
Compositional Stochastic Model Checking Probabilistic
Automata via Assume-guarantee Reasoning

Yang Liu1,2,* Rui Li1
1School of Information Engineering, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210046, China
2School of Computing, National University of Singapore, Singapore 117417, Singapore
*Corresponding author. Email: yliu@nufe.edu.cn

ABSTRACT
Stochastic model checking is the extension and generalization of the classical model checking. Compared
with classical model checking, stochastic model checking faces more severe state explosion problem, because
it combines classical model checking algorithms and numerical methods for calculating probabilities. For
dealing with this, we first apply symmetric assume-guarantee rule symmetric (SYM) for two-component
systems and symmetric assume-guarantee rule for n-component systems into stochastic model checking in
this paper, and propose a compositional stochastic model checking framework of probabilistic automata based
on the NL* algorithm. It optimizes the existed compositional stochastic model checking process to draw a
conclusion quickly, in cases the system model does not satisfy the quantitative properties. We implement the
framework based on the PRISM tool, and several large cases are used to demonstrate the performance of it.
Keywords: Stochastic model checking, assume-guarantee reasoning, symmetric assume-guarantee rule,

learning algorithm, probabilistic automata

1. INTRODUCTION

Formal verification can reveal the unexposed defects in a
safety-critical system. As a prominent formal verification
technique, model checking is an automatic and complete
verification technique of finite state systems against
correctness properties, which was pioneered respectively
by Clarke and Emerson [1] and by Queille and Sifakis [2]
in the early 1980’s. Whereas model checking techniques
focus on the absolute correctness of systems, in practice
such rigid notions are hard, or even impossible, to ensure.
Instead, many systems exhibit stochastic aspects [3] which
are essential for among others: modeling unreliable and
unpredictable system behavior (message garbling or loss),
model-based performance evaluation (i.e., estimating
system performance and dependability) and randomized
algorithms (leader election or consensus algorithms).
Automatic formal verification of stochastic systems by
model checking is called stochastic model checking or
probabilistic model checking [4].
Stochastic model checking algorithms rely on a
combination of model checking techniques for classical
model checking and numerical methods for calculating
probabilities. So, stochastic model checking faces more
severe state explosion problem, compared with classical
model checking [5]. There are some works to deal with
this problem through bounded probabilistic model
checking [6], abstraction refinement [7], compositional
verification [8] and so on. The crucial notion of

compositional verification is “divide and conquer”. It can
decompose the whole system into separate components
and conquer each component separately. The
compositional verification techniques include
assume-guarantee reasoning [9], contract-based methods
[10] and invariant-based methods [11]. This paper focuses
on assume-guarantee reasoning, which is an automatic
method of compositional verification. To account for the
relationship between the whole system and its different
components, assume-guarantee reasoning gives some
rules, which can change the global verification of a system
into local verification of individual components.
Theoretically speaking, applying the assume-guarantee
reasoning into stochastic model checking is a feasible way
to solve the state explosion problem. There is some
research work done in this direction [12–15]. We argue
that applying the assume-guarantee reasoning into
stochastic model checking should solve the following four
issues, which is named as AG-SMC problem: (1) How to
generate appropriate assumptions. (2) How to check the
assume-guarantee triple. (3) How to construct a
counterexample. (4) How to verify a stochastic system
composed of n (n≥2) components.

1.1. Related Work

According to the generation type of assumptions, we
divided the existed work into two categories.

1

​

1.1.1. Manual interactive assumption generation

On the existing theory of Markov Decision Process (MDP)
model of combinatorial analysis [16], Kwiatkowska et al.
[17] first gives out assume-guarantee reasoning for
verifying probabilistic automaton (PA) model, including
asymmetric assumption-guarantee rule (ASYM), circular
assumption-guarantee rule (CRIC) and asynchronous
assumption-guarantee rule (ASYNC). It solves the
AG-SMC problem as follows: (1) It generates the
assumptions through the manual interactive method. (2) In
the triple of the form ⟨A⟩≥PAM⟨P⟩≥PG, system model M is a
PA, the assumption ⟨A⟩≥PA and guarantee ⟨P⟩≥PG are
probabilistic safety properties, represented by
deterministic finite automaton (DFA). When system
component M satisfies assumptions A with minimum
probability PA, it will be able to satisfy property P with
minimum probability PG. Checking the triple can be
reduced to multi-objective model checking [18], which is
equivalent to a linear programming (LP) problem. (3) It
does not involve to construct the counterexamples. (4) It
verifies a stochastic system composed of n ≥ 2 components
through multi-component asymmetric assume-guarantee
rule (ASYM-N). The core idea of ASYM-N rule is similar
to CRIC rule, i.e., the component M1 satisfies the
guarantee ⟨A1⟩≥PAM1, then the guarantee ⟨A1⟩≥PAM1 as the
assumption of the component M2, let the component M2
can satisfy the guarantee ⟨A2⟩≥PAM2,…, until the component
Mn that satisfies the assumption ⟨An–1⟩≥PAMn-1 can satisfy the
guarantee ⟨P⟩≥PG. If all above-mentioned conditions hold,
the entire system model M1║M2║···║Mn will satisfy the
guarantee ⟨P⟩≥PG.

1.1.2. Automated assumption generation

Bouchekir and Boukala [19], He et al. [20], Komuravelli et
al. [21], Feng et al. [22] and [23] are the automated
assumption generation methods for solving the AG-SMC
problem. They can be divided into the following three
kinds further.

1.1.2.1. Learning-based assumption generation.

Based on the learning-based assume-guarantee reasoning
(LAGR) technology and the ASYM rule proposed in
Segala [16], Feng et al. [22] proposes L*-based learning
framework for PA model, which can be used to verify
whether the given PA model satisfies the probabilistic
safety property. Feng et al. [22] uses the cases to
demonstrate the performance of its method, including the
client–server, sensor network and the randomized
consensus algorithm. For the AG-CSMC problem, Segala
[16] can be specifically described in the following four
aspects: (1) Through the L* learning algorithm, the process

of generating an appropriate assumption ⟨A⟩≥PA is fully
automated, i.e., we need to generate a closed and
consistent observation table through membership queries,
to generate a conjectured assumption, and then verify the
correctness of the assumption through equivalence queries.
(2) It checks the assume-guarantee triple through
multi-objective model checking [18]. (3) In the whole
learning process, Feng et al. [22] adopts the method
proposed in Han et al. [24] to generate probabilistic
counterexamples for refining the current assumption, i.e.,
the PRISM [25] is used to obtain the error state nodes in
the model, and then the probabilistic counterexamples are
constructed by using Eppstein’s [26] algorithm. (4) The
verification problem of a stochastic system composed of n
≥ 2 components is not solved.
Feng et al. [23] makes further research based on Feng et al.
[22] and uses several large cases to demonstrate the
performance of it, including client–server, sensor network,
randomized consensus algorithm and Mars Exploration
Rovers (MER). For the AG-CSMC problem, compared
with Feng et al. [23] and Feng et al. [22], the contribution
of Feng et al. [23] is reflected in the better solution of the
first sub-problem and the solution of the fourth
sub-problem, which will be illustrated in the following two
aspects: (1) Feng et al. [23] compares the assumption
generation process between the L* learning algorithm and
the NL* learning algorithm, and finds that NL* often needs
fewer membership and equivalence queries than L* in
large cases. (2) Based on Segala [16], Feng et al. [23] uses
the ASYM-N rule to propose a learning framework for
compositional stochastic model checking, and uses it to
verify the multi-component stochastic system. So far, in
the learning-based assumption generation method, four
sub-problems of AG-CSMC problem have been solved
basically.

1.1.2.2. Symbolic learning-based assumption
generation.

One deficiency of learning-based assumption generation
method is that the learning framework is sound but
incomplete. Based on ASYM rule, He et al. [20] proposes
an assume-guarantee rule containing weighted assumption
for the first time, and provides a sound and complete
learning framework, which can verify whether the
probabilistic safety properties are satisfied on the MDP
model. Through randomized consensus algorithm, wireless
LAN protocol, FireWire protocol and randomized dining
philosophers, He et al. [20] demonstrates the performance
of its method. For the AG-CSMC problem, He et al. [20]
can be specifically described in the following four aspects:
(1) The weighted assumption can be represented by
Multi-terminal Binary Decision Diagrams (MTBDD).
Based on the L* learning algorithm, He et al. [20] proposes
an MTBDD learning algorithm to automatically generate

2

​

the weighted assumption, which is represented by a
k-Deterministic Finite Automaton (k-DFA). MTBDD
learning algorithm can make membership queries on
binary strings of arbitrary lengths and answer membership
queries on valuations over fixed variables by the teacher.
(2) Through the weighted extension of the classical
simulation relation, He et al. [20] presents a verification
method of the assume-guarantee triple containing the
weighted assumption. (3) Similarly to Feng et al. [22], He
et al. [20] also constructs the necessary probabilistic
counterexamples in the learning process through Han et al.
[24]. (4) The verification problem of a stochastic system
composed of n ≥ 2 components is not solved.
In Bouchekir and Boukala [19], the method realizes
automatic assumption generation through the Symbolic
Learning-based Assume-Guarantee Reasoning technology,
also known as the Probabilistic Symbolic Compositional
Verification (PSCV). The PSCV method provides a sound
and complete symbolic assume-guarantee rule to verify
whether the MDP model satisfies the Probabilistic
Computation Tree Logic (PCTL) property. It is a new
approach based on the combination of assume-guarantee
reasoning and symbolic model checking techniques.
Bouchekir and Boukala [19] uses randomized mutual
exclusion, client–server, randomized dining philosophers,
randomized self-stabilizing algorithm and Dice to
demonstrate the performance of its method. For the
AG-CSMC problem, Bouchekir and Boukala [19] can be
specifically described in the following four aspects: (1)
Appropriate assumptions are automatically generated by
symbolic MTBDD learning algorithm, and represented by
interval MDP (IMDP), thus ensuring the completeness of
symbolic assume-guarantee rule. Moreover, In addition, to
reduce the size of the state space, The PSCV method
encodes both system components and assumptions
implicitly using compact data structures, such as BDD or
MTBDD. (2) Bouchekir and Boukala [19] uses the method
in He et al. [20] to verify assume-guarantee triple. (3) To
refine assumptions, the PSCV method [27] uses the
causality method to construct counterexamples, i.e., it uses
K* algorithm [28] in the DiPro tool to construct
counterexamples, and applies the algorithms in Debbi and
Bourahla [29] to construct the most indicative
counterexample. (4) Verification of a stochastic system
composed of n ≥ 2 components is not involved.

1.1.2.3. Assumption generation based on
abstraction-refinement.

The method in Komuravelli et al. [21] is similar to
Counterexample Guided Abstraction Refinement
(CEGAR) [30]. It uses the Assume-Guarantee Abstraction
Refinement technology to propose an assume-guarantee
compositional verification framework for Labeled
Probabilistic Transition Systems (LPTSes), which can

verify whether the given LPTS model satisfies the
safe-PCTL property. Komuravelli et al. [21] uses the
client–server, MER and wireless sensor network to
demonstrate the performance of its method. For the
AG-CSMC problem, Komuravelli et al. [21] can be
specifically described in the following four aspects: (1)
The method can use tree counterexamples from checking
one component to refine the abstraction of another
component. Then, it uses the abstraction as the
assumptions for assume-guarantee reasoning, represented
by LPTS. (2) It uses a strong simulation relationship to
check the assume-guarantee triple; (3) The process of
constructing tree counterexample can be reduced to check
the Satisfiability Modulo Theories problem, and then solve
it through Yices [31]. (4) It also verifies an n-component
stochastic system (n ≥ 2) by the ASYM-N rule.

1.2. Our Contribution

This paper presents some improvements based on the
probabilistic assume-guarantee framework proposed in
Feng et al. [23]. On one hand, our optimization is to verify
each membership and equivalence query, to seek a
counterexample, which can prove the property is not
satisfied. If the counterexample is not spurious, the
generation of the assumptions will stop, and the
verification process will also terminate immediately. On
the other hand, a potential shortage of the ASYM displays
that the sole assumption A about M1 is present, but the
additional assumption about M2 is nonexistent. We thus
apply the SYM rule to the compositional verification of
PAs and extend the rule to verify an n-component system
(n ≥ 2). Through several large cases, it is shown that our
improvements are feasible and efficient.

1.3. Paper Structure

The rest of the paper is organized as follows. Section 2
introduces the preliminaries used in this paper, which
include PAs, model checking and the NL* algorithm.
Section 3 presents a compositional stochastic model
checking framework based on the SYM rule and optimizes
the learning framework. Then, the framework is extended
to an n-component system (n ≥ 2) in Section 4. Section 5
develops a prototype tool for the framework, and compares
it with Feng et al. [23] by several large cases. Finally,
Section 6 concludes the paper and presents direction for
future research.

2. BACKGROUND

3

​

2.1. Probabilistic Automata

Probabilistic automata [3, 17, 32, 33] can model both
probabilistic and nondeterministic behavior of systems,
which is a slight generalization of MDPs. The verification
algorithms for MDPs can be adapted for PAs.
In the following, Dist(V) is defined as the set of all discrete
probability distributions over a set V. ηv is defined as the
point distribution on v ∈ V. μ1 × μ2 ∈ Dist(V1 × V2) is the
product distribution of μ1 ∈ Dist(V1) and μ2 ∈ Dist(V2).
Definition 1. (probabilistic automaton) A probabilistic

automaton (PA) is a tuple

where V is a set of states, is an initial state, αM is
an alphabet for all the action, δM ⊆ V × (αM ⋃ {τ}) ×
Dist(V) is a probabilistic transition relation. τ is an
invisible action, and L:V → 2AP is a labeling function
mapping each state to a set of atomic propositions taken
from a set AP.

In any state v of a PA M, we use the transition to
denote that (v, α, μ) ∈ δM, where α ∈ αM ⋃ {τ} is an action
label. μ is a probability distribution over state v. All
transitions are nondeterministic, and it will make a random
choice according to the distribution μ. A trace through M is

a (finite or infinite) sequence where

, and for each i ≥ 0, is a transition and
μi (vi+1) > 0. The sequence of actions α0, α1, . . . , after
removal of any τ, from a trace t is also called a path. An
adversary σ is sometimes referred to as scheduler, policy,
or strategy, which maps any finite path to a
sub-distribution over the available transitions in the last
state of the path. This paper focuses on are finite-memory
adversaries, which store information about the history in a
finite-state automaton (see Baier and Katoen [3] Definition

10.97; pp. 848). We define as the set of all
traces through M under the control of adversary σ, and
AdvM as the set of all potential adversaries for M. For an

adversary, we define a probability space on

, and the probability space can know the
probability of the adversary σ.
Definition 2. (Parallel composition of PAs) If

 and

 are PAs, then their
parallel composition is denoted as M1║M2. It is given by

the

where δM1║M2 is defined such that if
and only if one of the following holds:

 (1)

 (2)

 (3)
and

 (4)
Definition 3. (Alphabet extension of PA) For any

 and set of actions y, we
extend the alphabet of M to y, denoted M[y], as follows:

 where δM[y] is a
probabilistic transition relation on M[y], and δM[y] = δM ⋃
{(v, α, ηv)|v∈ V Λ α ∈ y \ αM}.
For any state v = (v1, v2) of M1║M2, the projection of v on
Mi, denoted by v↾Mi. Then, we extend it to distributions on
the state space V1 × V2 of M1║M2. For each trace t on
M1║M2, the projection of t on Mi, denoted by t↾Mi, i.e., the
trace can be acquired from Mi by projecting each state of t
onto Mi and removing all the actions not in the alphabet
αMi.

Figure 1 (a) Probabilistic automata M1 (b)
probabilistic automata M1 and (c) DFA Perr for the
safety property P

4

​

Figure 2 Assumptions , for M1, M2

Example 1. Figure 1 shows two PAs M1 and M2. The
switch of a device M2 is controlled by a controller M1.
Once the emergence of the detect signal, M1 can send a
warn signal before the shutdown signal, but the attempt
may be not successful with probability 0.2. M1 issues the
shutdown signal directly, this will lead to the occurrence of
a mistake in the device M2 with probability 0.1(i.e., M2
will not shut down correctly). The DFA Perr indicates that
action fail never occurs. We need to verify whether M1║M2
⊨ ⟨P〉≥0.98 holds.

Figure 3 NL*-based learning framework for
the rule SYM

On the contrary, we need to check whether it is a spurious
counterexample, let the conjectured assumption becomes
stronger than necessary. If the spurious counterexample
exists, the conjectured assumption must be refined once

again. When the conjectured assumption is updated, the
framework will return a lower and an upper bound on the
minimum probability of safety property P holding. This
measure means that it can provide some valuable
information to the user, even if the framework could not
produce an accurate judgment. More details are described
in the following sections.

property P. Figure 6 Assumptions , ,
for M1, M2, M3
Through premise n + 1, we can find a spurious
counterexample trace cex(0.2, ⟨shutdown〉) in

 and cex(1, ⟨shutdown〉) in , but
corresponding spurious counterexample trace in

 is nonexistent (since action fail exists). So
prefixes of all infinite traces in

 can be accepted by

 and we can
think M1║M2║M3 ⊨ ⟨P〉≥0.98 holds.

Table 1 Sensor network experimental results

Case study [sensor network] Sensor numbers
Component sizes SYM ASYM [23]

|M1| |M2| MQ Time(s) MQ Time(s)

1 72 32 16 1.5 25 2.7

2 1184 32 16 1.8 25 2.9

3 10662 32 16 2.4 25 3.9

The second case is the client–server model studied from
Pasareanu et al. [42]. Feng et al. [23] injects (probabilistic)
failures into one or more of the N clients and changes the
model into a stochastic system. In client–server model,
each client can send requests for reservations to use a
common resource, the server can grant or deny a client’s
request, and the model must satisfy the mutual exclusion
property (i.e., conflict in using resources between clients)
with certain minimum probability. Through the SYM rule,
we make the server as a component M1 and the
composition of N clients as the other component M2. The
verified property is ⟨P〉≥0.9.We use the method of Feng et
al. [23] to inject (nonprobabilistic and probabilistic)
failures into the server respectively. Table 2 shows
experimental results for the client–server.We first present a
sound SYM for compositional stochastic model checking.
Then, we propose a learning framework for compositional

stochastic model checking PAs with rule SYM, based on
the optimization of LAGR techniques. Our optimization
can terminate the learning process in advance, if a
counterexample appears in any membership and
equivalence query. We also extend the framework to
support the assume-guarantee rule SYM-N which can be
used for reasoning about a stochastic system composed of
n ≥ 2 components: M1║M2║···║Mn. Experimental results
show that our method can improve the efficiency of the
original learning framework [23]. Similar to Feng et al.
[22] and Kwiatkowska et al. [33], it can return the tightest
bounds for the safety property as a reference as well.
In the future, we intend to develop our learning framework
to produce richer classes of probabilistic assumption (for
example weighted automata as assumptions [39]) and
extend it to deal with more expressive types of
probabilistic models.

5

To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al.
[23] without modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a
shared coin protocol parameterized by K. The verified property is ⟨P〉≥0.97504, and 0.97504 is the minimum probability of
consensus being reached within R rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for
the coin protocol and M2 for the interleaving of N processes.
In Tables 1 and 2, the component sizes of the M1 and M2 are denoted as |M1| and |M2|, and the performance is measured by the
total number of Membership Queries (MQ) and runtimes (Time). Note that Time includes counterexample construction, NFA
translation and the learning process. Moreover, for the accuracy of the results, we select the counterexamples in the same order
as Feng et al. [23] in each equivalence query. Note that Feng et al. [23] has included comparisons with non-compositional
verification, so this paper only compares with Feng et al. [23].

Table 2 Client–server experimental results

Case study [consensus] [N R K]
Component

sizes SYM ASYM [23]

|M1| |M2| Time (s) Time (s)

2 3 20 3217 389 12.1 11.6

2 4 4 431649 571 82.2 80.7

3 3 20 38193 8837 355.8 350.2

To consider the case where the model satisfies the properties, the last case is randomized consensus algorithm from Feng et al. [23] without
modification. The algorithm models N distributed processes trying to reach consensus and uses, in each round, a shared coin protocol
parameterized by K. The verified property is ⟨P〉≥0.97504, and 0.97504 is the minimum probability of consensus being reached within R
rounds. Through the SYM rule, the system is decomposed into two PA components: M1 for the coin protocol and M2 for the interleaving of
N processes.

In Tables 1 and 2, the component sizes of the M1 and M2
are denoted as |M1| and |M2|, and the performance is
measured by the total number of Membership Queries
(MQ) and runtimes (Time). Note that Time includes
counterexample construction, NFA translation and the
learning process. Moreover, for the accuracy of the results,
we select the counterexamples in the same order as Feng et
al. [23] in each equivalence query. Note that Feng et al.
[23] has included comparisons with non-compositional
verification, so this paper only compares with Feng et al.
[23].
As shown in Tables 1 and 2, the experiment results show
that our framework is more efficient than Feng et al. [23].
Obviously, we can observe that, for all cases, runtimes and
the number of the membership queries in our framework
are less than Feng et al. [23]. Moreover, the runtimes need
less in our framework, when the model has a large scale. A
larger size model may have less runtimes and the number

of membership queries than a smaller model. However,
this is not proportion with the model size. The efficiency
of our framework depends only on the time of a
counterexample (indicate that the probabilistic safety
property is violated) appears in conjectured assumptions.
The earlier a counterexample appears, the more efficient
our framework performs.
In Table 3, the component sizes of the M1 and M2 is also
denoted as |M1| and |M2|. The performance is measured
only by total runtimes (Time), because both methods have
the same amount of MQ if the model satisfies the
properties. Because of the cost of early detection, we can
find that our methods need to spend more time than Feng
et al. [23] and cost grows with the model size. But
compared with acquirement of optimization in Tables 1
and 2, the cost is acceptable in Table 3.

2. CONCLUSION

ACKNOWLEDGMENT

This work was supported by National
Natural Science Foundation of China

6

​

(61303022), Natural Science Major Project of
Jiangsu Higher Education Institutions
(17KJA520002), and Nanjing Scientific &
Technological Innovation Project for
Outstanding Overseas Returnees.

REFERENCES

[1] E.M. Clarke, E.A. Emerson, Design and
synthesis of synchronization skeletons
using branching time temporal logic, in:
D. Kozen (Eds.), Workshop on Logics of
Programs, Lecture Notes in Computer
Science, vol. 131, Springer, Berlin,
Heidelberg, 1981, pp. 52–71. DOI:
https://doi.org/10.1007/BFb0025774

[2] J.P. Queille, J. Sifakis, Specification and
verification of concurrent systems in
CESAR, in: M. Dezani-Ciancaglini and
U. Montanari (Eds.), Proceedings of the
5th International Symposium on
Programming, Lecture Notes in Computer
Science, vol. 137, Springer, Berlin,
Heidelberg, 1982, pp. 337–351. DOI:
https://doi.org/10.1007/3-540-11494-7_22

[3] C. Baier, J-P. Katoen, Principles of Model
Checking, MIT Press, 2008.

[4] M. Kwiatkowska, G. Norman, D. Parker,
Stochastic model checking, in: M.
Bernardo, J. Hillston (Eds.), Proceedings
of the Formal Methods for the Design of
Computer, Communication and Software
Systems: Performance Evaluation (SFM),
Springer, Berlin, Heidelberg, 2007, pp.
220–270. DOI:
https://doi.org/10.1007/978-3-540-72522-
0_6

[5] V. Forejt, M. Kwiatkowska, G. Norman, D.
Parker, Automated verification techniques
for probabilistic systems, in: M. Bernardo,
V. Issarny (Eds.), Proceedings of the
Formal Methods for Eternal Networked
Software Systems (SFM), Springer,
Berlin, Heidelberg, 2011, pp. 53–113.
DOI:
https://doi.org/10.1007/978-3-642-21455-
4_3

[6] G.D. Penna, B. Intrigila, I. Melatti, E.
Tronci, M.V. Zilli, Bounded probabilistic

model checking with the muralpha
verifier, in: A.J. Hu, A.K. Martin (Eds.),
Proceedings of the Formal Methods in
Computer-Aided Design, Springer, Berlin,
Heidelberg, 2004, pp. 214–229. DOI:
https://doi.org/10.1007/978-3-540-30494-
4_16

[7] E. Clarke, O. Grumberg, S. Jha, et al.,
Counterexample-guided abstraction
refinement, in: E.A. Emerson, A.P. Sistla
(Eds.), Computer Aided Verification,
Springer, Berlin, Heidelberg, 2000, pp.
154–169. DOI:
https://doi.org/10.1007/10722167_15

[8] H. Barringer, R. Kuiper, A. Pnueli, Now
you may compose temporal logic
specifications, in: Proceedings of the
Sixteenth Annual ACM Symposium on
the Theory of Computing (STOC), ACM,
1984, pp. 51–63. DOI:
https://doi.org/10.1145/800057.808665

[9] A. Pnueli, In transition from global to
modular temporal reasoning about
programs, in: K.R. Apt (Ed.), Logics and
Models of Concurrent Systems, Springer,
Berlin, Heidelberg, 1984, pp. 123–144.
DOI:
https://doi.org/10.1007/978-3-642-82453-
1_5

[10] B. Meyer, Applying "Design by
Contract", Computer 25(10) (1992)
40–51. DOI:
https://doi.org/10.1109/2.161279

[11] S. Bensalem, M. Bogza, A. Legay, T.H.
Nguyen, J. Sifakis, R. Yan, Incremental
component-based construction and
verification using invariants, in:
Proceedings of the Conference on Formal
Methods in Computer Aided Design
(FMCAD), IEEE Press, Piscataway, NJ,
2010, pp. 257–256.

[12] H. Barringer, C.S. Pasareanu, D.
Giannakopolou, Proof rules for automated
compositional verification through
learning, in Proc. of the 2nd International
Workshop on Specification and
Verification of Component Based
Systems, 2003.

7

​

[13] M.G. Bobaru, C.S. Pasareanu, D.
Giannakopoulou, Automated
assume-guarantee reasoning by
abstraction refinement, in: A. Gupta, S.
Malik (Eds.), Proceedings of the
Computer Aided Verification, Springer,
Berlin, Heidelberg, 2008, pp. 135–148.
DOI:
https://doi.org/10.1007/978-3-540-70545-
1_14

[14] J.M. Cobleigh, D. Giannakopoulou, C.S.
Păsăreanu, Learning assumptions for
compositional verification, in: H. Garavel,
J. Hatcliff (Eds.), Proceedings of the 9th
Tools and Algorithms for the Construction
and Analysis of Systems (TACAS),
Lecture Notes in Computer Science, vol.
2619, Springer, Berlin, Heidelberg, 2003,
pp. 331–346. DOI:
https://doi.org/10.1007/3-540-36577-X_2
4

[15] O. Grumberg, D.E. Long, Model checking
and modular verification, ACM Trans.
Program. Lang. Syst. 16(3) (1994)
843–871. DOI:
https://doi.org/10.1145/177492.177725

[16] R. Segala, Modeling and verification of
randomized distributed real-time systems,
Ph.D. Thesis, Department of Electrical
Engineering and Computer Science, MIT,
1995 (Also appears as Technical Report
MIT/LCS/TR-676).

[17] M. Kwiatkowska, G. Norman, D. Parker,
H. Qu, Assume-guarantee verification for
probabilistic systems, in: J. Esparza, R.
Majumdar (Eds.), Proceedings of the
International Conference on Tools and
Algorithms for the Construction and
Analysis of Systems (TACAS), Springer,
Berlin, Heidelberg, 2010, pp. 23–37. DOI:
https://doi.org/10.1007/978-3-642-12002-
2_3

[18] K. Etessami, M. Kwiatkowska, M. Vardi,
M. Yannakakis, Multi-objective model
checking of Markov decision processes,
in: O. Grumberg and M. Huth (Eds.),
Proceedings of the International
Conference on Tools and Algorithms for
the Construction and Analysis of Systems

(TACAS), Springer, Berlin, Heidelberg,
2007, pp. 50–65. DOI:
https://doi.org/10.1007/978-3-540-71209-
1_6

[19] R. Bouchekir, M.C. Boukala,
Learning-based symbolic
assume-guarantee reasoning for Markov
decision process by using interval Markov
process, Innov. Syst. Softw. Eng. 14(3)
(2018) 229–244. DOI:
https://doi.org/10.1007/s11334-018-0316-
7

[20] F. He, X. Gao, M. Wang, B-Y. Wang, L.
Zhang, Learning weighted assumptions
for compositional verification of markov
decision processes, ACM Trans. Softw.
Eng. Meth. 25(3) (2016) 21. DOI:
https://doi.org/10.1145/2907943

[21] A. Komuravelli, C.S. Păsăreanu, E.M.
Clarke. Assume-guarantee abstraction
refinement for probabilistic systems, in: P.
Madhusudan, S.A. Seshia (Eds.),
Proceedings of the International
Conference on Computer Aided
Verification, Springer, Berlin, Heidelberg,
2012, pp. 310–326. DOI:
https://doi.org/10.1007/978-3-642-31424-
7_25

[22] L. Feng, M. Kwiatkowska, D. Parker,
Compositional verification of probabilistic
systems using learning, in: Proceedings of
the Seventh International Conference on
the Quantitative Evaluation of Systems,
IEEE Press, Williamsburg, VA, USA,
2010, pp. 133–142. DOI:
https://doi.org/10.1109/QEST.2010.24

[23] L. Feng, M. Kwiatkowska, D. Parker,
Automated learning of probabilistic
assumptions for compositional reasoning,
in: D. Giannakopoulou, F. Orejas (Eds.),
Proceedings of the Fundamental
Approaches to Software Engineering
(FASE), Springer, Berlin, Heidelberg,
2011, pp. 2–17. DOI:
https://doi.org/10.1007/978-3-642-1981
1-3_2

[24] T. Han, J.P. Katoen, D. Berteun,
Counterexample generation in

8

​

probabilistic model checking, IEEE Trans.
Softw. Eng. 35(2) (2009) 241–257. DOI:
https://doi.org/10.1109/TSE.2009.5

[25] A. Hinton, M. Kwiatkowska, G. Norman,
D. Parker, PRISM: a tool for automatic
verification of probabilistic systems, in:
H. Hermanns, J. Palsberg, Proceedings of
the Tools and Algorithms for the
Construction and Analysis of Systems
(TACAS), Springer, Berlin, Heidelberg,
2006, pp. 441–444. DOI:
https://doi.org/10.1007/11691372_29

[26] D. Eppstein, Finding the k shortest paths,
SIAM J. Comput. 28(2) (1998) 652–673.
DOI:
https://doi.org/10.1137/S00975397952904
77

[27] H. Debbi, A. Debbi, M. Bourahla,
Debugging of probabilistic systems using
structural equation modelling, Int. J.
Critic. Comput. Based Syst. 6(4) (2017)
250–274. DOI:
https://doi.org/10.1504/IJCCBS.2016.081
805

[28] H. Aljazzar, S. Leue, K*: a heuristic
search algorithm for finding the k shortest
paths. Artif. Intell. 175(18) (2011)
2129–2154. DOI:
https://doi.org/10.1016/j.artint.2011.07.00
3

[29] H. Debbi, M. Bourahla, Generating
diagnoses for probabilistic model
checking using causality, Comput. Inform.
Technol. 21(1) (2013) 13–22. DOI:
https://doi.org/10.2498/cit.1002115

[30] H. Hermanns, B. Wachter, L. Zhang,
Probabilistic CEGAR, in: A. Gupta, S.
Malik (Eds.), Proceedings of the
Computer Aided Verification (CAV),
Springer, Berlin, Heidelberg, 2008, pp.
162–175. DOI:
https://doi.org/10.1007/978-3-540-70545-
1_16

[31] B. Dutertre, L. de Moura, The Yices SMT
Solver, Technical Report, SRI
International, 2006.

[32] M.O. Rabin, Probabilistic automata,
Inform. Control. 6(3) (1963) 230–245.
DOI:
https://doi.org/10.1016/S0019-9958(63)90
290-0

[33] M. Kwiatkowska, G. Norman, D. Parker,
H. Qu, Assume guarantee verification for
probabilistic systems, in: J. Esparza, R.
Majumdar (Eds.), Proceedings of the
Tools and Algorithms for the Construction
and Analysis of Systems (TACAS),
Springer, Berlin, Heidelberg, 2010, pp.
23–37. DOI:
https://doi.org/10.1007/978-3-642-12002-
2_3

[34] B. Bollig, P. Habermehl, C. Kern, M.
Leucker, Angluin-style learning of NFA*,
in: Boutilier and Craig (Eds.), Proceedings
of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), AAAI
Press, Pasadena, CA, USA, 2009, pp.
1004–1009.

[35] F. Denis, A. Lemay, A. Terlutte, Residual
finite state automata, Fund. Inform. 51(4)
(2002) 339–368.

[36] F. Denis, A. Lemay, A. Terlutte, Learning
regular languages using RFSAs, Theor.
Comput. Sci. 313(2) (2004) 267–294.
DOI:
https://doi.org/10.1016/j.tcs.2003.11.008

[37] L. de Alfaro, Formal Verification of
Probabilistic Systems, Ph.D. Thesis,
Stanford University, 1997.

[38] M.O. Rabin, D.S. Scott, Finite automata
and their decision problems, IBM J. Res.
Dev. 3(2) (1959) 114–125. DOI:
https://doi.org/10.1147/rd.32.0114

9

https://doi.org/10.1147/rd.32.0114

