General Information about Polynomials

Definition:

A polynomial is a finite sum of terms in which all variables have whole number exponents and no variable appears in a denominator.

Remember:

Whole number exponents: {0, 1, 2, 3, 4, ...} no fractions!

The leading term in a polynomial is the term of highest degree. The constant term in a polynomial is the term without a variable.

Polynomials: YES or NO		
$3x^{\frac{1}{2}}$	NO - exponent is not a whole number	
$\frac{1}{x^2-1}$	NO - the variable is in the denominator	
$-3x^{2}$	YES - satisfies the polynomial definition	
$3\sqrt{x}$	NO - the square root of x can be written with a fractional exponent of x .	
2x-3	NO - exponent is not a whole number. Negative exponent places x^3 in denominator.	
$\sqrt{3}x$	YES - the exponent of x is 1 which is OK. The coefficient being radical 3 is not a problem.	

Classification by Terms			
monomial	one term: 12, $4x$, x^2 , $-5xy$		
binomial	two terms: $2x - 1$, $x^2 - 4$		
trinomial	three terms: $x^2 + 2x + 1$		
polynomial - one or more terms: polynomial means "many", but it can also be one term.			
The ending of these words "nomial" is Greek for "part".			
Classification by Degree			
Linear - degree of 1 or 0: $3x + 1$ or 12			
Quadratic - degree of 2: $2x^2 - x + 7$			
Cubic - degree of 3: $3x^3 + 4x^2 + 3x + 5$			

Definition:

The degree of a term with whole number exponents is the sum of the exponents of the variables, if there are variables. Non-zero constants have degree 0, and the term zero has no degree. Example: $6x^2$ has a degree of 2; $4x^2y^3$ has a degree of 5 (the sum of 2 and 3).

Definition:

The degree of a polynomial is the highest degree of its terms.

Example: $3x^2 + 4x + 1$ has a degree of 2; $x^3 - x^2 + 5x - 2$ has a degree of 3

The standard form of a polynomial is when all like terms are combined and the degrees are arranged in descending order.

Polynomial:
$$2x + 3x^5 + 4x^3 - 8$$

Standard form: $3x^5 + 4x^3 + 2x - 8$
 $3x^5 + 4x^3 + 2x^1 - 8x^0$

$$3x^{2} + 2x - 8$$
leading coefficient

Will we ever really use the degree?

Knowing the "degree" of a polynomial function will let you determine the most number of solutions the function may have, and the most number of times the function will cross the *x*-axis.

FYI: The standard form of a polynomial is formally written as $a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$, where n is a non-negative integer, and $a_0, a_1, a_2, ..., a_n$ are real number constant coefficients with $a_n \neq 0$.