Дата **20.04.2023.** Группа ХКМ 1/1. Курс 1

Дисциплина: Физика

Тема занятия: Колебания и волны

Цель занятия:

- *-методическая* совершенствование методики проведения лекционного занятия;
- учебная научиться решать задачи по теме колебания и волны;
- воспитательная обучать учащихся соотносить полученные знания с наблюдаемыми явлениями.

Вид занятия: Лекция Межпредметные связи:

Обеспечивающие: Техническая механика, Физика

Рекомендуемая литература

- 1.Мякишев Г.Я. Физика: учеб. для 10 кл. общеобразоват. организаций: базовый и углубл. уровни / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н Сотский; под ред. Н.А. Парфентьевой. 9 изд.,стер. М.: Просвещение, 2022. 432 с.: ил. (Классический курс)
- 2.Мякишев Г.Я. Физика: учеб. для 11 кл. общеобразоват. организаций: базовый и углубл. уровни / Г.Я. Мякишев, Б.Б. Буховцев, В.М.Чаругин; под ред. Н.А. Парфентьевой. 10 изд.,стер. М.: Просвещение, 2022. 432 с.: ил. (Классический курс)
- 3.Рымкевич А.П. Задачник: сборник для учащихся общеобразовательных учреждений. М., «Дрофа» 2008.

Тема: Колебания и волны

Практическое занятие №6

Формулы, используемые в задачах на механические колебания

Название величины	Обозначение	Единица измерения	Формула
Амплитуда колебаний	A	М	
Период колебаний	Т	С	T = 1/v; $T = t/N$
Частота колебаний	v	Гц	v = 1/T; $v = N/t$
Число колебаний за какое-то время	N		N = t/T; $N = vt$
Время	t	С	t = NT; $t = N/v$
Циклическая частота колебаний	ω	Гц	$\omega = 2\pi v = \frac{2\pi}{T}$
Период колебаний пружинного маятника	T	С	$T=2\pi\sqrt{\frac{m}{k}}$
Период колебаний математического маятника	Т	с	$T = 2\pi \sqrt{\frac{l}{g}}$
Уравнение гармонических колебаний			$x(t) = A\sin(\omega t + \varphi_0)$

Примеры решения задач

1. Сколько колебаний совершает математический маятник длиной l=4,9 м за время t=5 мин?

Решение. Период колебаний определяется по формуле

$$T=2\pi\sqrt{\frac{l}{g}}.$$

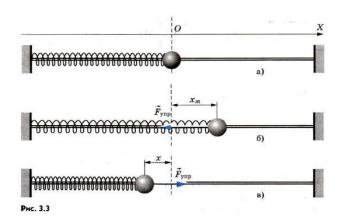
Искомое число колебаний можно найти так:

$$n=rac{t}{T}=rac{t}{2\pi}\sqrt{rac{g}{l}}\approx 68$$
.

2. Вертикально подвешенная пружина растягивается прикрепленным к ней грузом на $\Delta l = 0.8$ см. Чему равен период Т свободных колебаний груза? (Массой пружины пренебречь.)

Р е ш е н и е. Период колебаний груза, прикрепленного к пружине, определяется формулой

$$T=2\pi\sqrt{\frac{m}{k}},$$


где m — масса груза; k — жесткость пружины. На груз действуют сила тяжести $\vec{F}_{\rm T}$ и сила упругости $\vec{F}_{\rm ynp}$. Когда груз находится в равновесии, эти силы равны по модулю:

$$F_T = F_{ynp}$$
.

Так как $F_T = \text{mg}$ и $F_{\text{ynp}} = \text{k}$ Δl (закон Гука), то $\text{mg} = \text{k}\Delta l$, откуда $\frac{\textbf{\textit{m}}}{\textbf{\textit{k}}} = \frac{\Delta l}{\textbf{\textit{g}}}$. Следовательно,

$$T=2\pi\sqrt{\frac{\Delta l}{g}}\approx 0.2 \text{ c.}$$

3. На горизонтальном стержне находится груз, прикрепленный к пружине (см. рис. 3.3). Другой конец пружины закреплен. В некоторый момент времени груз смещают от положения равновесия на $x_m = 10$ см и отпускают. Определите координату груза спустя 1/8 периода колебаний. (Трение не учитывать.)

Решение. Зависимость координаты груза от времени выражается так:

$$x = x_m \cos \omega_0 t$$
.

Поскольку
$$\omega_0 = \frac{2\pi}{T}$$
 и $t = \frac{T}{8}$, то $x = x_m \cos \frac{\pi}{4} \approx 0.071$ м.

4. Груз, прикрепленный к пружине, колеблется на горизонтальном гладком стержне (см. рис. 3.3). Определите отношение кинетической энергии груза к потенциальной энергии системы в момент, когда груз находится в точке, расположенной посредине между крайним положением и положением равновесия.

P е ш е н и е. Координата указанной точки равна половине амплитуды колебаний: $x = \frac{x_m}{2}$. Потенциальная энергия системы в момент прохождения груза через эту точку равна:

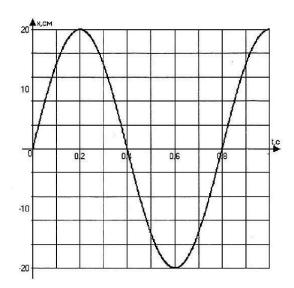
$$W_{\pi}=\frac{kx^2}{2}=\frac{kx_m^2}{8}.$$

В любой момент времени выполняется равенство

$$W_{\kappa} + W_{\pi} = \frac{kx_m^2}{2}.$$

Поэтому кинетическая энергия груза в момент прохождения им указанной точки определяется так:

$$W_{\kappa} = \frac{kx_m^2}{2} - W_{\pi} = \frac{kx_m^2}{2} - \frac{kx_m^2}{8} = \frac{3}{8}kx_m^2.$$


Следовательно,
$$\frac{W_{\scriptscriptstyle \rm E}}{W_{\scriptscriptstyle \rm B}}=3$$
.

Задание для самостоятельной работы:

- 1. Разобрать решение задач
- 2. Решить задачи:

Задача 1. Шарик на нити совершил 50 колебаний за 5 мин. Определите период и частоту колебаний шарика.

Задача 2. На рисунке изображен график зависимости координаты от времени колеблющегося тела. По графику определите: 1) амплитуду колебаний; 2) период колебаний; 3) частоту колебаний.

Задача 3. Частота колебаний крыльев вороны в полете равна в среднем 3 Гц. Сколько взмахов крыльями сделает ворона, пролетев путь 600 м со скоростью 12 м/с?

3. Фотографию прислать в личном сообщении ВК https://vk.com/id139705283

На фотографии вверху должна быть фамилия, дата выдачи задания, группа, дисциплина. Например: «Иванов И.И, **20.04.2023**, группа ХКМ1/1 «Физика»