

B.Sc. (Hons. Math) (Semester – 5th)
FINITE ELEMENT METHODS
Subject Code: BMAT1-517
Paper ID: [18131224]

Time: 03 Hours

Maximum Marks: 60

Instruction for candidates:

1. Section A is compulsory. It consists of 10 parts of two marks each.
2. Section B consist of 5 questions of 5 marks each. The student has to attempt any 4 questions out of it.
3. Section C consist of 3 questions of 10 marks each. The student has to attempt any 2 questions.

Section – A **(2 marks each)**

Q1. Attempt the following:

- a. Define the approximate methods
- b. What is the Method of least Squares?
- c. What is the Method of Weighted Residuals?
- d. What is the Hooke's Law?
- e. What are the homogeneous Dirichlet boundary conditions?
- f. What is the eigen value problem (EVP)?
- g. What is the boundary value problem (BVP)?
- h. What is Mechanics of solids?
- i. What is the Strain?
- j. What is the parabolic partial differential equation?

Section – B **(5 marks each)**

Q2. What are the applications of Finite Element Method (FEM)?

Q3. What is the Rayleigh-Ritz Method for solving the boundary value problem?

Q4. Solve the boundary value problem $y'' - y = x^2$ by using the Galerkin's Method with boundary conditions $y(x = 0) = 0$ and $y(x = 1) = 0$.

Q5. Derive the Stiffness Matrix for a single spring (Element)

Q6. Define the different types of Stresses

Section – C **(10 marks each)**

Q7. Solve the differential equation $y'' + y' - 2y = 0$, by using the Point Collocation Method with boundary conditions $y(x = 0) = 0$ and $y(x = 1) = 1$.

Q8. Evaluate
$$I = \int_0^L N_i N_j dx.$$

Q9. Derive the Stiffness Matrix of an axisymmetric element using the potential approach