Design and Engineering of Modern Beam Diagnostics

Instructors: Manfred Wendt, CERN; Silvia Zorzetti and Randy Thurman-Keup,

Fermilab

TA: Evan Milton, Fermilab

Exercises for:

- Frequency and time domain beam signals
- Digital signal processing

Instructor: Silvia Zorzetti, zorzetti@fnal.gov

Name of the student:

Exercise 1

The signal s(t) is the sum of two harmonics with close frequencies $f_1=10Hz$, and $f_2=12Hz$. Consider a sampling frequency $f_s=1kHz$

(1) Calculate the parameters to resolve frequency resolution $\Delta f < 2Hz$

(2) Calculate Fmax

(3) Open the MATLAB file and DSPex1.m and validate your results. To better visualize the data, consider a frequency resolution of 1Hz.

Exercise 2

- (1) Calculate the Q for $V_{ref} = 2 V$, N = 16 bit
- (2) How does the maximum SQNR improve from a 10-bit to a 14-bit ADC?

$$s(t) = \cos(2\pi f_0 t)$$

frequency $f_0 = 0.5$ Hz

Consider two ADCs frequencies and verify the quantization resolution.

ADC1:
$$f_s = 1MHz$$
. ADC2: $f_s \rightarrow \frac{f_s}{16}$

Question: Does the Q change? Why?

Exercise 3

Open the MATLAB file DSPex.2

The file creates a signal $s(t) = \sum_{i=1}^{0} \sin \sin 2(i \times f_0) t$, with O=5.

- (1) Increase the signal length (T) to visualize the FFT
- (2) Compare the FFT with and without window. What is changing?

(3) Optional: Increase T, add a gaussian function and compare the results.

Exercise 4 (tutorial)

Design the following digital system.

- $s(t) = 0.75 \cos \cos \left(2\pi f_0 + \phi_0\right) + 0.25 \sin(2\pi f_1)$
- $f_s = 100 MHz$
- $f_0 = 800 \, Hz$
- $f_1 = 1.3 \, kHz$