\end{array}$ Solving $10 = x+y = \lambda + \lambda$ so $2\lambda = 10$ $50 = x = \lambda = 5$ and $y = \lambda = 5$ check f(5,5) = 5-5=25 There are no other control points ? Is this a man? Yes be cause of one travel about the constraint xy becomes necessary

So the final answer for

(1) the max value is 25 achieved at (x,y)=(5,5).

For (3) you should show all work as above and reach but the final answer: the min value is 8 achieved at (x,y)=(2,2)

Why? Because (2,2) is the only critical point and you can see f gets larger as you move far down the line in either direction.

 $2x=\lambda$

 $-2y=-2\lambda$

x-2y+6=0

So

 $x=\lambda/2$

y=λ

and sub in

 $\lambda/2-2\lambda+6=0$

SO

 $\lambda = 4$

SO

x=2

and

y=4

So there is a critical point at (2,4)

To see this is a min check

$$f(2,4)=-12$$

and check f on either side along the constraint. So for example try y=0 and solve for x on the constraint and check the value of f there, and then try x=0 and so on. Then write a final conclusion.

No solution for (7)