
Avoiding leaks in deoptimization literals 
Attention - this doc is public and shared with the world! 

Contact: seth.brenith@microsoft.com 
Status: Inception | Draft | Accepted | Done 
Bug: v8:4578 
Implementation: [heap] Fix leaks due to deoptimization literals (I02e86683) 

LGTMs needed 
Name Write (not) LGTM in this row 

mlippautz@ lgtm 

mvstanton@ lgtm 

<add yourself>  

What’s the problem? 
Let’s start with an example from the bug. Consider the lifetime of the CustomObject instantiated 
in the third line of this program. It is a necessary part of the execution context for the function 
variable fn, but once fn is cleared on the last line, the CustomObject should become unrooted 
and therefore eligible for garbage collection. However, we see that the CustomObject instance 
is kept alive via the deoptimization literals for function g. 
 
class CustomObject {} 

function makeFn() { 

  var co = new CustomObject(); 

  co.num = 0; 

  return () => { return ++co.num; }; 

} 

var fn = makeFn(); 

function g(f) { f(); } 

%PrepareFunctionForOptimization(g); 

%PrepareFunctionForOptimization(fn); 

g(fn); 

%OptimizeFunctionOnNextCall(g); 

g(fn); 

https://bugs.chromium.org/p/v8/issues/detail?id=4578
https://chromium-review.googlesource.com/c/v8/v8/+/3160299


fn = null; 

How things work now 

Deoptimization literals 
Any TurboFan-compiled JS function can have a variety of different execution paths that lead to 
deoptimization. For each of these paths, there is information in the DeoptimizationData 
describing how to restore an interpreter stack frame which can continue execution where the 
optimized code left off. The interpreter stack frame might require values that were stored in 
registers or on the stack at the time of deoptimization, and it also might require constant values. 
Those constant values are the deoptimization literals. They are stored in a plain FixedArray 
owned by the DeoptimizationData, which is in turn owned by the Code. 

Embedded object pointers 
TurboFan generates code that includes object pointers directly in the instruction stream. This is 
useful, for example, when checking whether a JSFunction instance matches one that was 
inlined. However, the link from the Code to that embedded JSFunction instance is considered 
weak in most cases, to ensure that the optimized code doesn’t keep the embedded object alive 
when it’s no longer reachable in any user-visible way. If any weak embedded object doesn’t 
survive garbage collection, then the Code pointing to it is marked for deoptimization and all of its 
embedded object pointers are cleared. The generated code checks whether it has been marked 
for deoptimization both at function entry and after returning from any other function that could 
have caused garbage collection. This mechanism is referred to as “lazy deoptimization”. 

“In most cases”? 
If a Code object is currently executing as the top frame on the stack, and it is not at a point 
where it’s just about to check for deoptimization, then clearing all of its embedded object 
pointers would be very bad. So in that case, all embedded object pointers are treated as strong. 

What other embedded object types are weak? 
These ones: 
bool Code::IsWeakObjectInOptimizedCode(HeapObject object) { 

  Map map = object.map(kAcquireLoad); 

  InstanceType instance_type = map.instance_type(); 

  if (InstanceTypeChecker::IsMap(instance_type)) { 

    return Map::cast(object).CanTransition(); 

  } 



  return InstanceTypeChecker::IsPropertyCell(instance_type) || 

         InstanceTypeChecker::IsJSReceiver(instance_type) || 

         InstanceTypeChecker::IsContext(instance_type); 

} 

What’s the problem? (part 2) 
V8 has very careful and precise handling of embedded object pointers to avoid leaks, but a lot 
of the same objects end up in the deoptimization literals, where they are held strongly. In the 
example we started with, the optimized function g holds all of the following via deoptimization 
literals: 
 

●​ SharedFunctionInfo and BytecodeArray for the outer function g 
●​ SharedFunctionInfo and BytecodeArray for the inlined function fn 
●​ The JSFunction and Context instances for the inlined function fn 
●​ The CustomObject instance from the inlined function’s Context 
●​ The JSGlobalProxy 
●​ The OptimizedOut oddball value 

 
If we assume that the Code is not currently executing, then I believe the only literals that must 
be held strongly are the two BytecodeArrays (to prevent flushing) and the SharedFunctionInfo 
for the outer function (which I imagine is probably used during the function-entry deoptimization 
path). The inlined JSFunction, its Context, and the JSObject value contained by that Context 
should all be weak. Based on this example, it seems that Code::IsWeakObjectInOptimizedCode 
would be a perfectly fine selection mechanism for how to treat deoptimization literals. 

Proposal 
(If you’d rather just see the code, here it is.) 
 
The following content is kept so the comments and discussion are visible, but based on 
discussion, we can use a simpler implementation. Thanks everyone! 
 
Without changing how deoptimization literals are arranged in memory, we can define custom 
visiting semantics that avoid the leaks presented above. We make use of the fact that the 
FixedArrays containing deoptimization literals are never shared between multiple Code 
instances (unless they are the canonical empty array). Otherwise there would be a risk of failing 
to deoptimize all of the relevant Codes. 
 
We start by defining a new type, which looks like a FixedArray but with custom-weak visiting 
behavior: 

https://chromium-review.googlesource.com/c/v8/v8/+/3160299


@export 

class DeoptimizationLiteralArray extends HeapObject { 

  const length: Smi; 

  weak objects[length]: Object; 

} 

Marking behavior 
If the marking visitor encounters a DeoptimizationLiteralArray (henceforth DLA) directly that is 
still white, then it treats all of the objects as strong. This is because a detached DLA has no way 
to tell what Code it should mark for deoptimization. Usually DLAs are only reachable via their 
corresponding Code, but sometimes they might be held via Handles. 
 
When marking a Code object, the marking visitor checks whether a DLA is attached. If so, and if 
that DLA is still white, then it marks the DLA black and iterates the literals. Any literals that 
should be treated as weak (according to Code::IsWeakObject) and aren’t yet marked are put in 
a list for processing later, much like the behavior for any other weak reference. Each entry in 
that list contains pointers to the Code, the DLA, and the slot within the DLA. It seems a little bit 
redundant to have both the DLA and a slot within it, but we must be able to find the page header 
for the DLA and I don’t see any clear guarantee that it couldn’t be in large-object space. 
 
When marking the stack roots, the MarkCompactCollector iterates the deoptimization literals of 
each running Code and marks them all as roots too. It would be possible to iterate only the 
deoptimization literals required for the current function position in each Code, but doing so 
would add a lot of complexity for questionable benefit. 

ClearNonLiveReferences behavior 
When processing weak references, the MarkCompactCollector must iterate the new list of weak 
references from DLAs. If any item in the list points to an object which is still unmarked, then the 
corresponding Code is marked for deoptimization and its embedded object pointers are cleared, 
just like the behavior for weak embedded object pointers. Also, the slot in the DLA is overwritten 
with undefined. 
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