

RunEvent-less Metadata Emission
Summary: Technical proposal for creating Dataset and Job metadata emissions without a
RunEvent

Created: Mar 7, 2022​ ​ ​ ​ ​ ​ Status: WIP
Updated: Mar 7, 2023
Author: Maciej Obuchowski
Contributors: , Julien Le Dem Benji Lampel

Context
Objective
Use cases
Proposed Model

Summary of current events
Extension
Semantics of facets across jobs and dataset version

Solution
Backward compatibility considerations
Backward incompatible option (separate V2 event stream)

Migration plan for consumers
Backward compatible options

Backend
Where to connect the facet?

Context
 PRD: Emitting dataset and job metadata outside of RunEvent

Implementation

Backward compatibility considerations
Current OpenLineage events are explicitly RunEvents with an
eventType=”START|COMPLETE|FAIL|...”
Mixing Job and Dataset events in the same stream creates potential issues.

Option 1: We attempt to make events backwards compatible by adding new events in the
same stream. There would be some mechanism (field based for example) to differentiate
Dataset/Job events from run events. We’d assume the consumers ignore the events they

mailto:maciej.obuchowski@astronomer.io
mailto:julien@astronomer.io
mailto:benjamin@astronomer.io
https://docs.google.com/document/d/1366bAPkk0OqKkNA4mFFt-41X0cFUQ6sOvhSWmh4Iydo/edit#

don’t understand. This is a strong assumption - it will be backwards incompatible for
consumers that do not follow this.

Option 2: We create a V2 stream in the protocol (new http endpoint / kafka topic), and start
with a blank slate of events with a clear contract on how we can add more events in the
future. There needs to be a transition plan from the V1 protocol to V2.

Backward incompatible option (separate V2 event stream)
-​ Option 1: Event model will be extended into:​

{​
 runEvents: [array of RunEvent]
 datasetEvents: [array of DatasetEvent]
 … ​
}
The advantages of this approach:

●​ There is no hidden logic or dependencies in event fields determining content
and context of the event.

●​ It’s clean for the new users.
●​ It’s extendable to include other event types in future (we still have no clear

way how to include BI dashboards or data consumer applications in lineage
landscape).

​ The disadvantages are:
●​ It’s a breaking change.

-​ seamless transition from V1 to V2

Migration plan for consumers

Backward compatible options
To facilitate this, we’d want to emit different events, constituting only a single dataset and
associated facets. Let’s call it DatasetEvent, in contrast to the already existing RunEvent.

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://openlineage.io/spec/2-0-0/DatasetEvent.json",
 "$defs": {
 "DatasetEvent": {
 "properties": {
 "dataset": {
 "$ref": "https://openlineage.io/spec/1-0-2/OpenLineage.json#/$defs/Dataset"
 },
 "producer": {

 "description": "URI identifying the producer of this metadata. For example this could be a git url with a
given tag or sha",
 "type": "string",
 "format": "uri",
 "example": "https://github.com/OpenLineage/OpenLineage/blob/v1-0-0/client"
 },
 "schemaURL": {
 "description": "The JSON Pointer (https://tools.ietf.org/html/rfc6901) URL to the corresponding
version of the schema definition for this RunEvent",
 "type": "string",
 "format": "uri",
 "example": "https://openlineage.io/spec/0-0-1/OpenLineage.json"
 }
 },
 "required": [
 "dataset",
 "producer",
 "schemaURL"
]
]
 }
}

JobEvent:
{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "$id": "https://openlineage.io/spec/2-0-0/JobEvent.json",
 "$defs": {
 "JobEvent": {
 "properties": {
 "job": {
 "$ref": "https://openlineage.io/spec/1-0-2/OpenLineage.json#/$defs/Job"
 },
 "producer": {
 "description": "URI identifying the producer of this metadata. For example this could be a git url with a
given tag or sha",
 "type": "string",
 "format": "uri",
 "example": "https://github.com/OpenLineage/OpenLineage/blob/v1-0-0/client"
 },
 "schemaURL": {
 "description": "The JSON Pointer (https://tools.ietf.org/html/rfc6901) URL to the corresponding
version of the schema definition for this RunEvent",
 "type": "string",
 "format": "uri",
 "example": "https://openlineage.io/spec/0-0-1/OpenLineage.json"
 }
 },
 "required": [
 "job",
 "producer",
 "schemaURL"
]
 }
 }

}

Backend
Additional event type needs to be understood by OpenLineage backends.
Let’s take a look at HTTP transport.
There are few ways to add support for new event types for it. First, is to reuse existing
endpoint `POST /api/v1/lineage`
In a way, it adds simplicity to the model - single endpoint. On the other hand, it adds
complexity on the backend side. It has to understand which event it’s deserializing. ​
​
Reference implementation - Marquez uses Jackson library to handle JSON. Deserializing
different types can be done by custom deserializer, but the recommended way to deserialize
different types in one endpoint is via polymorphic deserialization:
https://github.com/FasterXML/jackson-docs/wiki/JacksonPolymorphicDeserialization
This requires distinguishing data types by some field with fixed name, for example​

 @JsonTypeInfo(
 use = JsonTypeInfo.Id.CUSTOM,
 include = As.NONE,
 property = "schemaURL")
 @JsonTypeIdResolver(OpenlineageEventResolver.class)
 @JsonSubTypes({
 @JsonSubTypes.Type(value = RunEvent.class, name = "runEvent"),
 @JsonSubTypes.Type(value = DatasetEvent.class, name = "datasetEvent")
 })

The great thing is that we have such a field that we can use to distinguish types -
schemaURL. Different event types would have different type names. Notice use of
JsonTypeInfo.Id.CUSTOM and OpenlineageEventResolver - this is necessary due to version
numbers in schemaURL. Without it, only the exact match is performed by Jackson.

Moreover, HTTP transport isn’t the only transport we want to support. The same problem will
happen on the Kafka side - having two types of events in one topic isn’t very easy. The
solutions are actually very similar - either use two topics, which fragments metadata, and
introduces ordering problems, or have them in one and have a way to correctly deserialize.

To sum up, considering we properly utilize schemaURL fields, I believe we should use the
same endpoint and kafka topic by default. However, this is an important topic and it would
be good to see different opinions.

Some articles that go over it from Kafka perspective:
https://www.confluent.io/blog/put-several-event-types-kafka-topic/

https://github.com/FasterXML/jackson-docs/wiki/JacksonPolymorphicDeserialization
https://www.confluent.io/blog/put-several-event-types-kafka-topic/

https://www.confluent.io/blog/multiple-event-types-in-the-same-kafka-topic/

Where to connect the facet?
This also touches on a point: how does metadata send DatasetEvent (or JobEvent) should
be understood by consumers. Julien suggested:

The current model is as follows:
Jobs:
- run facet: only applies to a given run of a job. (example: ExternalQueryRunFacet) But does
not apply to subsequent runs.
- Job facet: applies to the job in general, the latest replaces the current value for the job and
applies to future versions until replaced. (example: OwnershipJobFacet)
Datasets:
- input/output facets: only applies to a given run. (ex: DataQualityMetricsInputDatasetFacet
or OutputStatisticsOutputDatasetFacet) but not to subsequent runs
- DatasetFacet: applies to the dataset in general, the latest replaces the current value for the
Datasets and applies to future versions until replaced. (example: OwnershipDatasetFacet)

The same should apply for JobEvent, but simpler: it does only allow Job metadata to be
emitted and Dataset not.

	Context
	Implementation
	Backward compatibility considerations
	Backward incompatible option (separate V2 event stream)
	Migration plan for consumers

	Backward compatible options
	Backend
	Where to connect the facet?

