Q 1 Which of the following statement is true for LPP-feasible solution,

- a) The solution must satisfy all constraints
- b) It must be a corner point
- c) It must be an optimal solution
- d) It must be a boundary point

% Ans Option: A

- Q 2 A tie in the leaving variable in simplex algorithm, led to which of the following case:
 - a) Unbounded solution
 - b) Non-degenerate feasible solution
 - c) Degenerate feasible solution
 - d) Alternate optimal solution

% Ans Option: C

Q 3 If one of the tables while applying simplex method is given below

B.V.	X_1	X_2	S ₁	S ₂	Solution
Z _J -C _J	0	-3	2	0	20
X_1	1	-1	1	0	10
S ₂	0	1	-2	1	20

where s₁, s₂ are slack variables. Then the objective function of the problem will be

- a) Max $Z = 2 x_1 + x_2$
- b) Max $Z = x_1 + 2 x_2$
- c) Max $Z = x_1 + x_2$
- d) Max $Z = -2 x_1 x_2$

% Ans Option: D

- Q 4 An addition of new constraint in an LPP may disturb ______ in the current optimal table.
 - a) Feasibility only
 - b) Optimality only
 - c) Both feasibility and optimality
 - d) None of these

% Ans Option: A

Q 5. An optimal table of the LPP: Max $2x_1+x_2-x_3$

subject to
$$x_1 + 2x_2 + x_3 + x_4 = 8$$

$$-x_1+x_2-2x_3+x_5=4$$
, $x_1, x_2, x_3, x_4, x_5>=0$

is given below

C _B	B.V.	X_1	X_2	X_3	X_4	X_5	Solution
	Z	0	3	3	2	0	16
2	X_1	1	2	1	1	0	8
0	X ₅	0	3	-1	-1	1	12

Find the value of objective function if a new variable x_6 is introduced with c_6 =2, and A_6 = (2,4) in the LPP.

- a) 8
- b) 12
- c) 16
- d) 18

% Ans Option: C

- Q 6. In the optimal simplex method, if the net evaluation (or relative evaluation) of a non-basic variable is zero then which of the following conclusion is most appropriate:
 - a) This indicates the LPP must have an alternate solution.
 - b) This indicates the LPP may have an alternate solution.
 - c) This indicates the LPP must have an unbounded solution.
 - d) This indicates the LPP may have an unbounded solution

% Ans Option: B

- Q 7. Which one of the following is not correct.
 - (a) Every optimal solution is feasible solution.
 - (b) Optimal solution may occur at boundary points.
 - (c) Artificial variable appearing in the basis (or optimal table) always lead to the conclusion that LPP has infeasible solution.
 - (d) Dual Simplex method conclude: either a LPP has optimal solution or Infeasible Solution, but not unbounded solution.

% Ans Option: C, if artificial variable is zero then it is feasible solution.