
Week-7
(a) Reading different types of data sets (.txt, .csv) from Web or disk and writing in
file in specific
 disk location.
(b) Reading Excel data sheet in R.
(c) Reading XML dataset in R.

7(a) Reading different types of data sets (.txt, .csv) from Web or disk and writing
in file in
 specific disk location.

Reading data from txt or csv files

The R base function read.table() is a general function that can be used to read a file in
table format. The data will be imported as a data frame.
Note that, depending on the format of your file, several variants of read.table() are
available, including read.csv, read.csv2(), read.delim and read.delim2().

❖​ read.csv(): for reading “comma separated value” files (“.csv”).

❖​ read.csv2(): variant used in countries that use a comma “,” as decimal point
and a semicolon “;” as field separators.

❖​ read.delim(): for reading “tab-separated value” files (“.txt”). By default,
point (“.”) is used as decimal points.

❖​ read.delim2(): for reading “tab-separated value” files (“.txt”). By default,
comma (“,”) is used as decimal points.

The simplified format of these functions are, as follows:

Read tabular data into R
read.table(file, header = FALSE, sep = "", dec = ".")
Read "comma separated value" files (".csv")
read.csv(file, header = TRUE, sep = ",", dec = ".", ...)
Or use read.csv2: variant used in countries that # use a comma as decimal
point and a semicolon as field separator.
read.csv2(file, header = TRUE, sep = ";", dec = ",", ...)
Read TAB delimited files
read.delim(file, header = TRUE, sep = "\t", dec = ".", ...) read.delim2(file, header =
TRUE, sep = "\t", dec = ",", ...)

❖​ file: the path to the file containing the data to be imported into R.

❖​ sep: the field separator character. “\t” is used for tab-delimited file.

❖​ header: logical value. If TRUE, read.table() assumes that your file has a
header row, so row 1 is the name of each column. If that’s not the case, you
can add the argument header = FALSE.

❖​ dec: the character used in the file for decimal points.

Reading a local file

To import a local .txt or a .csv file, the syntax would be:
Read a txt file, named "mtcars.txt"
my_data <- read.delim("mtcars.txt")
Read a csv file, named "mtcars.csv"
my_data <- read.csv("mtcars.csv")

Note:
The above R code, assumes that the file “mtcars.txt” or “mtcars.csv” is in your
current working directory. To know your current working directory, type the
function getwd() in R console.

❖​ It’s also possible to choose a file interactively using the function file.choose(),

which I recommend if you’re a beginner in R programming:
Read a txt file
my_data <- read.delim(file.choose())
Read a csv file
my_data <- read.csv(file.choose())

If you use the R code above in RStudio, you will be asked to choose a file.
Reading a file from internet
It’s possible to use the functions read.delim(), read.csv() and read.table() to import
files from the web.
my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt")
head(my_data)

�Here I am using weather data.

Example-1: R program reading a .text file
Read a text file using read.delim()
Data1 = read.delim("weather.txt", header = TRUE)
print(Data1)
Output:
my_data
 outlook temperature humidity windy play
1 overcast hot high FALSE yes
2 overcast cool normal TRUE yes
3 overcast mild high TRUE yes
4 overcast hot normal FALSE yes
5 rainy mild high FALSE yes
6 rainy cool normal FALSE yes
7 rainy cool normal TRUE no
8 rainy mild normal FALSE yes
9 rainy mild high TRUE no
10 sunny hot high FALSE no
11 sunny hot high TRUE no
12 sunny mild high FALSE no
13 sunny cool normal FALSE yes

14 sunny mild normal TRUE yes

Data2 <-read.table(“weather.txt”, header=TRUE, sep = "\t")
Data2
Output:

Data2
 outlook temperature humidity windy play
1 overcast hot FALSE yes
2 overcast cool normal TRUE yes
3 overcast mild high TRUE yes
4 overcast hot normal FALSE yes
5 rainy mild high FALSE yes
6 rainy cool normal FALSE yes
7 rainy cool normal TRUE no
8 rainy mild normal FALSE yes
9 rainy mild high TRUE no
10 sunny hot high FALSE no
11 sunny hot high TRUE no
12 sunny mild high FALSE no
13 sunny cool normal FALSE yes
14 sunny mild normal TRUE yes

Example-2: R program reading a .csv file
Data3 <- read.csv(“weather.csv”, header=TRUE)
Data3
outlook temperature humidity windy play
1 overcast hot high FALSE yes
2 overcast cool normal TRUE yes
3 overcast mild high TRUE yes
4 overcast hot normal FALSE yes
5 rainy mild high FALSE yes
6 rainy cool normal FALSE yes
7 rainy cool normal TRUE no
8 rainy mild normal FALSE yes
9 rainy mild high TRUE no
10 sunny hot high FALSE no
11 sunny hot high TRUE no
12 sunny mild high FALSE no
13 sunny cool normal FALSE yes
14 sunny mild normal TRUE yes

Data4 <-read.table(“weather.csv”, header=TRUE,sep=",")

Data4
outlook temperature humidity windy play
1 overcast hot high FALSE yes
2 overcast cool normal TRUE yes

3 overcast mild high TRUE yes
4 overcast hot normal FALSE yes
5 rainy mild high FALSE yes
6 rainy cool normal FALSE yes
7 rainy cool normal TRUE no
8 rainy mild normal FALSE yes
9 rainy mild high TRUE no
10 sunny hot high FALSE no
11 sunny hot high TRUE no
12 sunny mild high FALSE no
13 sunny cool normal FALSE yes
14 sunny mild normal TRUE yes

It’s also possible to choose a file interactively using the function file.choose()

� To read .txt file
data3 <-read.delim(file.choose(), header=TRUE)
data3

data4 <-read.table(file.choose(),header=TRUE, sep="\t")
data4

� To read .csv file

data1 <- read.csv(file.choose(), header=TRUE)
data1

data2 <-read.table(file.choose(), header=TRUE,sep=",")
data2

Reading a file from internet
It’s possible to use the functions read.delim(), read.csv() and read.table() to import
files from the web.
my_data <- read.delim("http://www.sthda.com/upload/boxplot_format.txt")
head(my_data)

Output:

Nom variable Group
1 ​ IND1 10 A
2 ​ IND2 7 A
3 ​ IND3 20 A
4 ​ IND4 14 A
5 ​ IND5 14 A
6 ​ IND6 12 A
7 ​ IND7 10 A
8 ​ IND8 23 A
9 ​ IND9 17 A
10 ​ IND10 20 A

11 ​ IND11 14 A
12 ​ IND12 13 A
13 ​ IND13 11 B
14 ​ IND14 17 B
15 ​ IND15 21 B
16 ​ IND16 11 B
17 ​ IND17 16 B
18 ​ IND18 14 B
19​ IND19 17 B
20 ​ IND20 17 B
21 ​ IND21 19 B
22 ​ IND22 21 B
23 ​ IND23 7 B
24 ​ IND24 13 B
25 ​ IND25 0 C
26 ​ IND26 1 C
27 ​ IND27 7 C
28 ​ IND28 2 C
29 ​ IND29 3 C
30 ​ IND30 1 C
31 ​ IND31 2 C
32 ​ IND32 1 C
33 ​ IND33 3 C
34 ​ IND34 0 C
35 ​ IND35 1 C
36 ​ IND36 4 C
37 ​ IND37 3 D
38​ IND38 5 D
39 ​ IND39 12 D
40 ​ IND40 6 D
41 ​ IND41 4 D
42 ​ IND42 3 D
43 ​ IND43 5 D
44 ​ IND44 5 D
45 ​ IND45 5 D
46 ​ IND46 5 D
47 ​ IND47 2 D
48 ​ IND48 4 D
49​ IND49 3 E
50​ IND50 5 E
51 ​ IND51 3 E
52 ​ IND52 5 E
53 ​ IND53 3 E
54 ​ IND54 6 E
55 ​ IND55 1 E
56 ​ IND56 1 E
57 ​ IND57 3 E
58 ​ IND58 2 E
59 ​ IND59 6 E
60 ​ IND60 4 E

61​ IND61 11 F
62 ​ IND62 9 F
63 ​ IND63 15 F
64 ​ IND64 22 F
65 ​ IND65 15 F
66 ​ IND66 16 F
67 ​ IND67 13 F
68 ​ IND68 10 F
69 ​ IND69 26 F
70 ​ IND70 26 F
71 ​ IND71 24 F
72 ​ IND72 13 F

Import dataset in R programming
R is a programming language designed for data analysis. Therefore, loading data is
one of the core features of R.
R contains a set of functions that can be used to load data sets into memory. You can
also load data into memory using R Studio - via the menu items and toolbars.
Data Formats
R can load data in two different formats:

●​ CSV files
●​ Text files

CSV means Comma Separated Values. You can export CSV files from many data
carrying applications. For instance, you can export CSV files from data in an Excel
spreadsheet. Here is an example of how a CSV file looks like inside:

name,id,salary
"John Doe",1,99999.00
"Joe Blocks",2,120000.00
"Cindy Loo",3,150000.00

As you can see, the values on each line are separated by commas. The first line
contains a list of column names. These column names tell what the data in the
following lines mean. These names only make sense to you. R does not care about
these names. R just uses these name to identify data from the different columns.
A text file is typically similar to a CSV file, but instead of using commas as separators
between values, text files often use other characters, like e.g. a Tab character. Here is
an example of how a text file could look inside:

name id salary

"John Doe" 1 99999.00
"Joe Blocks" 2 120000.00
"Cindy Loo" 3 150000.00

As you can see, the data might be easier to read in text format - if you look at the data
directly in the data file that is. Once the data is loaded into R / R studio, there is no
difference. You can look at the data in R Studio's tabular data set viewer, and then you
cannot see the difference between CSV files and text files.

Actually, the name "text files" is a bit confusing. Both CSV files and text files
contains data in textual form (as characters). One just uses commas as separator
between the values, whereas the others use a tab character.

Load Data Via R Studio Menu Items
The easiest way to load data into memory in R is by using the R Studio menu items. R
Studio has menu items for loading data in two different places. The first is in the
toolbar of the upper right section of R Studio. This screenshot shows where the
"Import Dataset" button is (look for the little mouse pointer "hand") :

When you click the button you get this little menu:

You can also import data from the top menu of R Studio. The next screenshot shows
where the "Import Dataset" menu item is located in R Studio's top menu:

Text File or Web URL
As you can see in both the "Import Dataset" menu items, you can import a data set
"From Text File" or "From Web URL". These two options refer to where you load the
data from. "From Text File" means from a text file on your local computer. "From
Web URL" means that you load the data from a web server somewhere on the
internet.
Regardless of whether you choose "From Text File" or "From Web URL", R can load
the file as either a CSV or text file. The location of the file has nothing to do with the
data format used inside the file. Don't get confused by that. The menu item "From
Text file" does not mean "text file format" (tab characters as separators). It just means

"a file on your local computer". "From Local File" would probably have been a more
informative text for this menu item.
Selecting Data Format
After you have chosen the location to load the file from, you will be shown a dialog
like this:

The select boxes (drop down boxes) allows you to specify different configurations
about the data format of the file you are about to import. In the boxes on the right you
can see two boxes. The top box shows you what the data file looks like. The bottom
box shows you how R Studio interprets the data in the file based on the configurations
chosen in the select boxes in the left side of the dialog. If you change the choices in
the select boxes you will see that the bottom right box changes.
When you have selected all the configurations you need in the select boxes on the left,
click the "Import" button. The data will now be loaded into R Studio.
Note that R Studio prints the R commands needed to load the data into the R console
in the left side of R studio. You can copy these functions and use them to load data
into R via R code.
After the Data is Loaded
After you have loaded the data into R Studio it will look similar to the screenshot
below:

7(b) Reading Excel data sheet in R.
Steps to Import an Excel file into R

Step 1: Install the readxl package
In the R Console, type the following command to install the readxl package:
install.packages(“readxl”)

Step 2: Prepare your Excel File
Let’s suppose that you have an Excel file with some data about products:

Product Price
Refrigerator 1200
Oven 750
Dishwasher 900
Coffee Maker 300

And let’s say that the Excel file name is product_list, and your goal is to import that
file into R.
Step 3: Import the Excel file into R

In order to import your file, you’ll need to apply the following template in the R
Editor:

library(“readxl”)
read.excel(“Path where your Excel file is stored\\FileName.xlsx”)

https://datatofish.com/install-package-r/

Example:
my_data <- read_excel("product_list.xlsx")
my_data
 (OR)
my_data <- read_excel(file.choose())
my_data
Note:
If you use the R code above in RStudio, you will be asked to choose a file.
Output:
A tibble: 4 x 2
 Product Price
 <chr> <dbl>
1 Refrigerator 1200
2 Oven 750
3 Dishwasher 900
4 Coffee Maker 300

Importing Excel files using xlsx package
The xlsx package, a java-based solution, is one of the powerful R packages
to read, write and format Excel files.
Installing and loading xlsx package

❖​ Install
install.packages(“xlsx”)

❖​ Load
library(“xlsx)

Using xlsx package
There are two main functions in xlsx package for reading both xls and xlsx Excel
files: read.xlsx() and read.xlsx2() [faster on big files compared to read.xlsx function].

The simplified formats are:
read.xlsx(file, sheetIndex, header=TRUE)
read.xlsx2(file, sheetIndex, header=TRUE)

❖​ file: file path

❖​ sheetIndex: the index of the sheet to be read

❖​ header: a logical value. If TRUE, the first row is used as column names.
Example:
library(“xlsx”)
my_data1 <- read.xlsv(file.choose(), 1) # read first sheet

7(c) Reading XML dataset in R.
In R, we can read the xml files by installing "XML" package into the R environment.
This package will be installed with the help of the familiar command i.e., install.
packages.

install.packages(“XML”)

Creating XML File
Save the following data with the .xml file extension to create an xml file. XML tags
describe the meaning of data, so that data contained in such tags can easily tell or
explain about the data.
Example: xml_data.xml
Example: xml_data.xml

<records>
<employee_info>
<id>1</id>
<name>Shubham</name>
<salary>623</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>2</id>
<name>Nishka</name>
<salary>552</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>
<name>Gunjan</name>
<salary>669</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>
<name>Sumit</name>
<salary>825</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>

<name>Arpita</name>
<salary>762</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>
<name>Vaishali</name>
<salary>882</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>
<name>Anisha</name>
<salary>783</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

<employee_info>
<id>1</id>
<name>Ginni</name>
<salary>964</salary>
<date>1/1/2012</date>
<dept>IT</dept>
</employee_info>

</records>

Reading XML File
In R, we can easily read an xml file with the help of xmlParse() function. This
function is stored as a list in R. To use this function, we first need to load the xml
package with the help of the library() function. Apart from the xml package, we also
need to load one additional package named methods.
Example: Reading xml data in the form of a list.
install.packages(“XML”)
Loading the package required to read XML files.

library("XML")
Also loading the other required package.

library("methods")
Giving the input file name to the function.

result <- xmlParse(file = "xml_data.xml")
xml_data <- xmlToList(result)
print(xml_data)
Output:
 xml_data <- xmlToList(result)
 print(xml_data)
$employee_info

$employee_info$id
[1] "1"
$employee_info$name
[1] "Shubham"
$employee_info$salary
[1] "623"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "2"
$employee_info$name
[1] "Nishka"
$employee_info$salary
[1] "552"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Gunjan"
$employee_info$salary
[1] "669"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"

$employee_info$name
[1] "Sumit"
$employee_info$salary
[1] "825"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Arpita"
$employee_info$salary

[1] "762"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Vaishali"
$employee_info$salary
[1] "882"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Anisha"
$employee_info$salary
[1] "783"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"
$employee_info
$employee_info$id
[1] "1"
$employee_info$name
[1] "Ginni"
$employee_info$salary
[1] "964"
$employee_info$date
[1] "1/1/2012"
$employee_info$dept
[1] "IT"

To download file to the current working directory
download.file("https://www.w3schools.com/xml/simple.xml", "breakfast.xml")

Install XML package
install.packages("XML")

To load library
library(XML)

Giving the input file name to the function.

doc <- xmlParse("breakfast.xml")
print(doc)
#Converting the data into list
xml_data <-xmlToList(doc)
print(xml_data)
xmldataframe <- xmlToDataFrame("breakfast.xml")
xmldataframe

Output:
library(XML)
> doc <- xmlParse("breakfast.xml")
> print(doc)
<?xml version="1.0" encoding="UTF-8"?>
<breakfast_menu>
 <food>
 <name>Belgian Waffles</name>
 <price>$5.95</price>
 <description>Two of our famous Belgian Waffles with plenty of real maple
syrup</description>
 <calories>650</calories>
 </food>
 <food>
 <name>Strawberry Belgian Waffles</name>
 <price>$7.95</price>
 <description>Light Belgian waffles covered with strawberries and whipped
cream</description>
 <calories>900</calories>
 </food>
 <food>
 <name>Berry-Berry Belgian Waffles</name>
 <price>$8.95</price>
 <description>Light Belgian waffles covered with an assortment of fresh berries
and whipped cream</description>
 <calories>900</calories>
 </food>
 <food>
 <name>French Toast</name>
 <price>$4.50</price>
 <description>Thick slices made from our homemade sourdough
bread</description>
 <calories>600</calories>
 </food>
 <food>
 <name>Homestyle Breakfast</name>
 <price>$6.95</price>
 <description>Two eggs, bacon or sausage, toast, and our ever-popular hash
browns</description>
 <calories>950</calories>
 </food>
</breakfast_menu>

> xml_data <-xmlToList(doc)
> print(xml_data)
$food
$food$name
[1] "Belgian Waffles"
$food$price
[1] "$5.95"
$food$description
[1] "Two of our famous Belgian Waffles with plenty of real maple syrup"
$food$calories
[1] "650"
$food
$food$name
[1] "Strawberry Belgian Waffles"
$food$price
[1] "$7.95"
$food$description
[1] "Light Belgian waffles covered with strawberries and whipped cream"
$food$calories
[1] "900"
$food
$food$name
[1] "Berry-Berry Belgian Waffles"
$food$price
[1] "$8.95"
$food$description
[1] "Light Belgian waffles covered with an assortment of fresh berries and whipped
cream"
$food$calories
[1] "900"
$food
$food$name
[1] "French Toast"
$food$price
[1] "$4.50"
$food$description
[1] "Thick slices made from our homemade sourdough bread"
$food$calories
[1] "600"
$food
$food$name
[1] "Homestyle Breakfast"
$food$price
[1] "$6.95"
$food$description
[1] "Two eggs, bacon or sausage, toast, and our ever-popular hash browns"
$food$calories
[1] "950"

	Reading a local file
	Reading a file from internet
	Reading a file from internet
	Data Formats
	Load Data Via R Studio Menu Items
	Text File or Web URL
	Selecting Data Format
	After the Data is Loaded

	Steps to Import an Excel file into R
	
	Step 1: Install the readxl package
	
	Step 2: Prepare your Excel File
	Step 3: Import the Excel file into R

	Importing Excel files using xlsx package
	Installing and loading xlsx package
	Reading XML File

