TP-D3: Deliverable 3
Term Project: Total-Death Coronavirus Mapping

Nate Snyder (n8snyder)
Matt Whitehead (matt1985)
Andrew Villaume (aclaude)
CS370: Operating Systems

Shrideep Pallickara
December 9, 2020

INTRODUCTION

For our semester project, our team created a map displaying the total number of deaths
as caused by the Covid-19 pandemic in the United States. We implement this, primarily, with the
use of leaflet - an open source JavaScript library for the creation of the map. Leaflet is deployed
in a RESTful API server, running within a Docker container. The API server specifies two
endpoints, one of which is a data-endpoint. In a separate container is a database, which
communicates, using kubernetes, with the data-endpoint for transfer. The transferred data is then
parsed, and made available using the API’s second endpoint, the web server one. Ultimately,
when the user makes a request to the API server, they are met with an html webpage containing
the JavaScript leaflet mapping. The JavaScript is run on their machine, and further interacts with
the web-server endpoint to display the map.

DATA SOURCE

Sourcing the data was the first problem our team had run-into, and an integral one in that
whatever data we had access to would be shaping the implementation of our map (how the data
would define the location of cases, dating of cases, etc.). As such, we needed to resolve what
type of data we would be working with to move forward with project development. We quickly
found that there were a number of available sources to contend with, and an equal number of
unique frameworks holding the data. Initially, our team was keen on using a data lake. A
repository of raw data, this is a system we had little experience with; though, the use of Amazon
Web Services made accessing a particular Covid-19 data lake we had found to be seamless.
Querying the data proved to be another challenge. Amazon Web Service charges a querying fee
per the terabyte, and, while not particularly expensive at $5 per terabyte, considering further our
team expected to query a size of data much less than that, we still opted to pursue a free
alternative source. This came in the form of a data repository by the Center for Systems Science
and Engineering at Johns Hopkins University. Such source provided a number of statistics
relating to daily reports from around the world. Our team decided to consider only data from the
United States, and proceeded to question how such data should be implemented.

DISPLAYING MAP DATA

In exploring how to implement the data available to us within our map, we run into a
problem poised in our initial project proposal. That is, how to - if even we should - manipulate
the coronavirus data. In this is a greater question which may provide us insight to the former.
This being, what can we purposefully display with our map, and thus what data may need to be
manipulated? While a case could be made for displaying updated daily statics, our team found
an answer in displaying the total-deaths on a state-by-state basis. This, we felt, gave greater
insight into how the disease was affecting the United States, both in showing the devastating
impact and displaying the sheer volume of cases. For this, data would require no manipulation,
rather, we needed only to find the number of deaths attributed to each state. Such data was not
readily available in the repository provided by Johns Hopkins, thus, we simply differed to using

a new source as provided by The New York Times. Still, we would use state's latitude and
longitudes included in the Johns Hopkins repository for the creation of leaflet’s map markers.

SERVER

Coming into the project creating a web server seemed like a fairly large task as none of
our team members had ever built one before. Yet this process turned out to be reasonably
straightforward thanks to the help and advice of our Teaching Assistants. The TAs in CS370 and
the video tutorials they created on Infospaces were of major assistance in developing our project
overall, but in specifically setting up our first web server. Taking our TAs advice we began by
creating our project using Maven. Maven is a project management tool that is used for
Java-based projects build, dependency, and documentation. Maven would allow us to implement
a RESTful API with Java’s Spark framework. Once our default Maven project was built we
added dependencies like the Maven compiler plugin and Java Spark core to ensure that we could
build our project and utilize Java’s Spark micro framework.

The next step was creating a Java RESTfulServer class that we would use to develop our
server. We started by importing Spark’s microserver and Spark’s request and response objects.
These would allow us to build the framework and the functionality to modify the response and
request objects. We then created a Spark microserver to serve as an endpoint and listen on a
specified port, which in our case was port 8080. We then added functions to configure Spark’s
RESTful API request routes. These routes allow for HTTP requests and responses between the
server and client so status information and requested content can be shared freely. Finally all we
had to do was create a main function that would call the constructor of our RESTful server. In
essence our RESTful server constructor configures our Spark microserver to listen for requests
and defines all the routes.

We then wanted to use our server to communicate with a separate database that held the
coronavirus data. After some research we decided on MySQL. MySQL is an open-source
relational database management system. How and why we chose MySQL and this type of data is
discussed in its own section. In our server class we used our request routes to request coronavirus
data from MySQL. Once our server received a response we created a function to parse the
coronavirus data. We were specifically interested in the state name, latitude, longitude, and total
deaths. Our goal was to use the latitude and longitude information to set markers on our map and
use the state name and total deaths information to display above these markers. So once our data
was parsed correctly we created a JavaScript object that we would use in the creation of our map
and markers.

MySQL
We are utilizing MySQL as a database to store our data. At first we planned on using
SQLite as our database, however we ran into issues that would have made that choice

impossible. The reason for using SQLite is that it is very simple, it does not have a user or
password or server to connect to, it is just a single file which can easily be shared or moved. The
issue that we ran into was that with a SQLite database existing in a container, there is no network
connection to connect to the database. The normal procedure for connecting is with the path to
the database file. Because we wanted the web server and database to be in separate containers,
they would not have been able to communicate due to containers inability to access each other’s
file systems. MySQL fit our desired use of a database with a server that is toned down compared
to other databases, such as Postgres.

MAP
To present our coronavirus data we felt an interactive map would be both the most
user-friendly and aesthetically pleasing. Our teams’ goal was to present the map once the user
loads the website. The total coronavirus deaths would be defined within each state of the
interactable map. The user would then have the ability to move through the map, zoom in or out,
and click on each state and view the total coronavirus deaths presented as a pop-up.

Our first instinct was to use Google Maps API. Google Maps API lets you customize
maps with your own images or utilize four basic map types (roadmap, satellite, hybrid, and
terrain). This seemed ideal, but the first issue we encountered was that to implement a dynamic
map we would need to create it using JavaScript. This was an issue as none of the members of
our team had any prior experience with the JavaScript programming language. Luckily, Google
points you to some excellent JavaScript tutorials [1], which would come in useful later in our
project, and its documentation [2] on implementing the Maps API is very easy to follow. The
first step was declaring the DOCTYPE within the HTML that allows for our content to be
cross-browser compliant and render the best across platforms. We then used Google Maps API
HTML formatting, so we could output a basic map in the suggested style. The last addition was
our JavaScript file. This turned out to be much easier than we previously thought as Google
Maps API could be inlined directly into our HTML file. This simply required us to set HTML
script tags around Google’s provided source. The source is the URL where Google Maps API is
loaded from and includes all of the symbols and definitions we needed. It should be noted that to
use Google Maps API an API key [3] is required in the src code.

Now that we had a working map, our next goal was to get our Spark Java to return our
HTML file. We found our solution within the Spark documentation. First we needed to define
our HTML and CSS files within the source’s resources directory, so our server could have a path
to access our files. We then passed the relative path to our files to our server using Spark’s
staticFiles.location() method [4]. Once our path was set up then all we had to do was redirect our
HTML file to our URL by using the method response.redirect().

To view our new map we built our Maven project and ran our web server, but upon
loading our site our map turned out to be fairly unusable. The map was overlayed with a “For
development purposes only” layer. Apparently Google has changed its terms of use and only
certain APIs are free. This was disappointing, but likely saved us a lot of research and headache
as we were already concerned that we would not be able to implement the clickable marker
functionality we wanted to with Google Maps.

We still wanted to implement a dynamic map and after more research we settled on
OpenStreetMap [5]. OpenStreetMap provides community managed, open-source mapping that is
free to use with citation to its contributors. This was exactly what we were looking for and, better
yet, our discovery of OpenStreetMap led us to Leaflet. Leaflet is an open-source JavaScript
library designed specifically for interactive maps. Leaflet is simple, clear, and has tons of
documentation [6] and community resources and examples. While it was a pain going through all
that hard work to implement Google Maps, discovering Leaflet and OpenStreetMaps ended up
making our lives much easier in the long run.

Lucky for us, the implementation of Leaflet was extremely similar to that of Google
Maps. We began by inlining script to pull the Leaflet CSS and library and JQuery library. These
allow for simpler website styling and JavaScript usage. We also created a path between our
server and HTML to redirect our HTML to our website. Next we diverted from our Google Maps
implementation as we wanted to keep our map and marker renders in a separate Javascript file
for readability and organization sake. Following the Leaflet documentation we created a map
using a tilelayer from OpenStreetMap and added initial attributes like latitude, longitude, and
zoom so our map view was set over the United States when our site is loaded. To add our
markers we had to pass in the JavaScript object [7] we created from calling the coronavirus
database. From this JavaScript object we parsed out the state, latitude, longitude, and total
deaths. We used the latitude and longitude to set the location of the markers on the map and
within each state and added the state name and total deaths data to the marker pop-up. This
marker pop-up can be viewed by the user by clicking on the marker itself. The final step in
getting our map and markers to render was to inline a source to our map JavaScript file into our
HTML and wrap it in script tags.

CONTAINERS

Our application utilizes two containers. One container holds the web server and the other
holds the MySQL database. For the web server container, we decided to have the build process
use a two part process. The first step uses the Maven image from Docker Hub to compile the
web server into an executable which is saved within the image’s file system. The second stage of
the build process creates an image to run the web server. To do this, the image uses alpine java
and copies the executable from the first stage image and moves it to a new image. By using this
two step process, building the docker image does not depend on the builder having Maven and it

reduces the amount of dependencies and space used by the final image [8]. Initially, the build
process was only a single stage of using a java image and copying the executable from a local
directory. The issue with this approach was that there was a prerequisite of compiling before
being able to build the image. This would be impossible in some situations, such as having
GitHub automatically build and push to Docker Hub.

For the database container, we wanted to have the data be preloaded in the database.
Because we are using a MySQL server, the data is stored in the /var/lib/mysql directory. Our
initial thought was to copy this directory into the image. The problem with this approach is that
that directory contains all databases that exist locally, which would have then been copied into
the image. To avoid any local dependencies, we decided to use a similar multi-step build process
as the web server container. The first stage creates the database and table and then inserts the
data into the table. To do this, we used a sql file which contains all of the necessary commands.
Another issue we ran into was that the /var/lib/mysql directory is defined as a volume, and
docker ignores all changes made to a volume after being declared. To solve this problem, the
data is stored in a temporary directory of /initialized-db. The second step of the build process
copies the data from /initialized-db into /var/lib/mysql as a declaration [9].

KUBERNETES

In order to solve issues related to connectability, reliability and deployment, we utilize
Kubernetes. By default, the two containers are not able to communicate with each other, which
means that the web server would be unable to query the database. To solve this issue, the two
containers are placed within the same pod. This makes it so they have the same localhost, which
means they can easily connect through the usual means. With these containers are in the same
pod, we need to provide a way to connect to the web server when sending a request from the
outside. To accomplish this, we define a service which redirects incoming requests to the web
server’s port of 8080 [10]. Kubernetes also automatically solves the issue of the containers
crashing by relaunching them when they go down.

In the future, if there is a large amount of traffic to the site, we could create replicas of the
pod to provide more entry points into the app. Usually it would not be a good idea to replicate a
container with a database due to potential inconsistencies between them. Inconsistencies can
occur when one gets written to, then they would all need to be synced with the updated data. This
would not be an issue with our app because our use of the database is purely to read from it. This
means that when we do want to update the data, we would perform the same process as for
updating the web server. If the pod were to be replicated, one of the potential downsides would
be from having both containers in the same pod. The issue would be that there would potentially
be more or fewer database instances than would be needed. For instance, if the web server is
struggling to handle requests but the database is not, then creating replicas of the pod would

result in too many instances of the database. If duplication were to happen in the future, it may
be worthwhile to decouple the number of web server instances from database instances.

CONCLUSION

Our term project proved to be a useful exploration of new technologies, development
processes, and collaboration. Initially, in brainstorming, we explored the possibility of
implementing interactive features on the map such as timelapses, the visual spread of data, and
more. We quickly found this to be an overhead outside of our scope for this project, and
refocused our efforts. From this, we learned the importance of having a strong framework from
which to build from and remaining in frequent contact throughout the duration of the project to
continually set our bases and reassess the current build. By creating such a framework and
remaining in contact, we were able to continually think broadly about any design decision, thus
giving us the ability to adjust our direction and work-through problems while still maintaining
progress. We learned, too, the importance of starting small and building incrementally. By first
developing our back-end and setting a base to build from, we could gradually move towards the
realization of our project with the insurance that previous components were in working
condition. With the full realization of our project and the final map, we are happy with what we
have built and what we have learned.

BIBLIOGRAPHY

[1]. JavaScript Tutorial. W3Schools. Retrieved December 09, 2020, from
https://www.w3schools.com/]s/

[2]. Maps JavaScript API. Google. Retrieved December 09, 2020, from
https://developers.google.com/maps/documentation/javascript/overview

[3]. Using API keys. Google. Retrieved December 09, 2020, from
https://cloud.google.com/docs/authentication/api-keys

[4]. Documentation. Spark Java. Retrieved December 09, 2020, from
http://sparkjava.com/documentation

[5]. Use OpenStreetMap. OpenStreetMap. Retrieved December 09, 2020, from
https://wiki.openstreetmap.org/wiki/Use OpenStreetMap

[6]. Leaflet API reference. Leaflet. Retrieved December 09, 2020, from
https://leafletjs.com/

[7]. Maloney, A. (2014, January 23). Creating An Interactive Map With Leaflet and
OpenStreetMap. Retrieved December 09, 2020, from
https://asmaloney.com/2014/01/code/creating-an-interactive-map-with-leaflet-and-op

enstreetmap/

[8]. Baker, A. (2020, March 05). Three Ways to Create Docker Images for Java. Retrieved
December 09, 2020, from

https://codefresh.io/docker-tutorial/create-docker-images-for-java/

[9]. Roy, M. (2018, June 08). Creating a docker mysql container with a prepared database
scheme. Retrieved December 09, 2020, from
https://serverfault.com/questions/796762/creating-a-docker-mysql-container-with-a-p
repared-database-scheme

[10]. Using a Service to Expose Your App. (2020, July 27). Retrieved December 09, 2020,
from https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/

[11] Almukhtar, S. et al. (2020, April 01). Missouri Covid Map and Case Count. Retrieved
December 07, 2020, from

https://www.nytimes.com/interactive/2020/us/missouri-coronavirus-cases.html

[12] Dong, E., Du, H., & Gardner, L. (2020). CSSEGISandData/COVID-19. Retrieved
December 07, 2020, from https://github.com/CSSEGISandData/COVID-19

https://www.w3schools.com/js/
https://developers.google.com/maps/documentation/javascript/overview
https://cloud.google.com/docs/authentication/api-keys
http://sparkjava.com/documentation
https://wiki.openstreetmap.org/wiki/Use_OpenStreetMap
https://leafletjs.com/
https://asmaloney.com/2014/01/code/creating-an-interactive-map-with-leaflet-and-openstreetmap/
https://asmaloney.com/2014/01/code/creating-an-interactive-map-with-leaflet-and-openstreetmap/
https://codefresh.io/docker-tutorial/create-docker-images-for-java/
https://codefresh.io/docker-tutorial/create-docker-images-for-java/
https://kubernetes.io/docs/tutorials/kubernetes-basics/expose/expose-intro/
https://www.nytimes.com/interactive/2020/us/missouri-coronavirus-cases.html

