
Character Statistic Spreadsheet Companion Document
By chumpatrol1

Introduction

This is a document to act as a companion to this spreadsheet, and its goal is to
supplement knowledge of the game for both data miners and more competitive players.
Each entry in this document corresponds to a column present in the spreadsheet, and
the entries are grouped similarly to how the spreadsheet displays the columns. Each
entry on the spreadsheet can be looked up by typing it with inside of square brackets.
For example, [Weight] will lead to the entry for weight. Additionally, many stats will note
what these values look like in the code for people looking to mod the game.

The Character Statistic Spreadsheet has two spreadsheets for each version. The
sheets that end with “.HS” represent Hard Statistics, and are acquired directly from the
game’s source code. Examples of these are weights and run speeds. The sheets that
end with “.DS” represent Derivative Statistics, and are created using some Python code
I cobbled together in my free time. Examples of these are SHFFL timings and full hop
heights.

If there are questions or you would like to make a revision, feel free to contact me on
Discord (chumpatrol1#9247) or on Twitter (@chumpatrol1). I’ll get back to you as soon
as possible and make changes as necessary. I also plan to add new sheets to the CSS
as updates get released. I’ll also accept reasonable requests for creation of new
Derivative Statistics.

Table of Contents
Grounded Stats
Aerial Stats
Roll Stats
Misc Stats
Derivative Calculations

https://docs.google.com/spreadsheets/d/17jG4V27opKUJxwLzheEFCKzpHd-EZ3N_1kxlLknPwwc/edit#gid=0

[Grounded Stats]

[Walk Speed]: The walk speed of a character. The units for this stat are in “units per
frame”, which is relatively arbitrary without stage information. Final Destination’s total
length is 9386 units from ledge to ledge (arbitrary as well). A character with a walk
speed of 5 will walk for 94 frames along the stage from one side of FD to the other
without falling off the edge. This means that a speed of “1” will cover 20 of these stage
units per frame. Coded as “norm_xSpeed”.

[Initial Walk Acceleration]: The acceleration of a character as they begin to walk from a
stand still. A higher walk acceleration means that they will get up to speed faster.
Seems to accelerate each frame until the character gets up to speed. Coded as
“accel_start”.

[Run Speed]: The run speed of a character. The units are the same as walk speed and
the rest. Coded as “max_xSpeed”.

[Initial Dash Acceleration]: The acceleration of a character during their initial dash
frames. Initial dashes tend to be short, after which the character automatically switches
to their default run speed. Does not affect dash turnaround speeds. The extremely high
Initial Dash Acceleration on Sandbag is not a typo. Coded as “accel_start_dash”.

[Turn Acceleration]: The acceleration of a character as they turn around from a walk, or
a run. The higher the walk turn acceleration, the faster that character will swing their
momentum. It’s overall extremely similar to the initial walk acceleration. Coded as
“accel_rate”.

[Crawl Speed]: The speed of a character when they are crawling. A little over 10
characters in the game can crawl, and crawling can preserve horizontal momentum.
This is especially useful for Luigi, whose long skid animation makes it impractical to
simply stop running to do a move. Coded as “crouchWalkSpeed”.

[Traction]: A character’s traction. A number that is closer to 0 suggests that the
character will slide more in general, while a number further away from 0 means that the
character will stop more quickly. Traction is always a negative number. Traction applies
after ending a dash, run or walk. Traction also applies after landing with horizontal
momentum (such as after a Luigi Misfire) or after doing a standard ledge climb. Coded
as “decel_rate”.

[G2A Multiplier]: A multiplier that is always less than or equal to 1. Multiplies the
character’s horizontal velocity when jumping off the ground. This can be circumvented
using an “RC Dash”. Coded as “groundToAirMultiplier”.

[Aerial Stats]
[Jumpsquat]: The number of frames after a jump input before a character leaves the
ground. Most characters have a 2 frame jumpsquat, though others have a longer
jumpsquat. Holding space through a jump squat will result in a Full Hop, while releasing
it before then will result in a Short Hop. Inputting an Up Tilt, Up Smash, Up Special,
Upwards Item Throw, Grab, or Z-Drop will cancel the jumpsquat into that respective
animation. If Jumpsquat happens to be larger than a character’s jump.fla file, that
character will be unable to jump off the ground. Conversely, if Jumpsquat is set to 0 that
character will leave the ground immediately and will be unable to cancel their jump into
a move or short hop. Coded as “jumpStartup”.

[Gravity]: The downwards force that pulls on airborne characters. This is subtracted
from the Y-velocity every frame. Having a larger gravity value will mean that the
character will return to the ground faster after a jump, may be combo’d harder, and will
have great vertical endurance. Not to be confused with Terminal Velocity/Fall Speed.
Coded as “gravity”.

[Short Hop Force]: The initial Y-velocity of a Short Hop, with the same unit of
measurement as the grounded movement options. A higher Short Hop Force means
that the character will have a higher initial Y-Velocity, but due to the force of gravity this
may or may not result in a higher jump. As a side note, all jumping actions are slightly
broken in this game and actual height gained may vary. Coded as “shortHopSpeed”.

[Full Hop Force]: The initial Y-velocity of a Full Hop. It also affects how high a ledge
jump is, with all ledge jumps being as high as a full hop. As a side note, all jumping
actions are slightly broken in this game and actual height gained may vary. See Short
Hop. Coded as “jumpSpeed”.

[Midair Jump Force] [Midair Jump Force List]: The initial Y-velocity of a midair/double
jump. Overwrites the current Y-velocity. In the case of the Jump Force List, each double
jump will read the next unused jump on the list until it reaches the last one. For
example, Meta Knight has 5 midair jumps and a Jump Force List with 4 elements in it
(13, 12, 11 and 10). Meta Knight’s first jump will have a force of 13, his second 12, his
third 11, and his last two 10. Having a Jump Force List will cause the Midair Jump Force

https://www.youtube.com/watch?v=-ystPgToC-0&ab_channel=Artmagic

to be ignored entirely. As a side note, all jumping actions are slightly broken in this
game and actual height gained may vary. Coded as “jumpSpeedList”.

[Air Speed]: This is the maximum horizontal velocity a character can reach normally
(through drifting left or right). It solely impacts horizontal velocity and has no effect on
vertical velocity. See also “Air Friction”. Coded as “max_jumpSpeed”.

[Air Acceleration]: This is the character’s air acceleration. Having a high air acceleration
will make the character change their horizontal velocity more easily in the air. Coded as
“accel_rate_air”.

[Air Friction]: This is the character’s air friction. It only applies when no left and right are
not held during drift. It also applied when a character’s horizontal velocity is greater than
air speed (such as after knockback, or Luigi Misfire). If air friction is close to 0, then that
character will drift longer. If air friction is a larger negative number, the character will
come to a stop sooner. Coded as “Decel_rate_air”.

[Terminal Velocity] [Fall Speed]: This is the character’s fastest normal fall speed.
Characters will normally accelerate downwards until they reach this number, after which
their fall speed is set to the Terminal Velocity. Coded as “max_ySpeed”.

[Fast Fall Speed]: This is the character’s fall speed after a fast fall is inputted. It changes
a character’s y-velocity to this, ignoring the terminal velocity. If a fast fall speed is slower
than the terminal velocity, fall falling will do nothing. In general, fast falls can be inputted
as soon as the character has moved downwards a frame and is in most normal states.
Coded as “fastFallSpeed”.

[Midair Jumps] [Double Jumps]: The amount of double jumps that a character has. Most
characters have 1 double jump, while a character like Jigglypuff has 5. Double jumps
are restored upon touching the ground, grabbing ledge, or after certain moves like
Falcon Kick. Coded as “max_jump”.

[Midair Turn?]: Whether or not a character turns around after a double jump. Characters
with multiple double jumps tend to have this ability. Yoshi technically does not have this
flag set to true, but is capable of turning around in midair anyway. Coded as
“midAirTurn”.

[Midair Hover]: The amount of time a character can float, in frames. Only Goku (and his
Kaioken Variant) and Peach are capable of floating. Programmed as “midAirHover”.

[Midair Jump Time]: The amount of time a character spends in a delayed double jump,
in frames. A higher value means that the character will spend more time in their double
jump animation. Coded as “midAirJumpConstant”.

[Midair Jump Delay]: The amount of delay, in frames, before a character starts moving
upwards. Think of this as a jumpsquat that lets characters continue falling before
starting their ascent. Coded as “midAirJumpConstantDelay”.

[Midair Jump Acceleration]: How quickly a character accelerates to their Midair Jump
Force during a delayed double jump. Once the Midair Jump Force is reached, the
upwards velocity is capped and will remain that way until a Double Jump Cancel or the
Midair Jump Time limit is reached. Coded as “midAirJumpConstantAccel”.

[Glide Speed]: An artifact from version 0.9b of SSF2, when Meta Knight’s up special
allowed him to glide after completion of the move. Coded as “glideSpeed”.

[Roll Stats]

[Dodge Roll Speed]: How fast a character moves when starting their dodge roll. Dodge
rolls are the kind of rolls done when in a shielding state. Coded as “dodgeSpeed”.

[Dodge Deceleration]: How fast a character decelerates during a dodge roll. Having a
higher deceleration means that the character will stop moving sooner after initiating their
roll. Even if a character has stopped moving, they may still be in the roll animation or
even still have invincibility. Programmed as “dodgeDecel”.

[L/GU Roll Speed]: This is similar to Dodge Roll Speed. It affects Ledge Roll, Get Up
Roll, and Tech Roll. This refers only to the initial roll speed. Coded as “roll_speed”.

[L/GU Roll Decay]: Affects get up roll, tech roll and ledge roll. A number closer to 0
makes rolls decelerate to 0 very quickly. A number at 1 or above does not cause rolls to
decelerate, and have the chance to crash or freeze the game. It probably is
multiplicative, with some rounding. Coded as “roll_decay”.

[L/GU Roll Delay]: Probably is unused. Might be applied if Ledge Roll Delay, GU Roll
Delay and Tech Roll Delay don’t have any set values. If it were used, it would add a
delay to a character’s movement during their respective roll animations. Coded as
“roll_delay”.

[Ledge Roll Delay]: Affects how long it takes for a character to start moving horizontally
after inputting a roll at ledge. A longer delay means that more time is spent before
moving, and in general makes that roll more reactable. Delay has no effect on distance
rolled as a rule of thumb (exceptions occur if the delay happens to be longer than a
character’s tech roll animation). Coded as “climb_roll_delay”.

[GU Roll Delay]: Affects how long it takes for a character to start moving horizontally
after inputting left or right while lying prone on the ground. A longer delay means that
more time is spent before moving, and in general makes that roll more reactable. Coded
as “GU Roll Delay”.

[Tech Roll Delay]: Affects how long it takes for a character to start moving horizontally
after inputting a roll while teching on the ground. A longer delay means that more time is
spent before moving, and in general makes that roll more reactable. Delay has no effect
on distance rolled as a rule of thumb (exceptions occur if the delay happens to be
longer than a character’s tech roll animation). Coded as “tech_roll_delay”.

[Misc Stats]

[Weight]: How “heavy” a character is. A higher weight means that the character will take
less knockback with each attack, allowing them to survive strong blows. Coded as
“weight”.

[Width] [Height]: Affects stage collisions. An equal width and height forms a rectangle of
sorts. A character with large proportions cannot get as close to a stage as a character
with smaller proportions. Also affects the distance a character is displaced when they let
go or fastfall from ledge. Does not impact movement on platforms. On a stage like
Crateria, a small width/height will allow a character like Marth to squeeze through the
gap on the right side of the stage, while a larger character like Bowser cannot do the
same. Coded as “width” and “height” respectively.

[Shield Scale]: A multiplier that affects how large a character’s shield is at max health.
Defaults to 1, and most characters have a shield exactly this size. Having a larger shield
will make it better at blocking attacks, particularly at low shield health. However, a larger
shield can also be hit from further away and lock the defending character in shieldstun,
which may be undesirable. Another thing to note is that all shields have the same
effective health, and will break at the exact same time. Coded as “shield_scale”.

[Shield Offset]: How far a shield is offset from the typical “center” of a character. There is
an X offset and a Y offset, both of which default to 0. Changing the offset by 1 unit has
little effect, shifting the shield over about a character sprite pixel. Shield offsets are
usually used to cover exposed hurtboxes when the shield is at full health. Coded as
“shield_x_offset” and “shield_y_offset”.

[Shield Break Power]: The y-velocity that the character flies up to upon having his or her
shield broken. Default unknown, but is likely to be 10. When the character has his or her
shield broken, gravity will act on them as normal. A ludicrously high Shield Break Power
is detrimental since being in the Shield Break Jump animation and passing the top blast
zone will result in a KO. Coded as “shieldBreakPower”.

[Hurtframes]: The amount of different hitstun sprites a character has. These hitstun
sprites are caused by low knockback moves (such as ZSS jab at 0%) that don’t cause
reeling/tumbling. Hurtframes are mostly aesthetic, but some slight hurtbox shifting can
occur (best viewed by pummeling Bowser with Link using Monte’s Training Mod). Coded
as “hurtframes”.

[Max Projectiles]: The amount of projectiles produced by the character that can exist at
a time. Most characters have this set to 10 (this may be due to some effect trails being
considered “projectiles”). If the maximum number of projectiles from that character is on
screen, no new projectile will be created. Coded as “max_projectiles”.

[Tether Grab]: Internal flag that shows if a grab is considered a tether grab or not. Some
grabs which seem like Tether Grabs are not treated as such for whatever reason.
Coded as “tetherGrab”.

[Pummel %]: The amount of damage a single pummel does. Coded as “grabDamage”.

[Hold Jump]: Purpose unknown, and is set to false on every character. Setting it to true
seems to do nothing. Coded as “holdJump”.

[Tilt Toss Multiplier] [Smash Toss Multiplier]: Impacts the force of a thrown projectile
multiplicatively. Few characters have a non-1 smash throw multiplier, and all characters
have a tilt throw multiplier of 1.

[Wall Jump]: A flag that determines if a character can wall jump or not. Since wall jumps
are actually not in the game (yet), we can only guess that an implementation was
intended before the release of Beta 1.1 since Pichu has this flag set to true. Coded as
“wallJump ”.

https://www.youtube.com/watch?v=xryVoZfdaJc&ab_channel=Inari

[Derivative Calculations]

[Short Hop Height]: The calculated short hop height of a character. A larger number
means that the character will jump higher on a short hop. As a side note, all jumping
actions are slightly broken in this game and actual height gained may vary (best seen
with Ganondorf).

[SH Airtime]: The amount of frames that a character is airborne during a short hop.
Adding 1 to this number will result in the expected frame that the character will land. As
a side note, all jumping actions are slightly broken in this game and actual airtime may
vary (for example, Fox is expected to be in the air for 12 frames, but sometimes he is in
the air for 13 frames). TODO: Add a link demonstrating this

[SH Apex Frame]: This is the frame that the character is at the apex of their jump. At
this point, the character is expected to be at their Short Hop Height. Jumping on this
frame will allow for a character to gain more height than jumping before or afterwards.
As a side note, all jumping actions are slightly broken in this game and the actual apex
frame may vary. TODO: Add a link demonstrating this

[SHFFL Input Frame]: This is the first frame that the character can input a fast fall. If a
fast fall is registered on this frame, then the character will SHFFL optimally. As a side
note, all jumping actions are slightly broken in this game and the actual SHFFL input
frame may vary.

[SHFFL Airtime]: The amount of frames that a character is airborne during a SHFFL. It
seems to be inaccurate at the moment, and the program which was used to do the
calculations will be updated at some point in order to remedy this. As a side note, all
jumping actions are slightly broken in this game and actual airtime may vary.

[SHFFL Land Frame]: The frame that a character will land on after successfully
performing a frame-perfect SHFFL. It seems to be inaccurate at the moment, and the
program which was used to do the calculations will be updated at some point in order to
remedy this. As a side note, all jumping actions are slightly broken in this game and the
actual landing frame may vary.

[Full Hop Height]: The calculated full hop height of a character. A larger number means
that the character will jump higher on a full hop. As a side note, all jumping actions are
slightly broken in this game and actual height gained may vary.

[FH Airtime]: The amount of frames that a character is airborne during a full hop. Adding
1 to this number will result in the expected frame that the character will land. As a side
note, all jumping actions are slightly broken in this game and actual airtime may vary.

[FH Apex Frame]: This is the frame that the character is at the apex of their jump. At this
point, the character is expected to be at their Full Hop Height. Jumping on this frame will
allow for a character to gain more height than jumping before or afterwards. As a side
note, all jumping actions are slightly broken in this game and the actual apex frame may
vary.

[FHFFL Input Frame]: FHFFL is short for Full Hop Fast Fall Land. This is the first frame
that the character can input a fast fall. If a fast fall is registered on this frame, then the
character will FHFFL optimally. As a side note, all jumping actions are slightly broken in
this game and the actual FHFFL input frame may vary.

[FHFFL Airtime]: The amount of frames that a character is airborne during a FHFFL. It
seems to be inaccurate at the moment, and the program which was used to do the
calculations will be updated at some point in order to remedy this. As a side note, all
jumping actions are slightly broken in this game and actual airtime may vary.

[FHFFL Land Frame]: The frame that a character will land on after successfully
performing a frame-perfect FHFFL. It seems to be inaccurate at the moment, and the
program which was used to do the calculations will be updated at some point in order to
remedy this. As a side note, all jumping actions are slightly broken in this game and the
actual landing frame may vary.

[0 to TV in Frames]: The amount of frames that it takes for a character to reach their
terminal velocity in frames. In game, this is usually applicable when letting go of the
ledge.

[0 to TV in Fall Distance]: The amount of distance a character will fall before hitting their
terminal velocity. The units aren’t particularly helpful, and stage labbing would be
helpful.

