Request Oriented Collector (ROC) Algorithm

Rick Hudson and Austin Clements
June 2016
golang.org/s/gctoc

We propose a new garbage collection (GC) algorithm based on the request hypothesis'. Put
simply, the request hypothesis states that objects created by a request tend to die once the
request is fulfilled. Our new request oriented collector or ROC algorithm focuses attention on
these objects thus improving overall GC throughput and scalability while delaying the need to do
a full heap GC.

The request hypothesis grew out of our work supporting cloud applications which are typically
architected to have a goroutine handle a request from the network or from another goroutine. In
fulfilling such a request the goroutine receives a message, unmarshals it, performs a
computation, marshals the result, and places the result on a channel or socket destined for
another goroutine or the network. The goroutine then terminates or becomes dormant waiting
for another request. The computation may access a large shared heap to read data, but
typically writes very little to the heap that persists beyond the request. If at some point the
goroutine does share newly allocated object with other goroutines, we call this publishing that
object. If an object isn’t published, we call it Jocal. The key observation of ROC is: if a goroutine
exits before publishing an object, the object becomes unreachable and the associated memory
can be reclaimed and reused immediately. The ROC algorithm is a way to promptly and
efficiently reclaim these unpublished objects.

Now that we understand the use case we will provide a high-level description of the ROC
algorithm along with enough detail to convince the reader that the algorithm is correct and
terminates.

The heap is divided into spans containing objects and associated metadata such as
pointer/scalar maps and mark bits. Each GC cycle walks the heap marking reachable objects in
a data structure called the mark bitmap. To allocate an object the mutator simply sweeps the
mark bitmap until it encounters an unmarked bit. It then allocates the new object from the
associated memory. Each span maintains a current sweep pointer demarcating mark bits that
have been swept and mark bits yet to be swept. Each running goroutine maintains an initial
sweep pointer that along with the current sweep pointer can be used to determine what objects
it has recently allocated. Objects between the initial sweep pointer and the current sweep
pointer were either marked reachable or have been allocated by this goroutine. Unmarked bits

' The term request oriented collector (ROC) replaces transaction oriented collector (TOC). This
will remove the confusion between the use here and ACID property transactions familiar to the
database community. Thanks to Randall Farmer for the suggestion.

between the initial sweep pointer and the current sweep pointer denote objects that have been
allocated but not published.

The write barrier is responsible for maintaining the invariant that all published objects are
marked. The write barrier is called whenever a pointer to an object is written into the slot of
another object. The write barrier can determine whether an object is local or published. If the
referrer object (the object holding the slot being written into) is published and the referent (the
pointer being written into the slot) is local, the referent is about to be published. Furthermore,
objects transitively reachable from the referent are also about to be published. To maintain the
invariant that published objects have their mark bit set, the write barrier sets the mark bit of the
referent and does a transitive walk of objects reachable from the referent setting mark bits. Only
then is the object published by writing the referent into the slot. No synchronization is needed
because local objects are only visible to the local goroutine and mark bits are set before this
object is published. A branch of the transitive walk is terminated when it encounters a marked
object. The local goroutine only has to scan local objects and local objects aren’t being mutated
during the scans.

This write barrier design allows ROC to efficiently reclaim unpublished objects when a goroutine
exits simply by resetting the current sweep pointer back to the initial sweep pointer. Because
unpublished objects do not have their mark bits set, this action is sufficient to free them and
make them available for allocation to another goroutine, without having to wait for the next GC
cycle.

Informal proof

We now informally outline a proof of correctness, completeness, and termination of the write
barrier. There is a finite bounded number of local objects, each mark reduces the number of
unmarked local objects, and any infinite structure must either be undergoing mutation, which it
is not since the only mutator with access is in the write barrier, or contain a cycle of unmarked
objects. Since we mark objects before we scan them we break any such cycle of unmarked
reachable local objects. These facts can be used show correctness, completeness in the sense
all published objects are marked, and termination. More importantly this can be used to
conservatively identify unpublished objects without synchronization.

When a goroutine is started it has allocated no objects and thus has published no objects and
the initial sweep pointer is the same as the current sweep pointer. All objects are allocated
unpublished with unset mark bits and lay between the initial sweep pointer and the current
sweep pointer. The write barrier maintains the invariant that published objects between the initial
sweep pointer and the current sweep pointer will have their mark bit set. Once terminated a
goroutine neither allocates nor publishes objects.

Examples

To better explain the algorithms let's use some old school ASCII art.

Figure 1
This is the typical state of a mark bitmap after a full GC cycle.

10011110010100101010100001001011010010110100101001011101010111101

A

Allocation Start

A

Current Sweep Pointer

1 indicates object was reachable at the last GC.
0 indicates the object is free and available for allocation.

Figure 2

This is the typical state of a mark bitmap after allocation without ROC. Allocation starts at the
beginning of the span and proceeds to the end of the span. The boundary between allocated
and unallocated areas of the span is demarcated by the Current Sweep Pointer.

10011110010100101010100001001011010010110100101001011101010111101
~ <- before »~ after ->

Allocation Start Current Sweep Pointer

1 indicates object was reachable at the last GC.

Before: 0 allocated since the last GC
After: 1 object in use, 0 object free
Figure 3

This is a typical state of a ROC bitmap which tracks the per goroutine allocations. Note that the
unmarked bits between the goroutine’s initial sweep pointer and the current sweep pointer
indicate newly allocated objects. Unlike Figure 1 we also maintain the current goroutine’s Initial
Sweep Pointer.

10011110010100101010100001001011010010110100101001011101010111101
~ <- before ~ after ->
goroutine Current Sweep Pointer
Initial Sweep Pointer

1 indicates the object was either reachable at the last GC or was allocated and published since.

Before: 0 allocated since the last GC and not published.
After: 0 object free

Figure 4
The algorithm ensures that published objects have their mark bit set.
The write barrier maintains this invariant by flipping unmarked bits to marked before publication

100111100101001010101011101001011010010110100101001011101010111101
~ kK <- before ~ after ->
goroutine Current Sweep Pointer
Initial Sweep Pointer

1 indicates the object was either reachable at the last GC or was allocated and published since.
Before: 0 allocated since the last GC and not published.
After: 0 object free

if referent is marked and referenced is unmarked {
recursively mark referenced
install reference in referent slot

*** These 3 objects have had their bits flipped by the write barrier as part of being published
Unpublished newly allocated objects have a 0 mark bit.

Figure 5
At this point the request ends and the goroutine exits.
The algorithm resets the Current Sweep Pointer to the goroutine Initial Sweep Pointer

100111100101001010101011101001011010010110100101001011101010111101
<- before ~ -> after
goroutine Initial Sweep Pointer
Current Sweep Pointer
1 indicates the object was either reachable at the last GC or was allocated and published since.
Before: 0 allocated since the last GC and not published.
After: 0 object free

Note that the published objects have their mark bits set while the unpublished objects which are
no longer reachable do not.

Figure 6

Instead of creating and exiting goroutines another typical Cloud architecture has goroutines that
become dormant awaiting a new request. Typically such dormant goroutines have a shallow
stack and few if any pointers to unpublished scratch objects. The algorithm deals with dormant
goroutines by scanning their stacks and transitively marking any locally reachable objects.

100111100101001010101011101001111010110110100101001011101010111101
~ * * " -> after
goroutine Current Sweep Pointer
Initial Sweep Pointer

1 indicates the object was either reachable at the last GC, was allocated and published since, or
was allocated and is reachable from the stack of a dormant goroutine.

Before: 0 allocated since last GC, not published, and not reachable from goroutine stack
After: 0 object free

* Local objects reachable from dormant goroutine's stack are marked

Figure 7

At this point the request becomes dormant but objects reachable from the stack, if any, are
marked.

The algorithm resets the Current Sweep Pointer to the goroutine Initial Sweep Pointer allowing
the unmarked objects to be reused.

100111100101001010101011101001011010010110100101001011101010111101
<- before ~ -> after
goroutine Initial Sweep Pointer
Current Sweep Pointer
1 indicates the object was either reachable at the last GC, was allocated and published since, or
was allocated and reachable from the stack of a dormant goroutine.
Before: 0 allocated since last GC, not published, and not reachable from goroutine stack
After: 0 object free

At some point most of the bits become marked and we need to run a full GC cycle.

Next Steps

We are comfortable with the algorithm and the proofs so the next step is to implement the
algorithm and make it available for testing and measurement. Optimizations will be driven by an
iterative build and measure process that will include multiple groups. Based on the feedback
and the performance numbers a decision will be made whether the algorithm will be included as
part of the standard Go release.

	Informal proof
	Examples
	Next Steps

