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ABSTRACT 
Stochastic model checking is the extension and generalization of the classical model checking. Compared 
with classical model checking, stochastic model checking faces more severe state explosion problem, because 
it combines classical model checking algorithms and numerical methods for calculating probabilities. For 
dealing with this, we first apply symmetric assume-guarantee rule symmetric (SYM) for two-component 
systems and symmetric assume-guarantee rule for n-component systems into stochastic model checking in 
this paper, and propose a compositional stochastic model checking framework of probabilistic automata based 
on the NL* algorithm. It optimizes the existed compositional stochastic model checking process to draw a 
conclusion quickly, in cases the system model does not satisfy the quantitative properties. We implement the 
framework based on the PRISM tool, and several large cases are used to demonstrate the performance of it. 
Keywords: Stochastic model checking, assume-guarantee reasoning, symmetric assume-guarantee rule, 

learning algorithm, probabilistic automata 

1. INTRODUCTION 

Formal verification can reveal the unexposed defects in a 
safety-critical system. As a prominent formal verification 
technique, model checking is an automatic and complete 
verification technique of finite state systems against 
correctness properties, which was pioneered respectively 
by Clarke and Emerson [1] and by Queille and Sifakis [2] 
in the early 1980’s. Whereas model checking techniques 
focus on the absolute correctness of systems, in practice 
such rigid notions are hard, or even impossible, to ensure. 
Instead, many systems exhibit stochastic aspects [3] which 
are essential for among others: modeling unreliable and 
unpredictable system behavior (message garbling or loss), 
model-based performance evaluation (i.e., estimating 
system performance and dependability) and randomized 
algorithms (leader election or consensus algorithms). 
Automatic formal verification of stochastic systems by 
model checking is called stochastic model checking or 
probabilistic model checking [4]. 
Stochastic model checking algorithms rely on a 
combination of model checking techniques for classical 
model checking and numerical methods for calculating 
probabilities. So, stochastic model checking faces more 
severe state explosion problem, compared with classical 
model checking [5]. There are some works to deal with 
this problem through bounded probabilistic model 
checking [6], abstraction refinement [7], compositional 
verification [8] and so on. The crucial notion of 

compositional verification is “divide and conquer”. It can 
decompose the whole system into separate components 
and conquer each component separately. The 
compositional verification techniques include 
assume-guarantee reasoning [9], contract-based methods 
[10] and invariant-based methods [11]. This paper focuses 
on assume-guarantee reasoning, which is an automatic 
method of compositional verification. To account for the 
relationship between the whole system and its different 
components, assume-guarantee reasoning gives some 
rules, which can change the global verification of a system 
into local verification of individual components. 
Theoretically speaking, applying the assume-guarantee 
reasoning into stochastic model checking is a feasible way 
to solve the state explosion problem. There is some 
research work done in this direction [12–15]. We argue 
that applying the assume-guarantee reasoning into 
stochastic model checking should solve the following four 
issues, which is named as AG-SMC problem: (1) How to 
generate appropriate assumptions. (2) How to check the 
assume-guarantee triple. (3) How to construct a 
counterexample. (4) How to verify a stochastic system 
composed of n (n≥2) components. 

1.1. Related Work 

According to the generation type of assumptions, we 
divided the existed work into two categories. 
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1.1.1. Manual interactive assumption generation 

On the existing theory of Markov Decision Process (MDP) 
model of combinatorial analysis [16], Kwiatkowska et al. 
[17] first gives out assume-guarantee reasoning for 
verifying probabilistic automaton (PA) model, including 
asymmetric assumption-guarantee rule (ASYM), circular 
assumption-guarantee rule (CRIC) and asynchronous 
assumption-guarantee rule (ASYNC). It solves the 
AG-SMC problem as follows: (1) It generates the 
assumptions through the manual interactive method. (2) In 
the triple of the form ⟨A⟩≥PAM⟨P⟩≥PG, system model M is a 
PA, the assumption ⟨A⟩≥PA and guarantee ⟨P⟩≥PG are 
probabilistic safety properties, represented by 
deterministic finite automaton (DFA). When system 
component M satisfies assumptions A with minimum 
probability PA, it will be able to satisfy property P with 
minimum probability PG. Checking the triple can be 
reduced to multi-objective model checking [18], which is 
equivalent to a linear programming (LP) problem. (3) It 
does not involve to construct the counterexamples. (4) It 
verifies a stochastic system composed of n ≥ 2 components 
through multi-component asymmetric assume-guarantee 
rule (ASYM-N). The core idea of ASYM-N rule is similar 
to CRIC rule, i.e., the component M1 satisfies the 
guarantee ⟨A1⟩≥PAM1, then the guarantee ⟨A1⟩≥PAM1 as the 
assumption of the component M2, let the component M2 
can satisfy the guarantee ⟨A2⟩≥PAM2,…, until the component 
Mn that satisfies the assumption ⟨An–1⟩≥PAMn-1 can satisfy the 
guarantee ⟨P⟩≥PG. If all above-mentioned conditions hold, 
the entire system model M1║M2║···║Mn will satisfy the 
guarantee ⟨P⟩≥PG. 

1.1.2. Automated assumption generation 

Bouchekir and Boukala [19], He et al. [20], Komuravelli et 
al. [21], Feng et al. [22] and [23] are the automated 
assumption generation methods for solving the AG-SMC 
problem. They can be divided into the following three 
kinds further. 

1.1.2.1. Learning-based assumption generation. 

Based on the learning-based assume-guarantee reasoning 
(LAGR) technology and the ASYM rule proposed in 
Segala [16], Feng et al. [22] proposes L*-based learning 
framework for PA model, which can be used to verify 
whether the given PA model satisfies the probabilistic 
safety property. Feng et al. [22] uses the cases to 
demonstrate the performance of its method, including the 
client–server, sensor network and the randomized 
consensus algorithm. For the AG-CSMC problem, Segala 
[16] can be specifically described in the following four 
aspects: (1) Through the L* learning algorithm, the process 

of generating an appropriate assumption ⟨A⟩≥PA is fully 
automated, i.e., we need to generate a closed and 
consistent observation table through membership queries, 
to generate a conjectured assumption, and then verify the 
correctness of the assumption through equivalence queries. 
(2) It checks the assume-guarantee triple through 
multi-objective model checking [18]. (3) In the whole 
learning process, Feng et al. [22] adopts the method 
proposed in Han et al. [24] to generate probabilistic 
counterexamples for refining the current assumption, i.e., 
the PRISM [25] is used to obtain the error state nodes in 
the model, and then the probabilistic counterexamples are 
constructed by using Eppstein’s [26] algorithm. (4) The 
verification problem of a stochastic system composed of n 
≥ 2 components is not solved. 
Feng et al. [23] makes further research based on Feng et al. 
[22] and uses several large cases to demonstrate the 
performance of it, including client–server, sensor network, 
randomized consensus algorithm and Mars Exploration 
Rovers (MER). For the AG-CSMC problem, compared 
with Feng et al. [23] and Feng et al. [22], the contribution 
of Feng et al. [23] is reflected in the better solution of the 
first sub-problem and the solution of the fourth 
sub-problem, which will be illustrated in the following two 
aspects: (1) Feng et al. [23] compares the assumption 
generation process between the L* learning algorithm and 
the NL* learning algorithm, and finds that NL* often needs 
fewer membership and equivalence queries than L* in 
large cases. (2) Based on Segala [16], Feng et al. [23] uses 
the ASYM-N rule to propose a learning framework for 
compositional stochastic model checking, and uses it to 
verify the multi-component stochastic system. So far, in 
the learning-based assumption generation method, four 
sub-problems of AG-CSMC problem have been solved 
basically. 

1.1.2.2. Symbolic learning-based assumption 
generation. 

One deficiency of learning-based assumption generation 
method is that the learning framework is sound but 
incomplete. Based on ASYM rule, He et al. [20] proposes 
an assume-guarantee rule containing weighted assumption 
for the first time, and provides a sound and complete 
learning framework, which can verify whether the 
probabilistic safety properties are satisfied on the MDP 
model. Through randomized consensus algorithm, wireless 
LAN protocol, FireWire protocol and randomized dining 
philosophers, He et al. [20] demonstrates the performance 
of its method. For the AG-CSMC problem, He et al. [20] 
can be specifically described in the following four aspects: 
(1) The weighted assumption can be represented by 
Multi-terminal Binary Decision Diagrams (MTBDD). 
Based on the L* learning algorithm, He et al. [20] proposes 
an MTBDD learning algorithm to automatically generate 
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the weighted assumption, which is represented by a 
k-Deterministic Finite Automaton (k-DFA). MTBDD 
learning algorithm can make membership queries on 
binary strings of arbitrary lengths and answer membership 
queries on valuations over fixed variables by the teacher. 
(2) Through the weighted extension of the classical 
simulation relation, He et al. [20] presents a verification 
method of the assume-guarantee triple containing the 
weighted assumption. (3) Similarly to Feng et al. [22], He 
et al. [20] also constructs the necessary probabilistic 
counterexamples in the learning process through Han et al. 
[24]. (4) The verification problem of a stochastic system 
composed of n ≥ 2 components is not solved. 
In Bouchekir and Boukala [19], the method realizes 
automatic assumption generation through the Symbolic 
Learning-based Assume-Guarantee Reasoning technology, 
also known as the Probabilistic Symbolic Compositional 
Verification (PSCV). The PSCV method provides a sound 
and complete symbolic assume-guarantee rule to verify 
whether the MDP model satisfies the Probabilistic 
Computation Tree Logic (PCTL) property. It is a new 
approach based on the combination of assume-guarantee 
reasoning and symbolic model checking techniques. 
Bouchekir and Boukala [19] uses randomized mutual 
exclusion, client–server, randomized dining philosophers, 
randomized self-stabilizing algorithm and Dice to 
demonstrate the performance of its method. For the 
AG-CSMC problem, Bouchekir and Boukala [19] can be 
specifically described in the following four aspects: (1) 
Appropriate assumptions are automatically generated by 
symbolic MTBDD learning algorithm, and represented by 
interval MDP (IMDP), thus ensuring the completeness of 
symbolic assume-guarantee rule. Moreover, In addition, to 
reduce the size of the state space, The PSCV method 
encodes both system components and assumptions 
implicitly using compact data structures, such as BDD or 
MTBDD. (2) Bouchekir and Boukala [19] uses the method 
in He et al. [20] to verify assume-guarantee triple. (3) To 
refine assumptions, the PSCV method [27] uses the 
causality method to construct counterexamples, i.e., it uses 
K* algorithm [28] in the DiPro tool to construct 
counterexamples, and applies the algorithms in Debbi and 
Bourahla [29] to construct the most indicative 
counterexample. (4) Verification of a stochastic system 
composed of n ≥ 2 components is not involved. 

1.1.2.3. Assumption generation based on 
abstraction-refinement. 

The method in Komuravelli et al. [21] is similar to 
Counterexample Guided Abstraction Refinement 
(CEGAR) [30]. It uses the Assume-Guarantee Abstraction 
Refinement technology to propose an assume-guarantee 
compositional verification framework for Labeled 
Probabilistic Transition Systems (LPTSes), which can 

verify whether the given LPTS model satisfies the 
safe-PCTL property. Komuravelli et al. [21] uses the 
client–server, MER and wireless sensor network to 
demonstrate the performance of its method. For the 
AG-CSMC problem, Komuravelli et al. [21] can be 
specifically described in the following four aspects: (1) 
The method can use tree counterexamples from checking 
one component to refine the abstraction of another 
component. Then, it uses the abstraction as the 
assumptions for assume-guarantee reasoning, represented 
by LPTS. (2) It uses a strong simulation relationship to 
check the assume-guarantee triple; (3) The process of 
constructing tree counterexample can be reduced to check 
the Satisfiability Modulo Theories problem, and then solve 
it through Yices [31]. (4) It also verifies an n-component 
stochastic system (n ≥ 2) by the ASYM-N rule. 

1.2. Our Contribution 

This paper presents some improvements based on the 
probabilistic assume-guarantee framework proposed in 
Feng et al. [23]. On one hand, our optimization is to verify 
each membership and equivalence query, to seek a 
counterexample, which can prove the property is not 
satisfied. If the counterexample is not spurious, the 
generation of the assumptions will stop, and the 
verification process will also terminate immediately. On 
the other hand, a potential shortage of the ASYM displays 
that the sole assumption A about M1 is present, but the 
additional assumption about M2 is nonexistent. We thus 
apply the SYM rule to the compositional verification of 
PAs and extend the rule to verify an n-component system 
(n ≥ 2). Through several large cases, it is shown that our 
improvements are feasible and efficient. 

1.3. Paper Structure 

The rest of the paper is organized as follows. Section 2 
introduces the preliminaries used in this paper, which 
include PAs, model checking and the NL* algorithm. 
Section 3 presents a compositional stochastic model 
checking framework based on the SYM rule and optimizes 
the learning framework. Then, the framework is extended 
to an n-component system (n ≥ 2) in Section 4. Section 5 
develops a prototype tool for the framework, and compares 
it with Feng et al. [23] by several large cases. Finally, 
Section 6 concludes the paper and presents direction for 
future research. 

2. BACKGROUND 
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2.1. Probabilistic Automata 

Probabilistic automata [3, 17, 32, 33] can model both 
probabilistic and nondeterministic behavior of systems, 
which is a slight generalization of MDPs. The verification 
algorithms for MDPs can be adapted for PAs. 
In the following, Dist(V) is defined as the set of all discrete 
probability distributions over a set V. ηv is defined as the 
point distribution on v ∈ V. μ1 × μ2 ∈ Dist(V1 × V2) is the 
product distribution of μ1 ∈ Dist(V1) and μ2 ∈ Dist(V2). 
Definition 1. (probabilistic automaton) A probabilistic 

automaton (PA) is a tuple  

where V is a set of states,  is an initial state, αM is 
an alphabet for all the action, δM ⊆ V × (αM ⋃ {τ}) × 
Dist(V) is a probabilistic transition relation. τ is an 
invisible action, and L:V → 2AP is a labeling function 
mapping each state to a set of atomic propositions taken 
from a set AP. 

In any state v of a PA M, we use the transition  to 
denote that (v, α, μ) ∈ δM, where α ∈ αM ⋃ {τ} is an action 
label. μ is a probability distribution over state v. All 
transitions are nondeterministic, and it will make a random 
choice according to the distribution μ. A trace through M is 

a (finite or infinite) sequence  where 

, and for each i ≥ 0,  is a transition and 
μi (vi+1) > 0. The sequence of actions α0, α1, . . . , after 
removal of any τ, from a trace t is also called a path. An 
adversary σ is sometimes referred to as scheduler, policy, 
or strategy, which maps any finite path to a 
sub-distribution over the available transitions in the last 
state of the path. This paper focuses on are finite-memory 
adversaries, which store information about the history in a 
finite-state automaton (see Baier and Katoen [3] Definition 

10.97; pp. 848). We define  as the set of all 
traces through M under the control of adversary σ, and 
AdvM as the set of all potential adversaries for M. For an 

adversary, we define a probability space  on 

, and the probability space can know the 
probability of the adversary σ. 
Definition 2. (Parallel composition of PAs) If 

 and 

 are PAs, then their 
parallel composition is denoted as M1║M2. It is given by 

the  

where δM1║M2 is defined such that  if 
and only if one of the following holds: 

 (1) 

 (2) 

 (3) 
and 

 (4) 
Definition 3. (Alphabet extension of PA) For any 

 and set of actions y, we 
extend the alphabet of M to y, denoted M[y], as follows: 

 where δM[y] is a 
probabilistic transition relation on M[y], and δM[y] = δM ⋃ 
{(v, α, ηv)|v∈ V Λ α ∈ y \ αM}. 
For any state v = (v1, v2) of M1║M2, the projection of v on 
Mi, denoted by v↾Mi. Then, we extend it to distributions on 
the state space V1 × V2 of M1║M2. For each trace t on 
M1║M2, the projection of t on Mi, denoted by t↾Mi, i.e., the 
trace can be acquired from Mi by projecting each state of t 
onto Mi and removing all the actions not in the alphabet 
αMi. 

 

Figure 1 (a) Probabilistic automata M1 (b) 
probabilistic automata M1 and (c) DFA Perr for the 
safety property P 
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Figure 2 Assumptions ,  for M1, M2 

Example 1. Figure 1 shows two PAs M1 and M2. The 
switch of a device M2 is controlled by a controller M1. 
Once the emergence of the detect signal, M1 can send a 
warn signal before the shutdown signal, but the attempt 
may be not successful with probability 0.2. M1 issues the 
shutdown signal directly, this will lead to the occurrence of 
a mistake in the device M2 with probability 0.1(i.e., M2 
will not shut down correctly). The DFA Perr indicates that 
action fail never occurs. We need to verify whether M1║M2 
⊨ ⟨P〉≥0.98 holds. 

 

Figure 3 NL*-based learning framework for 
the rule SYM 

On the contrary, we need to check whether it is a spurious 
counterexample, let the conjectured assumption becomes 
stronger than necessary. If the spurious counterexample 
exists, the conjectured assumption must be refined once 

again. When the conjectured assumption is updated, the 
framework will return a lower and an upper bound on the 
minimum probability of safety property P holding. This 
measure means that it can provide some valuable 
information to the user, even if the framework could not 
produce an accurate judgment. More details are described 
in the following sections. 

property P. Figure 6 Assumptions , ,  
for M1, M2, M3 
Through premise n + 1, we can find a spurious 
counterexample trace cex(0.2, ⟨shutdown〉) in 

 and cex(1, ⟨shutdown〉) in , but 
corresponding spurious counterexample trace in 

 is nonexistent (since action fail exists). So 
prefixes of all infinite traces in 

 can be accepted by 

 and we can 
think M1║M2║M3 ⊨ ⟨P〉≥0.98 holds. 
 

Table 1 Sensor network experimental results 

Case study [sensor network] Sensor numbers 
Component sizes SYM ASYM [23] 

|M1| |M2| MQ Time(s) MQ Time(s) 

 

1 72 32 16 1.5 25 2.7 

2 1184 32 16 1.8 25 2.9 

3 10662 32 16 2.4 25 3.9 

 
 
The second case is the client–server model studied from 
Pasareanu et al. [42]. Feng et al. [23] injects (probabilistic) 
failures into one or more of the N clients and changes the 
model into a stochastic system. In client–server model, 
each client can send requests for reservations to use a 
common resource, the server can grant or deny a client’s 
request, and the model must satisfy the mutual exclusion 
property (i.e., conflict in using resources between clients) 
with certain minimum probability. Through the SYM rule, 
we make the server as a component M1 and the 
composition of N clients as the other component M2. The 
verified property is ⟨P〉≥0.9.We use the method of Feng et 
al. [23] to inject (nonprobabilistic and probabilistic) 
failures into the server respectively. Table 2 shows 
experimental results for the client–server.We first present a 
sound SYM for compositional stochastic model checking. 
Then, we propose a learning framework for compositional 

stochastic model checking PAs with rule SYM, based on 
the optimization of LAGR techniques. Our optimization 
can terminate the learning process in advance, if a 
counterexample appears in any membership and 
equivalence query. We also extend the framework to 
support the assume-guarantee rule SYM-N which can be 
used for reasoning about a stochastic system composed of 
n ≥ 2 components: M1║M2║···║Mn. Experimental results 
show that our method can improve the efficiency of the 
original learning framework [23]. Similar to Feng et al. 
[22] and Kwiatkowska et al. [33], it can return the tightest 
bounds for the safety property as a reference as well. 
In the future, we intend to develop our learning framework 
to produce richer classes of probabilistic assumption (for 
example weighted automata as assumptions [39]) and 
extend it to deal with more expressive types of 
probabilistic models. 
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To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al. 
[23] without modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a 
shared coin protocol parameterized by K. The verified property is ⟨P〉≥0.97504, and 0.97504 is the minimum probability of 
consensus being reached within R rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for 
the coin protocol and M2 for the interleaving of N processes. 
In Tables 1 and 2, the component sizes of the M1 and M2 are denoted as |M1| and |M2|, and the performance is measured by the 
total number of Membership Queries (MQ) and runtimes (Time). Note that Time includes counterexample construction, NFA 
translation and the learning process. Moreover, for the accuracy of the results, we select the counterexamples in the same order 
as Feng et al. [23] in each equivalence query. Note that Feng et al. [23] has included comparisons with non-compositional 
verification, so this paper only compares with Feng et al. [23]. 

 

Table 2 Client–server experimental results 

Case study [consensus] [N R K] 
Component 

sizes SYM ASYM [23] 

|M1| |M2| Time (s) Time (s) 

 

2 3 20 3217 389 12.1 11.6 

2 4 4 431649 571 82.2 80.7 

3 3 20 38193 8837 355.8 350.2 

To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al. [23] without 
modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a shared coin protocol 
parameterized by K. The verified property is ⟨P〉≥0.97504, and 0.97504 is the minimum probability of consensus being reached within R 
rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for the coin protocol and M2 for the interleaving of 
N processes. 

In Tables 1 and 2, the component sizes of the M1 and M2 
are denoted as |M1| and |M2|, and the performance is 
measured by the total number of Membership Queries 
(MQ) and runtimes (Time). Note that Time includes 
counterexample construction, NFA translation and the 
learning process. Moreover, for the accuracy of the results, 
we select the counterexamples in the same order as Feng et 
al. [23] in each equivalence query. Note that Feng et al. 
[23] has included comparisons with non-compositional 
verification, so this paper only compares with Feng et al. 
[23]. 
As shown in Tables 1 and 2, the experiment results show 
that our framework is more efficient than Feng et al. [23]. 
Obviously, we can observe that, for all cases, runtimes and 
the number of the membership queries in our framework 
are less than Feng et al. [23]. Moreover, the runtimes need 
less in our framework, when the model has a large scale. A 
larger size model may have less runtimes and the number 

of membership queries than a smaller model. However, 
this is not proportion with the model size. The efficiency 
of our framework depends only on the time of a 
counterexample (indicate that the probabilistic safety 
property is violated) appears in conjectured assumptions. 
The earlier a counterexample appears, the more efficient 
our framework performs. 
In Table 3, the component sizes of the M1 and M2 is also 
denoted as |M1| and |M2|. The performance is measured 
only by total runtimes (Time), because both methods have 
the same amount of MQ if the model satisfies the 
properties. Because of the cost of early detection, we can 
find that our methods need to spend more time than Feng 
et al. [23] and cost grows with the model size. But 
compared with acquirement of optimization in Tables 1 
and 2, the cost is acceptable in Table 3. 
 
 
 

 

2. CONCLUSION 
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