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AIM

Creating a Machine Learning model to predict the home prices in Bangalore, India and create a single
page website which will provide the front end to access our model for predictions.

We use the dataset from Kaggle.com.

Below are data science concepts used in this project:
Data loading and cleaning

Outlier detection and removal

Feature engineering

Dimensionality reduction

Gridsearchcv for hyperparameter tunning

K fold cross validation

Technology and tools used in this project:
Python

NumPy and Pandas for data cleaning
Matplotlib for data visualization

Sklearn for model building

Python flask for http server

HTML/CSS/JavaScript for Ul

STEPS

We first build a model using sklearn and linear regression using banglore home prices dataset from
kaggle.com.

Second step was to write a python flask server that uses the saved model to serve http requests.

Third component is the website built in html, CSS and JavaScript that allows user to enter home
square ft area, bedrooms etc. and it will call python flask server to retrieve the predicted price.

Step#1: Import the required libraries
Step#2: Load the data
Step#3: Understand the data

-drop unnecessary columns



Step#4: Data Cleaning
- Check for NA values

- Verify unique values of each column

- Make sure values are correct (eg. 23 BHK home with 2000 Sqrft size is worng)

- Feature Engineering

- Dimensionality Reduction

- Outlier removal using domain knowledge (2bhk price < 3bhk price, size per bhk >= 300 sqft)

- Outlier removal using standard deviation and mean
- One Hot encoding

Step#5: Build Machine Learning Model

Step#6: Testing The model

Step#7: Export the model

Step#8: Export any other important info

DATA

Data provided by client

A B C D E F G H |
1 area_type availability location size society  |total_sqft |bath balcony |price
2 |Super built-up Area 19-Dec Electronic City Phasg 2 BHK Coomee 1056 2 1/39.07
3 |Plot Area Ready To Move Chikka Tirupathi 4 Bedroom Theanmp 2600 5 3 120
4 Built-up Area Ready To Move Uttarahalli 3 BHK 1440 2 3 62
5 |Super built-up Area Ready To Move Lingadheeranahalli |3 BHK Soiewre 1521 3 1 95
6 | Super built-up Area Ready To Move Kothanur 2 BHK 1200 2 1 51
7 | Super built-up Area Ready To Move Whitefield 2 BHK DuenaTa 1170 2 1 38
8 | Super built-up Area 18-May Old Airport Road 4 BHK Jaades 2732 4 204
9 | Super built-up Area Ready To Move Rajaji Nagar 4 BHK Brway G 3300 4 600
10 'Super built-up Area Ready To Move Marathahalli 3 BHK 1310 3 1|63.25
11 Plot Area Ready To Move Gandhi Bazar 6 Bedroom 1020 6 370
12 |Super built-up Area 18. Feb|Whitefield 3 BHK 1800 2 2 70
13 Plot Area Ready To Move Whitefield 4 Bedroom Prrry M 2785 5 3 295
14 Super built-up Area Ready To Move 7th Phase JP Nagar |2 BHK Shncyes 1000 2 1 38
15 Built-up Area Ready To Move Gottigere 2 BHK 1100 2 2 40
16 Plot Area Ready To Move Sarjapur 3 Bedroom Skityer 2250 3 2 148
17 |Super built-up Area Ready To Move Mysore Road 2 BHK PrntaEn 1175 2 2|73.5
18 |Super built-up Area Ready To Move Bisuvanahalli 3 BHK Prityel 1180 3 2 48
19 |Super built-up Area Ready To Move Raja Rajeshwari Nag| 3 BHK GrrvaGr 1540 3 3 60
20 |Super built-up Area Ready To Move Ramakrishnappa Lay| 3 BHK PeBayle 2770 4 2 290
21 |Super built-up Area Ready To Move Manayata Tech Park| 2 BHK 1100 2 2 48
22 |Built-up Area Ready To Move Kengeri 1 BHK 600 1 1 15
23 |Super built-up Area 19-Dec Binny Pete 3 BHK She 2rk 1755 3 1 122
24 |Plot Area Ready To Move Thanisandra 4 Bedroom Soitya 2800 5 2 380
25 |Super built-up Area Ready To Move Bellandur 3 BHK 1767 3 1 103
26 |Super built-up Area 18. Nov| Thanisandra 1RK Bhe 2ko 510 1 0|25.25
27 |Super built-up Area 18-May Mangammanapalya |3 BHK 1250 3 2 56




Step#1: Importing the required libraries

In [4]: import pandas as pd
import numpy as np

from matplotlib import pyplot as plt

%matplotlib inline
import matplotlib

matplotlib.rcParams["figure.figsize"] = (20, 18@)
pd.options.mode.chained assignment = None

Step#2: Load the data

Loading the Banglore home prices into the data frame

In [5]: dfl = pd.read_csv("Bengaluru House Data.csv")

df1.head()
out[5]:
area_type availability location size society total_sqft bath balcony price
Super A
0 built-up 19-Dec E'ECtrﬁ’j”r:gsgt;’; 2BHK Coomee 1056 20 10 3907
Area
1 PlotArea  eadyTo Chikka Tirupathi 4 Theanmp 2600 50 30 12000
Wove Bedroom
2 B“‘}'&t‘“p Eteadyglo Uttarahalli 2 BHK NaN 1440 20 30 6200
rea Move
Super
a builtup 929 10| ingadheeranahalli  3BHK  Soiewre 1521 30 10 9500
Area
Super
4 built-up Reaﬂgl—g Kothanur 2 BHK NaN 1200 20 10 51.00
Area

Step#3: Understanding the data

We try to understand the data to finalize the columns to work with and drop the rest of them

l. Getting to know the number of column and row: we have 13320 columns and 9 rows

In [6]: dfl.shape

out[e]: (13320, 9)

. Getting to know all columns names

For each column we have area type, availability, location size, society, total square feet (sqft), bath,

balcony, and price



In [7]: dfl.columns

Oout[7]: Index(['area_type', 'availability', 'location’, ‘'size', 'society’,

"total sqft’,

dtype="object")

'bath", 'balcony', 'price'],

Il Checking the unique values “area_type” column

In [8]: dfi['area type'].unique()

out[g]: array(['super built-up Area', 'Plot Area', 'Built-up Area',
"Carpet Area'], dtype=object)

IV. Counting the training example of for each area type

In [9]: dfi[‘'area_type'].value counts()

Out[9]: Super built-up Area

Built-up Area

Plot Area

Carpet Area
Mame: area_type, dtype:

V. Dropping columns

87906
2418
2025

87

inte4

To build our model we drop certain columns which are not required to avoid an overfitting problem.
Some unnecessary columns are dropped because an over-fitted prediction model will make the
prediction look good only on the current data. However, the result will not look good if using other
data sources. These features are area type, availability, society, and balcony. When removing these
“NOT REQUIRED” columns, we are left with 13320 rows and 5 columns.

To be noted: Every time we make change in dataset, we store it in new data frame (that is df1 to df2)

In [16]: df2 = dfl.drop([ area_type', 'society’, 'balcony’,'availability’],axis="columns")

print('Rows and columns are = ', df2.shape)

df2.head()

out[16]:

Rows and columns are = (13328, 5)
location size total_sqft bath  price
0 Electronic City Phase II 2 BHK 1056 2.0 39.07
1 Chikka Tirupathi 4 Bedroom 2600 50 12000
2 Uttarahalli 3BHK 1440 20 6200
3 Lingadheeranahalli 3 BHK 1521 30 9500
4 Kothanur 2 BHK 1200 20 51.00



Step#4: Data Cleaning

- We Check for NA (Not Applicable) values
- Verify unique values of each column

- We make sure values are correct (e.g., 23 BHK home with 2000 Sqft size seems wrong)

Handling Null values

We get the sum of all NA values form dataset

In [11]: df2.isnull().sum()

Out[11]: location 1
size 16
total sqgft 5]
bath 73
price 5]

dtype: inte4

Since null values as compared to total training examples (13320) which are few, we can safely
drop those examples and data stored into a new dataset (that is from df2 to df3)

In [12]: df2.shape

out[12]: (13320, 5)

In [13]: df3 = df2.dropna()
df3.isnull().sum()

Out[13]: location
size
total sqft
bath
price
dtype: inte4

o000

Since all training examples containing null values are dropped, we check the shape of the
dataset we are left with 13246 columns and 5 rows.

In [14]: df3.shape

Out[14]: (13246, 5)

Feature Engineering

o The “size” column contains the size of house in terms of BHK (Bedroom Hall Kitchen)
o To simplify it we create a new column by the name “BHK” and add only numeric value of
how many BHK’s

Reading the size column



In [17]: df3['size'].unique()

Out[17]: array(['2 BHK', "4 Bedroom', '3 BHK', "4 BHK', '6 Bedroom', '3 Bedroom',
'l BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
‘7 Bedroom', '5 BHK', '7 BHK', "6 BHK', 'S Bedroom', '11 BHK',
'9 BHK', '9 Bedroom', '27 BHK', '1@ Bedroom', '11 Bedroom',
"10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
'12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)

We copy the data into a new data frame (that is df3 to df4) and use the lambda function to get the
BHK numeric values

In [18]: df4 = df3.copy()
df4['bhk"] = df3['size'].apply(lambda x: int(x.split(' ')[@]))
df4.bhk.unique()

out[18]: array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 18, 19, 16, 43, 14, 12,
13, 18], dtype=inte4)

From the above data we can see that there is home with up to 43 BHK’s in Bangalore.

Getting to know the training example with data more than 20 BHK’s

In [19]: dfa[dfa.bhk >20]

out[19]:
location size total_sqgft bath price bhk
1718 ZElectronic City Phase I 27 BHK 8000 270 2300 27
4684 Munnekollal 43 Bedroom 2400 400 6600 43

To be noted: above 43 BHK are only 2400 sqgft only, we remove this data error later. First, we will clean
the “total_sqgft” column.

The next step is to check unique value in “total_sqgft” column

In [20]: df4.total sqft.unique()

out[2e]: array(['1e56', '26@0', '1440', ..., '1133 - 1384", '774', '4689'],
dtype=object)

From above, there are few records with range of area like “1133 - 1384”. We write a function to
identify such values



In [21]: def is float(x):
try:
float(x)
except:
return False

return True

Testing the function

In [22]: print('is this (123) float value = %s' % (is_float(123)))
print(‘is this (1133 - 1384) float value = %s' % (is float('1133 - 1384")))

is this (123) float value = True
is this (1133 - 1384) float value = False

We then apply this function to “total_sqgft” column. The function will show training examples where
“total_sqft” is not a float.

In [23]: dfa[~df4[ 'total sqft'].apply(is float)].head(10)

out[23]:

location size total_sqft bath price bhk

30 Yelahanka 4 BHK 2100-2850 4.0 186.000 4
122 Hebbal 4 BHK 3067 -8156 4.0 477.000 4
137 5th Phase JP Nagar 2 BHK 1042 -1105 2.0 54.005 2
165 Sarjapur 2 BHK 1145-1340 20 43.480 2
188 KR Puram 2 BHK 1015-1540 2.0 56.800 2
410 Kengeri 1BHK 34.465g. Meter 1.0  18.500 1
549 Hennur Road 2 BHK 1195 -1440 20 B3.770 2
648 Arekere G Bedroom 4125Perch 9.0 265.000 9
661 Yelahanka 2 BHK 1120-1145 20 48130 2
672 Bettahalsoor 4 Bedroom 3090 - 5002 40 445000 4

Above shows that total_sqft can be a range (example 2100 - 2850), so we write a function to get the
value from a range. There are few values like “34.46Sqg. Meter” and “4125Perch” which can be
converted to square ft using unit conversion are going to be ignored to keep things simple.



In [24]: def convert range to sqft(x):
try:
tokens = x.split('-")

if len(tokens) == 2:
return (float(tokens[8]) + float(tokens[1]))/2
else:
return float(x)
except:
return None

Testing the function (convert_range_to_sqft())

In [26]: print('Return value for i/p 12345 = %s' % (convert range to sqft('12345")))
print('Return value for i/p 1133 - 1384 = %s' % (convert range to sqft('1133 - 1384')))
print('Return value for i/p 34.465q. Meter = %s' % (convert range to sqft('34.465q. Meter')))

Return value for i/p 12345 = 12345.9

Return value for i/p 1133 - 1384 = 1258.5
Return value for i/p 34.465q. Meter = None

We then copy the df4 dataset into the new df5 dataset and then we apply the function for the
total_sqft function.

In [27]: df5 = df4.copy()

dfs.total_sqgft = df4.total_sqft.apply(convert_range to_sqft)

df5.head()
out[27]:

location size total_sqft bath price bhk

0 Electronic City Phase || 2 BHK 1056.0 20 3907 2

1 Chikka Tirupathi 4 Bedroom 26000 5.0 120.00 4

2 Uttarahalli 3 BHK 14400 2.0 62.00 3

3 Lingadheeranahalli 3 BHK 15210 30 9500 3

4 Kothanur 2 BHK 12000 20 51.00 2

Since the function will return null values for values like 34.265q. Meter, we check for any null values in
it



In [28]: df5.total sqft.isnull().sum()

out[28]: 46

After the check in we then drop the null training set from total_sqft, and store it in a new dataset dfé

In [29]: dfe = df5.dropna()
dfé.total sqft.isnull().sum()

out[29]: o

We then cross check the values of “total_sqft”. From previous training set df4 we had a range
(example 2100 — 2850), from new training set df6 we do not have a range no more (example 2475.0)

In [3@]: | print('total sqft value for 3@th training set in df4 = %s' % (df4.total sqft[3e]))
print(‘'total sqft value for 3@th training set in dfée = %s' % (dfe.total sqft[3@]))

total sqft value for 3@th training set in df4 = 21ee - 2850
total sqft value for 3@th training set in dfe = 2475.8

Feature Engineering — Price Column

The 'price' column contains the price of house in lacka (1 lakh = 100000)
Price per square fit is important parameter in house prices.

o So, we create a new column by the name 'price_per_sqft' and add price per sqft in it.
formula = (price * 100000)/total_sqft

The training set is stored into a new dataset df7

In [31]: df7 = df6.copy()

df7[ 'price_per_sqft'] = (dfe[ 'price’'] * 108000)/df6[ total sqft’]

df7.head()
out[31]:

location size total_sqft bath price bhk price_per_sqft
0 Electronic City Phase II 2 BHK 1056.0 2.0 39.07 2 3699.810606
1 Chikka Tirupathi 4 Bedroom 2600.0 50 120.00 4 4615.384615
2 Uttarahalli 3 BHK 14400 20 6200 3 4305.555556
3 Lingadheeranahalli 3 BHK 15210 30 9500 3 6245 890861
4 Kothanur 2 BHK 12000 2.0 51.00 2 4250.000000

Statistics of the price_per_sqft



In [32]: df7 stats = df7['price per sgft'].describe()

df7_stats

Out[32]: count 1.320000e+04
mean 7.920759e+03
std 1.067272e+05
min 2.678298e+82
25% 4.267701e+03
50% 5.438331e+03
75% 7.317073e+03
max 1.200000e+07

Mame: price per sqgft, dtype: floate4

Dimensionality Reduction

o Dimensionality reduction is the process of reducing the dimension (or number of random
variables) of our feature set.

o Inour dataset 'location' is categorical variable with 1287 categories.
Before using One Hot Encoding to create dummy variables, we must reduce the number of
categories by using dimensionality reduction so that we will get a smaller number of dummy
variables.

o Our criteria for dimensionality reduction for 'location'is to use 'other' location for any
location having less than 10 data points.

First, we trim the location values

In [33]: df7.location = df7.location.apply(lambda x: x.strip())

df7.head()
out[33]:

location size total_sqft bath price bhk price_per_sqft
0 Electronic City Phase I 2 BHK 10560 20 39.07 2 3699.810606
1 Chikka Tirupathi 4 Bedroom 26000 50 12000 4 4515.384615
2 Uttarahalli 3 BHK 14400 20 62.00 3 4305.555556
3 Lingadheeranahalli 3 BHK 15210 30 9500 3 6245.890861
4 Kathanur 2 BHK 12000 20 51.00 2 4250.000000

We then get the count of each location



In [34]: location_stats = df7.location.value counts(ascending=False)

location stats

Out[34]: whitefield
Sarjapur Road
Electronic City
Kanakpura Road
Thanisandra

Rajanna Layout
Subramanyanagar
Lakshmipura vidyaanyapura
Malur Hosur Road

Abshot Layout

533
392
304
264
235

N

1

Name: location, Length: 1287, dtype: inte4

We later read the total number of unique location categories

In [35]: len(location stats)

out[35]: 1287

Next, we are going assign a category 'other’ for every location where total datapoints are less than 10

In [36]: print('Total no of locations where data points are more than 10 = %s' % (len(location stats[location stats » 18])))
print('Total no of locations where data points are less than 18 = %s' % (len(location_stats[location_stats <= 10])))

Total no of locations where data points are more than 10
Total no of locations where data points are less than 10

240
1047

Any location having less than 10 data points should be tagged as "other" location. This way number of
categories can be reduced by huge amount. Later, when we do one hot encoding, it will help us with

having fewer dummy column.

Location with less than equal to 10

In [37]: location_stats less than_1e

location_stats less than_1e

out[37]: BTM 1st Stage
Gunjur Palya
Nagappa Reddy Layout
Sector 1 HSR Layout
Thyagaraja Nagar

Rajanna Layout
Subramanyanagar
Lakshmipura vidyaanyapura
Malur Hosur Road

Abshot Layout

location_stats[location_stats <= 10]

1@
1@
1@
1@
1@

(R

=

Mame: location, Length: 147, dtype: inte4



Using lambda function assign the “other” type to every element in “location_stats_less_than_10" and
the data is copied into the new dataset df8

In [38]: df8 = df7.copy()

df8.location = df7.location.apply(lambda x: 'other’ if x in location_stats less
len(df8.location.unique())

out[38]: 241

Since 1047 location with less than 10 data points are converted to one category 'other' Total no of
unique location categories are = 240 +1 = 241

In [39]: df8.head(10)

out[39]:

location size total_sqft bath price bhk price_per_sqft
0 Electronic City Phase I 2 BHK 10560 2.0 3907 2 3699.810606
1 Chikka Tirupathi 4 Bedroom 26000 50 120.00 4 4615.384615
2 Uttarahalli 3 BHK 14400 2.0 62.00 3 4305.555556
3 Lingadheeranahalli 3 BHK 15210 3.0 9500 3 6245.890861
4 Kothanur 2 BHK 12000 20 5100 2 4250.000000
5 Whitefield 2 BHK 1700 20 3800 2 3247863245
& Old Airport Road 4 BHK 27320 4.0 204.00 4 7467.057101
7 Rajaji Nagar 4 BHK 33000 4.0 600.00 4 18181.818182
8 Marathahalli 3 BHK 13100 3.0 6325 3 4828 244275
9 other 6 Bedroom 10200 6.0 370.00 6 36274509804

Outlier Removal

(0]

An outlier is an observation that is unlike the other observations. It is rare, or distinct, or does
not fit in some way.

Outliers are the data points that represent the extreme variation of dataset

Outliers can be valid data points but since our model is generalization of the data, outliers can
affect the performance of the model. We are going to remove the outliers, but please note
it’s not always a good practice to remove the outliers.

To remove the outliers, we use domain knowledge and standard deviation

a) Outlier removal - Using Domain Knowledge
o Normally square fit per bedroom is 300 (i.e., 2 bhk apartment is minimum 600
sqft)
o |f we have for example 400 sqft apartment with 2 bhk than that seems
suspicious and can be removed as an outlier.



e We will remove such outliers by keeping our minimum threshold per bhk to be
300 sgft

We first visualize the data where square fit per bedroom is less than 300

In [40]: dfs[(dfs.total sqft / dfs.bhk) < 300]

outf[4e]:
location size total_sqft bath price bhk price_per_sqft
9 other 6 Bedroom 1020.0 6.0 370.0 6 36274.509804
45 HSR Layout 8 Bedroom 6000 90 2000 8 33333.333333
58 Murugeshpalya 6 Bedroom 14070 4.0 150.0 6 10660.980810
68 Devarachikkanahalli 8 Bedroom 13500 7.0 850 8 6296.296296
70 other 3 Bedroom 5000 3.0 1000 3 20000.000000
13277 other 7 Bedroom 1400.0 7.0 2180 15571.428571
13279 other 6 Bedroom 1200.0 50 1300 10833.333333

13281 Margondanahalli 5 Bedroom 13750 50 1250 9090.909091

13303 Vidyaranyapura 5 Bedroom 7740 50 700 9043.927649

-~ D o d® =~

13311  Ramamurthy Nagar 7 Bedroom 1500.0 9.0 2500 16666.666667

744 rows x 7 columns

From above training examples, we have 744 training examples where square fit per bedroom is less
than 300. These are outliers, so we can remove them

We first check current dataset shape before removing outliers. We have 13200 rows and 7

columns

In [41]: df8.shape

out[41]: (13280, 7)

Next, we remove the outliers, store it into a new dataset df9 and check the dataset shape after
removal of the outliers. We are now left with 12456 rows and 7 coulmns

In [42]: df9 = df8[~((df8.total sqft / dfs8.bhk) < 300)]
df9.shape

Out[42]: (12456, 7)

b) Outlier Removal - Using Standard Deviation and Mean
Standard Deviation

o Standard deviation is measure of spread that is to know how much the data varies from the
average.



o Alow standard deviation tells us that the data is closely clustered around the mean (or
average), while a high standard deviation indicates that the data is dispersed over a wider
range of values.

o Itis used when the distribution of data is approximately normal, resembling a bell curve.

e One standard deviation (1 Sigma) of the mean will cover 68% of the data. i.e., Data between
(mean - standard deviation) & (mean + standard deviation) is 1 Sigma and which is equal to
68%. Here we are going to consider 1 Sigma as our threshold and any data outside 1 Sigma
will be considered as outlier.

First, we get the basic statistics of the column “price_per_sqft”

In [43]: df9.price per_sqft.describe()

out[43]: count 12456 .900000
mean 6308.502826
std 4168.127339
min 267.829813
25% 4210.526316
50% 5294.117647
75% 6916.666667
max 176470.588235

Name: price per_sqft, dtype: floate4

Point to note: it is important to understand that price of every house is specific for every location.
We are going to remove outlier’s using “price_per_sqft” for each location.

Data visualization for 'price_per_sqft' for location 'Rajaji Nagar' before outlier removal.

To be noted: here it is a normal of data so outlier removal using standard deviation and mean works
perfectly.



In [44]: plt.hist(df9[df9.location == "Rajaji Nagar"].price_per_sqft,rwidth=0.8)
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")

out[44]: Text(e, @.5, 'Count')

20000 25000 30000 35000
Price Per Square Feet

After the visualization of the price per sqgft of the location “Rajaji Nagar”, we check current dataset
shape before outliers are being removed. Currently we have 12456 columns and 7 rows.

In [45]: df9.shape

Out[4s5]: (12456, 7)

Removing outliers using price per sqft. After removal, we have 10242 column and 7 rows.

In [46]: def remove pps outliers(df):
df out = pd.DataFrame()
for key, subdf in df.groupby('location'):
mean = np.mean(subdf.price per sqft)
std = np.std(subdf.price per sqft)
reduced df = subdf[(subdf.price per sqft>(mean-std)) & (subdf.price per sqft<=(mean + std))]
# 1 Sigma value 1.e 68% of data

df_out = pd.concat([df_out,reduced df],ignore index=True) # Storing data in 'df out' dataframe
return df out

df10 = remove pps outliers(dfa)
df10.shape

out[46]: (10242, 7)

Data visualization for 'price_per_sqft' for location 'Rajaji Nagar' after outlier removal



In [47]: plt.hist(dfie[df1e.location == "Rajaji Nagar"].price_ per_sqft,rwidth=0.8)
plt.xlabel("Price Per Square Feet™)
plt.ylabel("Count™)

out[47]: Text(e, @.5, 'Count')

Count
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14000
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18000

Summary of Data visualization for ‘price_per_sqft' for location Rajaji Nagar Before and after outlier removal.

Before After
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Using domain knowledge for outlier removal; If location and square foot area is also same then price
of 3BHK should be more than 2 BHK, there are other factors that also affect the price but for this
training set we are treating such values as outlier and remove them.

We check if for a given location how does the 2 BHK and 3 BHK property prices look like. In this
example we shall use the location “Rajaji Nagar” and “Hebbal”

l. “Rajaji Nagar”



In [48]: def plot scatter chart(df,location):
bhk2 = df[(df.location==location) & (df.bhk==2)]
bhk3 = df[(df.location==location) & (df.bhk==3)]
matplotlib.rcParams[ ‘figure.figsize'] = (15,10)
plt.scatter(bhk2.total sqft,bhk2.price,color="blue’,label="2 BHK', 5=50)
plt.scatter(bhk3.total sqft,bhk3.price,marker="+", color="green',label="3 BHK", s=5@)
plt.xlabel("Total Square Feet Area")
plt.ylabel("Price (Lakh Indian Rupees)™)
plt.title(location)
plt.legend()

plot_scatter_chart(df1e,"Rajaji Nagar™)

Rajaji Nagar
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In [49]: plot scatter chart(dfie, "Hebbal™)
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We s also remove properties where for same location, the price of (for example) 3-bedroom
apartment is less than 2-bedroom apartment (with same square ft area). What we will do is for a
given location, we will build a dictionary by name 'bhk_stats' with below values of 'price_per_sqft'

{

17 {
'mean': 4000,
'Std: 2000,
'count': 34

1

2":{
'mean': 4300,
'Std: 2300,
'count': 22

}I

Now we can remove those 2 BHK apartments whose price_per_sqft is less than mean price_per_sqft
of 1 BHK apartment and store it in a new data set df11. We now have 7317 rows and 7 columns.



In [5@]: def remove_bhk_outliers(df):
exclude indices = np.array([])
for location, location df in df.groupby('location'):
bhk_stats = {}
for bhk, bhk df in location_df.groupby( 'bhk"):
bhk_stats[bhk] = {
‘mean’: np.mean(bhk_df.price per sqft),
‘std’': np.std(bhk _df.price per sqgft),
‘count': bhk_df.shape[@]
¥
for bhk, bhk df in location_df.groupby( 'bhk"):
stats = bhk_stats.get(bhk-1)
if stats and stats['count']>5:
exclude indices = np.append(exclude indices, bhk df[bhk df.price
return df.drop(exclude_indices,axis="index")
df11 = remove bhk outliers(dfia)
df11.shape

out[se]: (7317, 7)

We Plot same scatter chart again to visualize price_per_sqft for 2 BHK and 3 BHK properties for the
location “Rajaji Nagar” and “Hebbal”

l. “Rajaji Nagar”

In [51]: plot _scatter chart(dfll,"Rajaji nNagar™)
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In [52]: plot_scatter chart(dfi11,"Hebbal™)
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Summary for “price_per_sqft”/ “total square feet area” for location Rajaji Nagar Before and after
outlier removal.
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Rajaji Nagar
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Summary for “price_per_sqft”/ “total square feet area” for location Hebbal Before and after outlier
removal.

Before After
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Now, we plot a Histogram to visualize the price_per_sqft data after outlier removal



In [53]: matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df1l1l.price per sqft,rwidth=6.8)
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count™)

out[53]: Text(e, .5, 'Count')

30000 5008

Price Per Scpease Feat

c) Outlier removal using Domain knowledge - for
Bathroom

e Generally, number of bathrooms per BHK (Bathroom Hall Kitchen) are (number of BHK) + 2.
® So, using above understanding we identify the outliers and remove them

We get the unique bath from the dataset

In [54]: dfl1l.bath.unique()

out[s4]: array([ 4., 2., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

Then we get the training example where the number of baths is more than (number of BHK +2)



In [55]: dfi1[df11.bath > df11.bhk + 2]

Out[55]:
location size total_sqft bath  price bhk price_per_sqft

1626 Chikkabanavar 4 Bedroom 24600 7.0 80.0 4 3252.032520

5238 Nagasandra 4 Bedroom 70000 80 4500 4 6428571429
6711 Thanisandra 3 BHK 1806.0 6.0 116.0 3 6423.034330
8408 other 6 BHK 113380 9.0 10000 5] 8819.897689

We now remove the outliers from the dataset

We first check the current dataset shape before removing the outliers

In [56]: dfll.shape

Out[se]: (7317, 7)

We then remove the outliers with more than (number of BHK +2) bathrooms and store it in a new
dataset df12.

In [57]: dfl2 = dfii[dfil.bath < (df11.bhk + 2)]
df12.shape

out[s57]: (7239, 7)

Visualizing the dataset headers

In [58]: df12.head(3)

out[58]:
location size total_sqft bath price bhk price_per_sqgft

0 1stBlock Jayanagar 4 BHK 28500 40 4280 4 15017.543860
1 1stBlock Jayanagar 3 BHK 1630.0 3.0 1940 3 11901.840491
2 1stBlock Jayanagar 3 BHK 18750 20 2350 3 12533.333333

This concludes our data cleaning; we then drop unnecessary columns.

o Since we have BHK we drop “Size”



o We have created “price_per_sqft” for outlier detection and removal purpose, so we also

drop it

o We store the data into a new dataset df13

In [59]: df13 = dfi2.drop(['size’, 'price per sqft'], axis='columns')

df13.head()
out[59]:

location total_sqft bath price bhk

0 1st Block Jayanagar 28500 40 42380 4

1 1st Block Jayanagar 1630.0 3.0 194.0 3

2 1st Block Jayanagar 18750 2.0 2350 3

3 st Block Jayanagar 12000 2.0 1300 3

4 1st Block Jayanagar 12350 2.0 1480 2

One Hot encoding

o Since we have 'location’' as categorical feature we use One Hot Encoding to create separate

column for each location category and assign binary value 1 or 0.

In [6@]: dummies = pd.get_ dummies(df13.location)
dummies.head()

out[ee]:
1st 2nd 5th 5th 6th Tth 8th 9th
1st Block Phase Phase 2nd Stage Block Phase Phase Phase Phase Phase Vishw
Jayanagar JP  Judicial MNagarbhavi Hbr JP JP JP JP JP
MNMagar Layout Layout MNagar Nagar MNagar MNagar MNagar
1] 1 0 0 0 o] 0 0 o o] 1]
1 1 0 0 0 0 0 0 0 0] 0
2 1 0 0 0 o] 0 0 ] o] 0
3 1 0 0 0 1] 0 0 0 o] 1]
4 1 0 0 o 1] 0 0 o 0] 0

5 rows x 241 columns

o To avoid dummy variable (dummy variables are numerical variables used to represent

subgroups of a sample data, it takes the values 0 or 1 to indicate the absence or presence of
some categorical effect that may be expected to shift the outcome) trap problem, we delete
the one of the dummy variable columns



In [62]: dummies = dummies.drop(['other'],axis="columns”)
dummies.head()

out[e2]:
1st 2nd 5th 5th 6th 7th 8th 9th
1st Block Phase Phase 2nd Stage Block Phase Phase Phase Phase Phase Viiav:
Jayanagar JP Judicial Nagarbhavi Hbr JP JP JP JP JP 13y
Nagar Layout Layout Nagar MNagar Nagar MNagar Nagar
0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0] 0 0 0 0] 0
2 1 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0] 0 0 0 0] 0
4 1 0 0 0 0 0 0 0 0 0
5 rows x 240 columns
»
o Then we add dummies data frame to original data frame
In [63]: df14 = pd.concat([df13,dummies],axis="columns")
df14.head()
out[63]:
1st 2nd 5th
. . 1st Block Phase Phase 2nd Stage  Block .
location total_sqft bath price bhk Jayanagar JP  Judicial Nagarbhavi Hbr Vija
Nagar Layout Layout
o stBlock 50500 40 4280 4 1 0 0 0 0
Jayanagar
IstBlock 45350 30 1940 3 1 0 0 0 0
Jayanagar
g stBlock  4g750 20 2350 3 1 0 0 0 0
Jayanagar
IstBlock 45000 20 1200 3 1 0 0 0 0
Jayanagar
IstBlock 45350 20 1480 2 1 0 0 0 0
Jayanagar

5 rows x 245 columns

o Toend our One Hot Encoding, we drop the location feature



In [64]: dfis5 = dfi4.drop(['location’],axis="columns")

df15.head()

out[e4]:
1st 2nd 5th 8th
. 1st Block Phase Phase 2nd Stage Block Phase -
total_sqft bath price bhk Jayanagar JP  Judicial Nagarbhavi Hbr JP Vijayan
Nagar Layout Layout Nagar
0 2850.0 40 4280 4 1 0 0 0 0 0
1 16300 30 1940 3 1 0 0 0 0 0
2 1875.0 20 2350 3 1 0 0 0 0 0
3 1200.0 2.0 1300 3 1 0 0 0 0 0
4 12350 20 1480 2 1 0 0 0 0 0
5 rows x 244 columns
>
Step#5: Build Machine Learning Model
Final shape of our dataset
In [65]: dfi5.shape
out[65]: (7239, 244)
Now we create X (independent variable/ features) and y (dependent variables/target)
o X (independent variable/ features)
In [66]: X = df15.drop([ price’],axis="columns")
X.head()
out[e6]:
1st 2nd 5th 5th 6th
1st Block Phase Phase 2nd Stage Block Phase Phase -
total_sqft bath bhk Jayanagar JP Judicial Nagarbhavi Hbr JP JP Vijaya
Nagar Layout Laycut Magar Nagar
0 28500 40 4 1 0 0 0 0 0 0
1 16300 30 3 1 0 0 0 0 0 0
2 18750 20 2 1 0 0 0 0 0 0
3 12000 20 3 1 0 0 0 0 0 0
4 12350 20 2 1 0 0 0 0 0 0

5 rows x 243 columns



x-shape

In [67]: X.shape

Oout[67]: (7239, 243)

o Y (dependent variables/target)
In [68]:

out[e8]: 428.0

Y

Y

%

1 194.8
2 235.0

3 13@.0

4 148.0

Name: price, dtype: floate4

y-length

In [69]: len(y)

out[69]: 7239

Splitting the dataset to training and test dataset

In [71]: from sklearn.model selection import train test split

X _train,X test,y train,y test = train_test split(X,y,test size=0.2,random state=18)

print('X train shape = ',X train.shape)
print('X test shape = ',X _test.shape)
print('y train shape = ',y train.shape)
print('y test shape = ',y test.shape)

X _train shape = (5791, 243)
X test shape = (1448, 243)
y_train shape = (5791,)
y test shape = (1448,)



Linear Regression

We test the score with the Linear Regression Model (linear regression model describes the
relationship between a dependent variable, y, and one or more independent variables, X.)

In [72]: from sklearn.linear model import LinearRegression

1r clf = LinearRegression()
1r clf.fit(X train, y_ train)
1r clf.score(X test, y test)

Out[72]: ©.8629132245229444

Use K Fold cross validation to measure accuracy of our Linear Regression
model

e Using Sklearn cross_val_score function
e ShuffleSplit is used to randomize each fold

To be noted Sklearn's cross_val_score uses Stratified K Fold by default

In [73]: from sklearn.model selection import cross val score
from sklearn.model selection import ShuffleSplit

cv = ShufflesSplit(n splits=5, test size=8.2, random_state=@)

cross_val score(LinearRegression(), X, y, cv = cv)

Out[73]: array([@.827082546, 0.86027005, 0.85322178, ©.8436466 , ©.85481502])

From above, we can see that in 5 iterations we get a score above 80% all the time. This is pretty
good, but we want to test few other algorithms for regression to see if we can get even better score.
We will use GridSearchCV for this purpose



Find best model using GridSearchCV

In [76]: from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor

def find_best_model_using_gridsearchcv(X,y):
algos = {
'linear_regression’ : {
'‘model’: LinearRegression(),
"params”: {
"normalize’: [True, False]
b
1
"lasso’: {
'model’: Lasso(),
"params”: {
"alpha': [1,2],
‘selection’: ['random’, 'cyclic']
}
1
‘decision_tree’: {
'model’: DecisionTreeRegressor(),
‘params’: {
‘criterion’ : ['mse’,'friadman_mse'],
"splitter': ['best’,'random’]

3
3

scores = []
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=@)
for algo_name, config in algos.items():
gs = GridSearchCV(config[ 'model’], config['params'], cv=cv, return_train_score=False)
gs. Fit(X,y)
scores.append({
‘model’: algo_name,
'best_score’: gs.best_score_,
'best_params': gs.best_params_

B
return pd.DataFrama(scores,columns=["model’, 'best_score’, 'best_params'])

find_best_model_using_gridsearchcv(X,y)

out[76]:
model best_score best_params
0 linear_regression 0.847796 f'normalize": False}
1 lasso 0.726745 ['alpha" 2, 'selection’: 'random’}
2 decision_tree 0.716191 {'criterion’: 'mse’, ‘splitter’. 'best’}

Based on above results we can say that Linear Regression gives the best score. Hence, we will use
that.

Step#6: Testing The model

o Since all our locations are now columns in form of dummy variabales, all other dummy
variables value should be 0 except the one (dummy variable column for our location) we are
predicting for.

o This (np.where(X.columns==location)[0][0]) code will give us index of dummy column for our
location.

o Now we assign value '1' to this index and keep all other dummy variable columns as '0'



In [87]: def predict_price(location, sqft, bath, bhk):
loc_index = np.where(X.columns==location)[@][@]

X = np.zeros(len(X.columns))
x[@] = sqft
x[1] = bath
x[2] = bhk

if loc_index >= o:
x[loc_index] = 1

return 1r _clf.predict([x])[@]
In [88]: predict price('lst Phase JP Nagar',1088, 2, 2)
Out[88]: 83.8657025831206
In [89]: predict price(’'1st Phase JP Magar',1@00, 3, 3)

Out[89]: 86.0806228498683

In [92]: predict price('Indira Nagar',l1eee, 2, 2)

Out[92]: 193.31197733179843

In [93]: predict price('Indira Nagar',1@060, 3, 3)

Out[93]: 195.52689759854616

Step#7: Export the tested model to Pickle File

In [94]: import pickle

with open('Real Estate Price Prediction Project.pickle','wb') as f:
pickle.dump(lr_clf,f)

Step#8: Export any other important information

We export location and column information to a file that will be useful later in our prediction
application.



In [99]: dimport json
columns = {
‘data_columns® : [col.lower() for col in X.columns]
¥

with open("columns.json™,"w") as f:
f.write(json.dumps(columns))

After building up and testing the model to predict the house prices.

We imported model into a pickle a file and other important information needed for our application as
seen above.

NEXT STEP — PYTHON FLASK SERVER

The next step was to write a Python flask server which can serve http requests made from the Ul
(User Interface) and can predict the home prices. The Python Flask server will be used as our backend
for the Ul application.

We create a “server” python file and import the required libraries.

jsonify

We need two routings:

1. The first routine was to return the location in “Bangalore city.”

get_location_names():

util.get_1

For “locations” we create a new python file call “Utils” and Utils will contain all the core
routines whereas the “server ,, will just do the routing of request and responds

We import the required libraries, variables and call the “get_location_names” routines which
reads the “columns. Json” and return the list of location from the fourth column.



Next, we write a function called “load_saved_artifacts”, this method will load the saved
artifacts which are the “columns. json” and “bangalore home prices”; then we store both into
a global variable and load the “banglore_home_prices_model. pickle”

load_saved_artifacts():

__model = pi Lle.load (F)




2. The second routine will be to write a function which can return an estimated
price given the location, square foot area, BHK and bathroom.

(__data_columns))

That ends the “util.py” file.

Returning on the “server.py”

We create another end point call “predict_home_price” which takes the post and get method,
responds to the user request.
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® We find that min price per sqgft is 267 rs/sqft whereas max is 12000000, this shows a wide
variation in property prices. We removed outliers per location using mean and one standard
deviation.

® Minimum threshold of square ft per bedroom is 300 sqft(i.e. 2 bhk apartment is minimum
600 sqft.) . Anything that is not in line with this, was removed as an outlier.

® We also remove properties where for same location, the price of (for example) 3-bedroom
apartment is less than 2-bedroom apartment (with same square ft area).

® Every house has only one more bathroom than number of bedrooms. Anything above that is
an outlier or a data error and was removed.



OBSERVATION/CONCLUSION

e There are locations that the prices higher even with same number of BHK and
bathroom. This could be because of the higher standard of living in those locations.

e There are many samples in our data where for a given location and square ft area,
three bedroom apartment cost less compared to a two bedroom apartment. There could
be different reasons for this;

- The sizes of each rooms of the two bedroom apartment is bigger than that of the
three bedroom apartment.

- Because our data is distributed, sometimes we don’t have enough information on
why three bedroom apartment would cost less compared to two bedroom
apartment.
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