
UX of using target_info

Note: This is a public document

Architecture

It assumes the following architecture:

i.e, You have applications emitting OTLP which goes through the OTel Collector and finally to
the Prometheus server or Prometheus compatible solutions.

OpenTelemetry Metric Structure
A metric in OTel is made up of several parts. Roughly:

1.​ Resource attributes which are key-value pairs describing the “source” of the metric.
service.name is required.

For example:

-​ service.name
-​ service.namespace
-​ service.instance.id
-​ service.version
-​ deployment.environment
-​ k8s.cluster.name
-​ k8s.node.name
-​ k8s.namespace.name
-​ k8s.pod.name
-​ k8s.container.name
-​ k8s.deployment.name
-​ cloud.provider

None

-​ cloud.region
-​ cloud.availability_zone
-​ …….

2.​ Metric attributes describe the metric itself. name and type are required.

For example:
-​ name=http.requests
-​ type=counter
-​ status.code=500
-​ path=/login

3.​ The timestamp and value:

-​ value=2000 @timestamp

Prometheus Metric Structure
Prometheus has a flat structure for metrics. A metric is identified by a set of label value pairs,
just like OTel Metric, but it doesn’t differentiate between labels describing the target and those
describing the metric itself:

For example:​

prometheus_http_requests_total{
code="200", ​

​ handler="/static/*filepath",
cluster="dev-us-central-0", ​

​ container="prometheus", ​
​ instance="prometheus-0", ​
​ job="default/prometheus", ​
​ namespace="default",
} 1622 1680529110698

While this is the final structure that is stored in the database, Prometheus actually arrives at this
by merging target labels and the actual metric exposed by the application. Brian Brazil has a
timeless blog here that describes how labels are attached to metrics here: Life of a Label –
Robust Perception | Prometheus Monitoring Experts

In the above example, the application only exposes the metric:

https://www.robustperception.io/life-of-a-label/
https://www.robustperception.io/life-of-a-label/

None

None

None

prometheus_http_requests_total{code="200", handler="/static/*filepath"}
1622

But when Prometheus discovers the application, it also discovers the metadata associated with
the target. And we manually choose (via relabelling) which of this metadata to keep and which
to discard. In the above example, we choose to keep: cluster, container, namespace.

Note that job and instance are special labels that are expected on every metric and these
labels are supposed to uniquely identify the target. This is to make sure that the same metric
exposed by two different targets don’t overwrite each other.

Mapping from OTel to Prometheus
When mapping from OTel to Prometheus, the easy way to do it is add all the labels to the metric
in Prometheus. Something like this:

http_requests_total{
status_code=”500”,
path=”/login”,
job=<service.namespace/service.name>,
instance=<service.instance.id>,
……resource attrs….

} 2000

​
Note: job and instance are mapped to the closest primitives in OTel.

However, the problem is that the resource attributes are added to every single metric and it
could be a lot. A snapshot of the default resource attributes for a Go application running in
Kubernetes:

container_id="fe86a4728728bdd534696a56bf378966f1adf2b5fbce9e76dd638e7fef
92621d",

None

host_name="opentelemetry-checkoutservice-6b5dc5954c-q6qcw",
instance="8211de3c-ab65-4909-86b7-236c92d189b1",
job="opentelemetry-demo/checkoutservice",
k8s_namespace_name="otel-demo",
k8s_node_name="gke-dev-us-central-0-main-n2s16-1-1af17bab-mcpn",
k8s_pod_name="opentelemetry-checkoutservice-6b5dc5954c-q6qcw",
os_description="Alpine Linux 3.17.2 (Linux 5.10.162+ #1 SMP Fri Jan 27
10:11:23 UTC 2023 x86_64)",
os_type="linux",
process_command_args="["./checkoutservice"]",
process_executable_name="checkoutservice",
process_executable_path="/usr/src/app/checkoutservice",
process_owner="root"
process_pid="1",
process_runtime_description="go version go1.19.2 linux/amd64",
process_runtime_name="go",
process_runtime_version="go1.19.2",
telemetry_sdk_language="go",
telemetry_sdk_name="opentelemetry",
telemetry_sdk_version="1.10.0",

Enter OpenMetric’s target_info
To help with this problem of capturing contextual metadata, OpenMetrics has a primitive called
target_info.

The preferred solution is to provide this target metadata as part of the exposition, but in a
way that does not impact on the exposition as a whole. Info MetricFamilies are designed
for this. An exposer may include an Info MetricFamily called "target" with a single Metric
with no labels with the metadata. An example in the text format might be:

TYPE target info
HELP target Target metadata
target_info{env="prod",hostname="myhost",datacenter="sdc",re
gion="europe",owner="frontend"} 1

https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#supporting-target-metadata-in-both-push-based-and-pull-based-systems

None

OpenTelemetry leverages this and moves the resource attributes into target_info.

So when we are converting from OTel to Prometheus, it becomes the following:

http_requests_total{status_code=”500”, path=”/login”,
job=<service.namespace/service.name>,
instance=<service.instance.id>} 2000​
target_info{...resource attrs...,
job=<service.namespace/service.name>,
instance=<service.instance.id>} 1

​
Note that target_info is created once per target and not for each metric.

Using target_info
Great, now we can model from OpenTelemetry to Prometheus, but the job is not done. We still
have to use this information.

The best way to do this is with an example:

●​ Let's say we have one service = “checkoutservice”, with two replicas:
○​ {service.instance.id = “1.2.3.4:8080”, ​

cloud.availability_zone=”us-central-1a”, ​
kubernetes.pod.name=pod-1}

○​ {service.instance.id=”5.6.7.8:8080”, ​
cloud.avalability_zone=”us-central-1b”, ​
kubernetes.pod.name=pod-2}

And each replica is exposing the following metrics:

●​ http.requests{status=200}
●​ http.requests{status=404}
●​ http.requests{status=500}

When we apply the default mapping it will look like this:

None

Now lets says you want to only see the metrics for cloud_availability_zone="us-central-1a", you
have to do a join in Prometheus:

 http_requests_total
* on (job, instance) group_left ()
 target_info{cloud_availability_zone="us-central-1a"}

None

None

If you want to copy the values of certain resource labels into the result metrics, then you put the
labels into group_left():

 http_requests_total
* on (job, instance) group_left (kubernetes_pod_name)
 target_info{cloud_availability_zone="us-central-1a"}

However, these are trivial queries. If you have a histogram:
traces_span_metrics_duration_seconds_bucket that you are trying to get the 95%ile broken
down by cloud_availability_zone, it just becomes too complex:

histogram_quantile(
 0.95,
 sum by (le, cloud_availability_zone) (

rate(traces_span_metrics_duration_seconds_bucket{job="checkoutservice"}[5m])
 * on (job, instance) group_left (cloud_availability_zone)
 target_info
)
)

Also, from the OTel demo, if you want to sum the metric app_ads_ad_requests by
namespace, you need to write:

None

None

None

None

sum by (k8s_namespace_name) (app_ads_ad_requests * on (job, instance)
group_left (k8s_namespace_name) target_info)

Contrast this to how native Prometheus feels like:

sum by (k8s_namespace_name) (app_ads_ad_requests)

What’s the alternative?
Let's take a step back and consider what Prometheus does. Prometheus also has labels
describing a target, and it doesn’t use target_info. And it even has more labels that
OpenTelemetry, for example, for kubernetes, it has the following:
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_confi
g

However, what it does is forces users to pick which target labels are important and apply it to all
metrics. For example, at Grafana Labs, we pick the following:

cluster="dev-us-central-0", ​
​ container="prometheus", ​
​ instance="prometheus-0", ​
​ job="default/prometheus", ​
​ namespace="default",

pod="prometheus-0"

If we want the 95%ile grouped by cluster, the query is the following:

histogram_quantile(
 0.95,
 sum by (le, cluster)
(rate(traces_span_metrics_duration_seconds_bucket{job="checkoutservice"}[5m]))
)

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

None

This is the tradeoff we make. We can’t select or slice and dice on every dimension, but we have
to pick ahead of time for the best UX. And it works quite well, because we typically know which
dimensions we are interested in!

To achieve this in OTel Collector is quite simple actually. We have to copy the labels over from
resource attributes to metric attributes:

processor:
 transform:
 metric_statements:
 - context: metric
 statements:
 - set(attributes["namespace"],
resource.attributes["k8s_namespace_name"])
 - set(attributes["container"],
resource.attributes["k8s.container.name"])
 - set(attributes["pod"], resource.attributes["k8s.pod.name"])
 - set(attributes["cluster"], resource.attributes["k8s.cluster.name"])

By leveraging this, the metrics will have the namespace, container, pod and cluster labels that
you can then select and group on.

This mimics how Prometheus works and would give you the best UX for querying the data back.

	UX of using target_info
	Architecture
	OpenTelemetry Metric Structure
	Prometheus Metric Structure
	Mapping from OTel to Prometheus
	Enter OpenMetric’s target_info
	Using target_info
	What’s the alternative?

